Common Supports as Fixed Points

TED LEWIS¹, BALDER VON HOHENBALKEN² and VICTOR KLEE³

1Department of Mathematics, University of Alberta, Edmonton, T6G 2G1, Canada e-mail: ted.lewis@ualberta.ca 2Department of Economics, University of Alberta, Edmonton, T6G 2H4, Canada e-mail: balder.von.hohenbalken@ualberta.ca

3Department of Mathematics, University of Washington, Seattle, WA 98195, U.S.A. e-mail: klee@math.washington.edu

(Received: 5 September 1994)

Abstract. A family S of sets in \mathbb{R}^d is *sundered* if for each way of choosing a point from $r \leq d+1$ members of S, the chosen points form the vertex-set of an $(r - 1)$ -simplex. Bisztriczky proved that for each sundered family S of d convex bodies in \mathbb{R}^d , and for each partition (S', S'') of S, there are exactly two hyperplanes each of which supports all the members of $\mathcal S$ and separates the members of S' from the members of S'' . This note provides an alternate proof by obtaining each of the desired supports as (in effect) a fixed point of a continuous self-mapping of the cartesian product of the bodies.

Mathematics Subject Classification (1991): 52A20.

Key words: common support, convex body, fixed point, orientation, transversal.

A family S of subsets of \mathbb{R}^d is *sundered* if, for each way of choosing a point from $r \leq d + 1$ members of S, the chosen r points form a set that is affinely independent and hence is the vertex-set of an $(r - 1)$ -simplex. This is equivalent to being $(d-1)$ -separated as defined in [7]. When $|S| = d$ it amounts to saying that for each way of choosing a point from each set, there is a unique hyperplane that contains all the chosen points. The present note is concerned with a sundered family consisting of precisely d bodies B_1, \ldots, B_d in \mathbb{R}^d , where a *body* is a set that is compact, convex, and has nonempty interior.

A hyperplane H in \mathbb{R}^d is a *transversal* for S if each member of S intersects H. A transversal H is a *common support* (or, simply, a *support*) for S if each member of S is contained in one of the two closed halfspaces bounded by H . (We call these *H*-halfspaces.) For a partition (I, J) of the index set $\{1, \ldots, d\}$, an (I, J) -support of $\{B_1,\ldots,B_d\}$ is a support H such that one of the H-halfspaces contains $\bigcup_{i\in I} B_i$ and the other H-halfspace contains $\bigcup_{i \in J} B_i$. The following beautiful theorem is due to Bisztriczky [2].

THEOREM. *If* ${B_1, \ldots, B_d}$ *is a sundered family S of d bodies in* \mathbb{R}^d (*d* > 2), *then for each partition* (I, J) *of* $\{1, \ldots, d\}$ *there are exactly two* (I, J) *-supports of S.*

The first proof of this theorem was in fact given by Cappell *et al.* [3], because Bisztriczky recently declared his own demonstration to be incomplete. [2] and [3] also consider common supports for sundered families of fewer than d bodies. The present note does not address the latter case, but it does provide an easy proof of Bisztriczky's theorem by using the elementary topological fact that each continuous self-mapping of a compact convex set must have a fixed point (Brouwer's theorem).

The proof is divided into three parts. In the first part, which shows that there are at least two (I, J) -supports, it is assumed that each of the bodies B_k is strictly convex. Using this assumption, two continuous self-mappings F and G of the product $B_1 \times \cdots \times B_d$ are defined, and it is shown that a fixed point of either mapping gives rise to an (I, J) -support of S. The second part indicates two ways of removing the assumption of strict convexity. One is a routine limiting argument, and the other a direct application of Kakutani's fixed-point theorem rather than Brouwer's. The third part provides an alternative proof that there are at most two (I, J) -supports.

For additional information about transversal hyperplanes and common supports, see [1]-[7]. Fixed-point approaches to common supporting spheres are discussed in a second paper [9] by the present authors.

Proof

(First part) Let B denote the Cartesian product $B_1 \times \cdots \times B_d$ and let U denote the unit sphere $\{u \in \mathbb{R}^d : ||u|| = 1\}$. The proof will involve two continuous mappings,

$$
\nu:B\to U\quad\text{and}\quad \beta:U\to B.
$$

For each selection $b = (b_1, \ldots, b_d) \in B$, let $H(b)$ denote the transversal hyperplane containing all the points b_k , and let the unit vector $\nu(b) \in U$ be defined by the following two conditions, where $e = (1, \ldots, 1)$:

(i) $\nu(b)$ is normal to $H(b)$;

(ii) det
$$
\begin{bmatrix} e & 0 \\ b & \nu(b) \end{bmatrix}
$$
 > 0.

With $\langle \cdot, \cdot \rangle$ denoting the inner product, condition (i) says that $\langle \nu(b), b_k - b_d \rangle = 0$ for $1 \leq k < d$ and condition (ii) says that the unit normal $\nu(b)$ is 'positively oriented' with respect to (b_1, \ldots, b_d) . The sign of the 'orientation determinant' in (ii) depends on the order in which the bodies B_k are listed. However, from continuity of the determinant and the fact that the bodies are convex and form a sundered family, it follows that the sign of the determinant is independent of the choice of the points b_k at which the hyperplane $H(b)$ intersects the bodies B_k . Continuity of the function $\nu:B \to U$ follows from a routine argument based on the continuity of the determinant and the compactness of the sets B_k .

The definition of the function $\beta:U \to B$ depends on the partition (I, J) . For $i \in I$, let $b_i(u)$ denote the unique point of B_i at which the functional $\langle u, \cdot \rangle$ attains its B_i -maximum, and for $j \in J$ let $b_i(u)$ denote the unique point of B_i at which $\langle u, \cdot \rangle$ attains its B_i -minimum. (Uniqueness of these points follows from strict convexity.) From compactness and uniqueness it follows in a routine way that each of the functions $b_k: U \to B_k$ is continuous. That assures the continuity of the function $\beta: U \to B$ defined by setting $\beta(u) = (b_1(u), \ldots, b_d(u))$ for each $u \in U$.

Now define the continuous mappings $F: B \to B$ and $G: B \to B$ by setting (for each $b \in B$)

$$
F(b) = \beta(\nu(b)) \quad \text{and} \quad G(b) = \beta(-\nu(b)).
$$

Since B is a compact convex set, it follows from Brouwer's theorem that there are points r and s of B such that $F(r) = r$ and $G(s) = s$. Then the functional $\langle v(r), \cdot \rangle$ is constant on the set $\{r_1, \ldots, r_d\}$ and hence this set generates a support $H(r)$ of (B_1, \ldots, B_d) such that one of the two $H(r)$ -halfspaces contains $\bigcup_{i \in I} B_i$ and the other contains $\bigcup_{i \in J} B_i$. A similar statement applies to s.

To see that the two common supports $H(r)$ and $H(s)$ are distinct, note that otherwise the comments following (ii) would necessitate that $\nu(r) = \nu(s)$, and s would then be equal to both $F(s)$ and $G(s)$. For any body B_k with $k \in J$, this would imply that

$$
\max \langle \nu(s), B_k \rangle = \langle \nu(s), s_k \rangle = -\langle -\nu(s), s_k \rangle = -\max \langle -\nu(s), B_k \rangle = \min \langle \nu(s), B_k \rangle,
$$

which is impossible when B_k has nonempty interior. A similar statement applies to $k \in I$, and it follows that the family has at least two common (I, J) -supports.

(Second part) Now let us remove the assumption that each of the bodies B_k is strictly convex. For $1 \leq k \leq d$ and for each positive integer n, let B_k^n denote a strictly convex body such that $B_k^n \subseteq B_k$ and the Hausdorff distance between B_k^n and B_k is less than $1/n$. Let $S_n = (B_1^n, \ldots, B_d^n)$. Then S_n is a sundered family to which the above reasoning applies, and passage to the limiting family S yields the desired conclusion.

It is also possible to deal directly with bodies that are not strictly convex. In this case, β becomes an upper-semicontinuous set-valued mapping into B, with compact convex image sets. The same is then true of the mappings $F:B \to B$ and $\tilde{G}:B \to B$, and thus Kakutani's extension [8] of Brouwer's theorem yields the existence of points $r, s \in B$ such that $r \in F(r)$ and $s \in G(s)$. It again turns out that $H(r)$ and $H(s)$ are two distinct (I, J) -supports.

(Third part) Finally, for the sake of completeness, we provide an alternative proof that there are at most two (I, J) -supports.

Each (I, J) -support is of the form $\{x: (u, x) = \lambda\}$ for some $(u, \lambda) \in U \times \mathbb{R}$ such that u is positively oriented, and such that

- (a) max $\langle u, B_i \rangle = \min \langle u, B_j \rangle = \lambda$ for all $i \in I$ and $j \in J$, or
- (b) $\min\{u, B_i\} = \max\{u, B_i\} = \lambda$ for all $i \in I$ and $i \in J$.

We will show that if the pairs (u, λ) and (v, μ) are both of type (a), then $u = v$. From this it follows that $\lambda = \mu$, and hence there is at most one support of type (a). The same argument shows that there is at most one support of type (b).

Let the points $r_k \in B_k$ be such that $\langle u, r_k \rangle = \lambda$ for all k. Then choose the points $s_k \in B_k$ so that $\langle v, s_k \rangle = \mu$ for all k, and, in addition, $s_k = r_k$ for all k such that $\langle v, r_k \rangle = \mu$. Suppose that $u \neq v$, and for each $t \in [0, 1]$ set $w(t) = (1 - t)u - tv$. Note that $w(t) \neq 0$.

For each $i \in I$ it is true that

$$
\langle w(t), r_i \rangle = (1-t)\langle u, r_i \rangle - t\langle v, r_i \rangle
$$

\n
$$
\geq (1-t)\langle u, r_i \rangle - t\langle v, s_i \rangle = (1-t)\lambda - t\mu
$$

\n
$$
\geq (1-t)\langle u, s_i \rangle - t\langle v, s_i \rangle = \langle w(t), s_i \rangle
$$

and that either $r_i = s_i$ or $\langle v, r_i \rangle \langle u$. In the latter case, $\langle w(t), r_i \rangle > \langle w(t), s_i \rangle$ for all $t \in]0, 1]$. A similar observation is valid for $j \in J$, and we conclude that for each k and for each $t \in [0, 1]$ the segment $[r_k, s_k]$ in B_k contains a unique point $b_k(t)$ of the hyperplane $\{x:(w(t),x)=(1-t)\lambda-t\mu\}$. Routine arguments show that the functions $w(\cdot)$ and $b(\cdot) = (b_1(\cdot), \ldots, b_d(\cdot))$ are continuous, so the orientation determinant

$$
\det \begin{bmatrix} e & 0 \\ b(t) & w(t) \end{bmatrix}
$$

also varies continuously with t. Since the system is sundered, this determinant is never 0. However, $D(0)$ and $D(1)$ must have opposite signs, for

$$
D(0) = \det \begin{bmatrix} e & 0 \\ r & u \end{bmatrix} \quad \text{and} \quad D(1) = \det \begin{bmatrix} e & 0 \\ s & -v \end{bmatrix}.
$$

This contradiction completes the proof.

References

- I. Anderson, L. and Wenger, R.: Oriented matroids and hyperplane transversals (Manuscript, 1995).
- 2. Bisztriczky, T.: On separated families *of convex bodies, Arch. Math.* 54 (1990), 193-199.
- 3. Cappell, S. E., Goodman, J. E., Pach, J., Pollack, R., Sharir, M. and Wenger, R.: Common tangents and common *transversals,Adv, in Math.* 106 (1994), 198-215.
- 4. Dawson, R.: Common supports of families of sets, *Geom. Dedicata* 51 (1994), 1-13.
- 5. Dawson,R. andEdetstein, M.: *Familiesofbodieswithdefinitecommonsupports, Geom. Dedieata* 33 (1990), 195-204.
- 6. Goodman, J. E. and Pollack, R.: Hadwiger's transversal theorem in higher dimensions, J. *Amer. Math. Soc.* 1 (1988), 301-309.
- 7. Goodman, J. E., Pollack, R. and Wenger, R.: Geometric transversal theory, in J. Pach (ed.), *New Trends in Discrete and Computational Geometry,* Springer-Verlag, Berlin, 1993, pp. 163-198.
- 8. Kakutani, S.: A generalization of Brouwer's fixed point theorem, *Duke Math. J.* 8 (1941), 457–459.
- 9. Klee, V., Lewis, T. and Von Hohenbalken, B.: Apollonius revisited: supporting spheres for sundered systems, *Discrete & Computational Geometry,* to appear.