
Geometriae Dedicata 60:277-28 I, 1996. 277 
© 1996 KluwerAcademic Publishers. Printed in the Netherlands. 

Common Supports as Fixed Points 
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Abstract. A family S of sets in R a is sunderedif for each way of choosing a point from r < d + 1 
members of S,  the chosen points form the vertex-set of an (r - 1)-simplex. Bisztriczky proved that 
for each sundered family S of d convex bodies in R d, and for each partition (S', S") of S, there are 
exactly two hyperplanes each of which supports all the members of S and separates the members of 
S '  from the members of S" .  This note provides an alternate proof by obtaining each of the desired 
supports as (in effect) a fixed point of a continuous self-mapping of the cartesian product of the 
bodies. 
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A family S of subsets of R d is sundered if, for each way of choosing a point 
from r _< d + 1 members of  S,  the chosen r points form a set that is affinely 
independent and hence is the vertex-set of  an (r - 1)-simplex. This is equivalent 
to being (d  - 1 ) -separated  as defined in [7]. When ISI -- d it amounts to saying 
that for each way of choosing a point from each set, there is a unique hyperplane 
that contains all the chosen points. The present note is concerned with a sundered 
family consisting of precisely d bodies B 1 , . . . ,  Bd in R d, where a body is a set that 
is compact, convex, and has nonempty interior. 

A hyperplane H in R d is a transversal for S if each member of S intersects// .  
A transversal H is a common support (or, simply, a support) for S if each member 
of S is contained in one of the two closed halfspaces bounded by H. (We call these 
H-halfspaces.) For a partition ( / ,  J )  of the index set {1 , . . . ,  d), an (I, J)-support 
of {B1 , . . . ,  Bd) is a suppor t / / such that one of the//-halfspaces contains Ui~x Bi 
and the other H-halfspace contains [-JjcJ Bj. The following beautiful theorem is 
due to Bisztriczky [2]. 

THEOREM. I f {B1, . . . ,  Bd} is a sundered family S of d bodies in R ~ (d >_ 2), 
then for  each partition ( I ,  J)  o f  { 1 , . . . ,  d} there are exactly two (1, J)-supports 
of S. 
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The first proof of this theorem was in fact given by Cappell et al. [3], because 
Bisztriczky recently declared his own demonstration to be incomplete. [2] and [3] 
also consider common supports for sundered families of fewer than d bodies. The 
present note does not address the latter case, but it does provide an easy proof of 
Bisztriczky's theorem by using the elementary topological fact that each continuous 
self-mapping of a compact convex set must have a fixed point (Brouwer's theorem). 

The proof is divided into three parts. In the first part, which shows that there 
are at least two (I ,  J)-supports, it is assumed that each of the bodies Bk is strictly 
convex. Using this assumption, two continuous self-mappings F and G of the 
product B1 x . • • x Bd are defined, and it is shown that a fixed point of either 
mapping gives rise to an (I ,  J)-support of S. The second part indicates two ways 
of removing the assumption of strict convexity. One is a routine limiting argument, 
and the other a direct application of Kakutani's fixed-point theorem rather than 
Brouwer's. The third part provides an alternative proof that there are at most two 
(1, J)-supports. 

For additional information about transversal hyperplanes and common supports, 
see [1]-[7]. Fixed-point approaches to common supporting spheres are discussed 
in a second paper [9] by the present authors. 

Proof 

(First part) Let B denote the Cartesian product B1 × • • • × Bd and let U denote the 
unit sphere {u E Rd:llull = 1 }. The proof will involve two continuous mappings, 

u:B-+ U and fl:U-+ B. 

For each selection b = (b l , . . . ,bd)  C B, let H(b) denote the transversal 
hyperplane containing all the points bk, and let the unit vector u(b) E U be 
defined by the following two conditions, wkzre e = (1 , . . . ,  1): 

(i) u(b) is normal to H(b); [;0 
(ii) det L,(b) > 0. 

With (. ,  .) denoting the inner product, condition (i) says that @(b), bk - bd) = 0 
for 1 <_ k < d and condition (ii) says that the unit normal u(b) is 'positively 
oriented' with respect to (b l , . . . ,  bd). The sign of the 'orientation determinant' 
in (ii) depends on the order in which the bodies Bk are listed. However, from 
continuity of the determinant and the fact that the bodies are convex and form a 
sundered family, it follows that the sign of the determinant is independent of the 
choice of the points bk at which the hyperplane It(b) intersects the bodies Bk. 
Continuity of the function u:B ~ U follows from a routine argument based on the 
continuity of the determinant and the compactness of the sets Bk. 
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The definition of the function/3:U --+ B depends on the partition (I ,  J) .  For 
i E I ,  let bi(u) denote the unique point of Bi at which the functional (u, .) attains 
its Bi-maximum, and for j E J let bj(u) denote the unique point of Bj at which 
(u, .) attains its Bj-minimum. (Uniqueness of these points follows from strict 
convexity.) From compactness and uniqueness it follows in a routine way that 
each of the functions bk: U ~ Bk is continuous. That assures the continuity of the 
function/3:U --+ B defined by setting/3(u) = (b l (u ) , . . . ,  bd(u)) for each u E U. 

Now define the continuous mappings F:B --+ B and G:B --+ B by setting (for 
each b E B) 

F(b) = fl(u(b)) and G(b) = /3(-u(b)). 

Since B is a compact convex set, it follows from Brouwer's theorem that there 
are points r and s of B such that F(r)  = r and G(s) = s. Then the functional 
(u(v), .} is constant on the set { r l , . . . ,  vd} and hence this set generates a support 
H(r)  of (B1,..., Bd) such that one of the two H(r)-halfspaces contains UiEI Bi 
and the other contains (.Jjea Bj. A similar statement applies to s. 

To see that the two common supports H(r)  and H(s)  are distinct, note that 
otherwise the comments following (ii) would necessitate that u(r) = u(s), and 
would then be equal to both F(s)  and G(s). For any body Bk with k E J,  this 
would imply that 

max(u(~),Bk) = <t . , ( s ) , sk )=- ( -u ( s ) , sk )  

= - max(-t . , (8),Bk) = min(u(s) ,Bk) ,  

which is impossible when Bk has nonempty interior. A similar statement applies 
to k E I ,  and it follows that the family has at least two common (I ,  J)-supports. 

(Second part) Now let us remove the assumption that each of the bodies Bk is 
strictly convex. For 1 < k < d and for each positive integer n, let B~ denote a 
strictly convex body such that B~ _C Bk and the Hausdorff distance between B~ 
and Bk is less than 1/n. Let S,~ = ( B ~ , . . . ,  B~). Then S,z is a sundered family to 
which the above reasoning applies, and passage to the limiting family S yields the 
desired conclusion. 

It is also possible to deal directly with bodies that are not strictly convex. In 
this case,/3 becomes an upper-semicontinuous set-valued mapping into B, with 
compact convex image sets. The same is then true of the mappings F:B --+ B 
and G:B ~ B, and thus Kakutani's extension [8] of Brouwer's theorem yields the 
existence of points r, s E B such that r E F(r)  and s E G(s). It again turns out 
that H (r) and H (s) are two distinct (I ,  J)-supports. 

(Third part) Finally, for the sake of completeness, we provide an alternative proof 
that there are at most two (I ,  J)-supports  
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Each ( I ,  J ) -suppor t  is of  the form {x : (u , x )  = A} for some (u ,A)  E U × R 
such that u is positively oriented, and such that 

(a) max(u,  Bi)  = min(u, Bj)  = A for all i E I and j C J ,  or 

(b) min(u,  Bi) = max(u,  Bj)  = A for all i C I and j C J .  

We will show that if the pairs (u , ) , )  and (v, #)  are both of  type (a), then u = v. 
From this it follows that A = #, and hence there is at most one support of  type (a). 
The same argument shows that there is at most one support of  type (b). 

Let the points rk E Bk be such that (u, rk) = A for all k. Then choose the points 
sk E Bk so that (v, sk) = # for all k, and, in addition, sk = rk for all k such that 
(v, rk) = #. Suppose that u ~ v, and for each t E [0, 1] set w(t)  = (1 - t )u - tv. 
Note that w(t)  ~ O. 

For each i E I it is true that 

(w( t ) ,  r i )  : (1  - t ) ( u ,  r~) - t (v ,r~)  

> (1 - t ) ( u , ~ ) -  t ( v , ~ )  : (1 - t ) ~ -  t~  

> (1 - t ) (u ,~ i )  - t ( v , ~ )  : ( w ( t ) , ~ )  

and that either ri = s~ or (v, ri) < #. In the latter case, (w(t) ,  ri) > (w(t) ,  si) for 
all t E]O, 1 [. A similar observation is valid for j E J ,  and we conclude that for each 
k and for each t C [0, 1] the segment [rk, s~] in Bk contains a unique point bk(t) 
of the hyperplane {x : (w( t ) , x )  = (1 - t)A - t#} .  Routine arguments show that 
the functions w(.)  and b(.) = ( b l ( . ) , . . . ,  bd(')) are continuous, so the orientation 
determinant 

0] 
det b(t) w(t )  

also varies continuously with t. Since the system is sundered, this determinant is 
never 0. However,  D(0 )  and D(1)  must have opposite signs, for 

:] [: 0] 
D(0)  = det and D(1)  --det  . 

This contradiction completes the proof. 
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