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ABSTRACT. The paper describes the theory of the toroidal Lie algebra, i.e. the Lie algebra of
polynomial maps of a complex torus C* X C* into a finite-dimensional simple Lie algebra g.
We describe the universal central extension t of this algebra and give an abstract presentation for
it in terms of generators and relations involving the extended Cartan matrix of g. Using this
presentation and vertex operators we obtain a large class of integrable indecomposable
representations of t in the case that g is of type A, D, or E. The submodule structure of these
indecomposable modules is described in terms of the ideal structure of a suitable commutative
associative algebra.

1. INTRODUCTION

The study of Map(X, G), the group of polynomial maps of a complex
algebraic variety X into a complex simple algebraic group G, and its
representations is only well developed in the case that X is a complex torus
C*. In this case Map(X,G) is a loop group and the corresponding Lie
algebra Map(X, g) is the loop algebra C[t,t™'] X) ¢ g. Here the represen-
tation theory comes to life only after one replaces Map(X, g) by its universal
central extension, the corresponding affine Lie algebra §. One then obtains
the well-known theory of affine highest weight modules, vertex represen-
tations, modular forms and character theory, and so on.

The next easiest case is presumably the case of a torus X = C* x C* and
indeed there have been a couple of papers [8], [13] that describe the universal
central extension t of C[[s,s ™!, t,t '] ® g. However, the theory seems to have
stopped there due to the difficulty of producing any interesting represen-
tations of t.

In this paper we show how to construct a great number of representations
of t (for simply laced g) through the use of vertex operators. The represen-
tations that we have looked at in detail (and we have not looked at them all)
are integrable to a group action and are reminiscent of highest weight
representations of affine Lie algebras. However, there are considerable
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differences, the most notable being that the representations are not complete-
ly reducible and the structure of the indecomposable representations is
matched by the ideal structure of a suitable ring depending on the represen-
tation in question.

In more detail this is what happens. Unlike the affine case where § is a one-
dimensional central extension of the loop algebra, t is an infinite-dimensional
central extension of C[s,s 1,1t '] ® g. The centre has a basis that can
naturally be parametrized by (Z x Z) L {*}, where {*} is just some singleton.

Let Q be the root lattice for the affine Lie algebra § and construct the Fock
space V(Q):= C[Q] Q¢ S(a_) where a is the (degenerate) Heisenberg algebra
defined by Q. The space V(Q) affords a representation for the Lie algebra
generated by the Fourier components X, («) of the vertex operators X(a, z),
o€ A, where A is the affine root system of §. This Lic algebra is a (non-faithful)
homomorphic image of t. It can actually be made faithful by enlarging Q to a
non-degenerate lattice I', forming the Heisenberg algebra b on I', and using
VI, b):= C[T] ®cSOH)

The centre of t, in terms of the operators, is the linear span of {X,,(kd)}, m,
keZ, k # 0; 6(m), me Z; and X ((0), where 6 is the null root of A. For AeT,
e¢* ® 1 generates a t-module V(J) which is indecomposable. Set V(I'):=
Dier V() =CII'T® S(a_).

Let (1]0) =: N and let 7:= X _4(d). Then 7 operates as an invertible (but
not scalar) endomorphism on ¥(I'), commuting with the action of f. Let D be
the symmetric algebra on the space Z,.,Cd(k) and let C(4) be the ring of
operators C[z, 7 *]D. Then V(J) is a free C(4) module over some itreducible
level 1 affine representation L (depending on A) and the submodule structure
of V(4) is isomorphic to the ideal structure of C(1).

In this paper we begin with V(T', b) but only study the structure of V(I') in
detail. The classification and structure of the remaining modules in V(I', b)
remains to be worked out. In retrospect it is clear why good representations
of t are hard to find. On irreducible representations the centre should act as
scalars. But this seems to reduce the representation to trivial variations of
affine modules. In fact what happens in V(1) is that there is a rational straight
line through (0,0) in the lattice Z x Z such that the central operators
corresponding to the points above it are 0 on V(4), those corresponding to
points on the line are the powers of 7, and those corresponding to points
below it are non-invertible maps V(1) - V(1) whose images are submodules
of V(4).

The structure of this paper is this. In Section 2 we discuss central extensions
of A ®¢g as a Lie algebra over C where A is any commutative associative
algebra over C and g is a finite-dimensional simple Lie algebra over C. The
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results here are due to Kassel [8] and are valid for a very large class of
commutative (associative) algebras A over commutative rings k. Here we give
a much more efficient proof that works for commutative algebras over fields
of characteristic 0. This is based on Wilson’s proof [ 15] for the affine case. In
Section 3 we give an abstract presentation of a toroidal Lie algebra t based on
an arbitrary Cartan matrix A of finite type. In Section 4 we prove that t is
faithfully represented by vertex operators, and in Section 5 we analyse the
structure of V(I').

2. TOROIDAL LIE ALGEBRAS AND CENTRAL EXTENSIONS

Let g be a perfect (i.e. [a, g] = g) Lie algebra. A central extension of g is a Lie
algebra g and a surjective homomorphism 7: § — g whose kernel lies in the
centre of §. The pair (d, ) is a covering of g if in addition § is perfect. A
covering (8, n) is a universal covering algebra (uca) of g if for every central
extension (e, ¢) of g there is a unique homomorphism y: § — e for which
oy = n. Every perfect Lie algebra has a uca. A good reference for this theory

is [4].

LEMMA 2.1. Let (§, ) be a covering of g. If n: 4 — § is a Lie endomorphism
which induces the identity map on g then n = id;.

Proof. Let x, yeg and let X, ye§ with m(X) = x, n(y) = y. Then [X, 7]
depends only on x and y. Thus #([X, J]) = [#X%,ny] = [X, ] and since g is
perfect, y = id. ]

Let 4 be a commutative algebra over C and let § be a finite-dimensional
simple Lie algebra over C. Our object in this section is to describe the uca of
A & ¢4 (as a Lie algebra over C) and then to make the structure of this uca
quite explicit in the case that 4 = C[s,s " 1,¢,¢t71].

The structure of the uca of 4 K¢ § has already been worked out by Kassel
[8]. His argument is based on an argument due to Garland in [4] for the case
A = C[t,t~']. Wilson [15] gave a very elegant proof of the C[t,1™!] case,
and it generalizes easily to general 4 to give a more economical proof than
the Garland—Kassel approach (provided one accepts some basic coho-
mology theory of simple Lie algebras). We wish to sketch out the Wilson
approach here. For more on the history of these results see [14].

We begin by recalling a few facts about g that we shall need for the sequel.
The over-dot notation is used for consistency with later sections.

Let § be a Cartan subalgebra of §, let A denote the corresponding root
system, A < b*, and let TT = {&,,..., &} be a base for A. The Killing form
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(| -) is non-degenerate on h, and we will usually identify h* with f by means
of it. We assume that (- | -} is so normalized that after this identification long
roots have square length equal to 2.

For cach root xe A the Lie algebra §* + [§% §~%] + §~ % i1s isomorphic to
sl,(C). An sl,-triplet for this is a choice of e, €§* e_,ed™* for which with
h,:=[e,,e_,] we have [h,,e ] = 2e,, [h,,e_,] = —2e_,. Using our identifi-
cation of b* with f) we have

21 [ew e J=l(e]e_a

(o] )
=22
o 3 o

(eule—a):m'

Let A be any commutative algebra over C. The module of differentials
(Q,, d) of A is defined in the following way. Let {a;} be any basis for A over C
and let F be the free left A-module on a basis {da;} where {da;} is some set
equipotent with {q;}. We treat F as a 2-sided A-module by setting
b(da) = (Ja)b forall a, be A. Let d: A — F be the C-linear map = ¢;a;— Z ¢;da;
and let K be the A-submodule of F generated by the relations
d(ab) — ((da)b + adb), a, be A. Then Q,:= F/K and the canonical quotient
map a+— da + K is the differential map d: A — Q,.

Up to evident isomorphism (€, d) is characterized by the property that for
every A-module M and every derivation D: A — M there is a unique A-
module map f: Q, — M such that

4—2L 50,

D f
M

commutes. In this way Derc(4, M) ~ Hom ,(Q,, M).
Let =Q,—Q,/dA be the canonical linear map. Observe that from

d(ab) = 0 we have adb = —(da)b = —bda for all a, be A.
Consider the vector space

.o (4
ui=4 ®C g® (ddA)
and define a bilinear multiplication [+, -] on u by

[a®x, b®yl = ab® [x, y] + (da)b(x|y)

o, o, T . e
[g’ﬂJ_[ﬂ’gJ_[dA’dA =0



TOROIDAL LIE ALBEGRAS 287

This makes u into a Lie algebra. Generally, we shall write [ -, -] instead of
[, -7 in the sequel. Let w: u —» A X) § be the projection with kernel Q , /dA.

PROPOSITION 2.2 (Kassel). (1, w) is the uca of A® §.
Proof (following Wilson [15]). Let

O—>3c_,@—’l—>A®Cg—>0

be a central extension. Let ©: A R § — § be any linear map so that Aot = id.
Define

T AXAXEXE>3
by
T*(aa b’ X, y) = [T(a ® x)’ T(b ® y)] - T(ab ® [xs y])

One should recall that for u, ve 4 ®¢ §, and &, & preimages of them in §,
[#, 7] depends only on u and v. One can thus prove directly that

(A) *(a, b, x, y) = —1%(b, a, y, x)
)] ™(ab, ¢, [x, yl, 2) + t¥(bc, a, [, 2], x) + t*(ca, b, [z, x], y) = 0.
One now proves that there is a section 7, for which
t8(a, 1, x,y) =0 forallaed, x, yeg.
To do this define for each ae 4
f* 84— Home(g, 3)
by vi— f% where
fou) =1*a, 1, u,v) for all ueg.
Putting b = ¢ = 1 in (J) we obtain
0 = /2(Lx, ¥]) —f3.a(x) +£2(Lz x])
from which
22 O=ySi—zf—fha

Here Homg(g, 3) is given the g-module structure (x- /)y) = f(—[x, y]).

Now (2.2) says that f* is a 1-cocycle on § with values in Hom¢(g, 3) and
since HY(g, Homg(d,3)) = 0 ([61]) there is an element g*cHomg(g, 3) for
which dg® = f“. Thus f§ = y-g” and hence f5(x) = ¢g°([x, y]). Since § is perfect
g® is unique and then, since f“ is linear in g, g° is linear in a.

! The standard result is for finite-dimensional §-modules. However, Homg(g, 3) is a sum of
finite-dimensional g-modules, so the result easily extends.
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Define g: 4 ®cg—3 by a® yr—g¢%(y) and set 15:= 17 + ¢
a1, x, 9) = 1@ 1, x, ) + {[9(a ® x), g1 ® y)] — gla ® [x, y1)}
=/3x) — ¢*(lx, y]) = 0.
Let us replace 7 by 7,. Fix a, be A and define
f1gx8—>3
by
Sy, v):=1*a, b, u, v).

Then with ¢ = 1 in (J) we obtain

0=z x1, y) + f(x, [z, y]) forallx,y,zeq.

Thus f is invariant. Since § has a unique invariant bilinear form up to scalars,
it follows that there is z, ;3 such that

™a, b, u, v) = f(u, v) = (u|v)z,, for all u, veg.
From (A) and (J) and the fact that (- | ) is symmetric we have
2.3) (i) z,, =0

(ll) Zap = “Zha
(111) Zabe + Zbc,a + Zeah = 0

for all a, b, ce A.
Let F be the A-module defined above and define a map

F—3
Y bida;—-Y 2.
From 2.3(ii1)) K dies and hence we have an induced map
Q-3
Finally for ae 4, dar-z, , = 0 and hence
Q, —

i -3 bdarz,,.

The map u — § defined by
c® x + Egc_u——»r(c@x) + Zgp

is a homomorphism and this completes the proof of the proposition. O
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We call the universal central extension of C[t, t7%, ..., t,, t; 11 ®ecg a
toroidal Lie algebra and denote it by t,;. The algebra A,;:= C[t,,t; %, ..., t,,
t, 1] is the ring of polynomial functions of the torus C* x --- x C* and the
Lie algebra I,):= A;,; ®¢ § may be viewed as the Lie algebra of polynomial
maps of C* x +-+ x C* — §. In the case n = 1 we have the well-known loop
algebra Ij,. Its uca is the corresponding affine Lie algebra. In that sense it
might be more appropriate to call [,; a toroidal algebra, but we felt that the
uca was more important and should have a suggestive name.

In the remainder of this paper we are going to treat the case n = 2. We shall
simply denote the Lie algebra t,, by t and ¢, and ¢, by s and 1 respectively. An
explicit description of Q4 /dA,; has been given in [13]. Since this is
important to use when n = 2 we work it out here.

The Apymodule Q=Q,  has generators d(s’f) and relations
d(ab) = adb + bda. Thus Q is freely generated over A by ds and dt and hence
freely over C by {sPr?ds} u {s*t?dt}. In Q/dA

0 = d(sPt9) = psP~'11ds + gsPt?™ ! dt.

Thus for g # 0

A dr = — P o T gy

and a set of generators for Q/dA over C is

(2.4 a(p, g):=s*"1t?ds, (p, q)eZ x (Z\{0})
a(p, 0):=sPt~1dt, peZ
%0, 0):= s~ 'ds.

It is elementary to see that these elements are linearly independent over C and
hence form a basis for Q/dA.

3. PRESENTATIONS OF TOROIDAL LIE ALGEBRAS

Let A = (4;)} j—o be an indecomposable Cartan matrix of affine type X{V
(X = A4, B, ..., G). Let Q be the free Z-module on generators a,, ..., o, and
identify the affine root system A defined by A with a subset of Q by identifying
{og ..., 2} with a base IT of A. We know [10] that there is a Z-valued
symmetric bilinear form (-]-) on Q for which after suitable choice of indexing,
2o; | o)y 0y) = Ay

Let §:= Zl_omay;, n;eZ ., ged(ng, ..., n) = 1, be the null root. We assume
that the notation is chosen so that n, = 1, so «, is an ‘extension node’ and

g
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A= (A;)ij=1 is of finite type X;. We assume that (-|-) is scaled so that
(oo | op) = 2. In general, objects associated with A carry an over-dot, so for
instance Q= Za, + - + Zoy = Q, T1:= {ay, ..., o).

For each i =0, ..., I let o := 20;/(2;| ;). Then {0y, ..., o’} forms a
base for the coroot system AY whose Cartan matrix is A7, Its null root is
X _on’a’ =6 where n” = n;(«;|«;)/2. The fact that the neZ can be
verified by inspection, case by case.

We let t = t(A) be the Lie algebra over C with the following presentation:

(3.1) generators:
¢ o k), x (o) i=0,...,1 keZ
relations:

TAO [¢ o' (k)] = [¢ xu(£a2)] =0

TAL  [o(k), o) (m)] = k(2" | 0 IO 4 m,08

TA2 [o k), xu(£ o)1 = (o | o) Xme e )

TA3  [xp(), x,(—2)] = =& {ai\/(m +n)+ 2MOm+no ¢f}

(o | o)

TA4  [x,(), x,(0)] = 0 = [x,,(— ), x,(— )]
(adxo(ai))_Aji+1xm(aj) =0) . £
(adxo( — ) 4+ xp(—o) = 0f ' 7

foralli,j=0,...,1 k,mneZ

The elements {«;”(k)} generate an infinite-dimensional Heisenberg algebra
a whose structure is made somewhat more transparent by extending the
notation a bit. We set h:= C X); Q and for each ke Z take an isomorphic
copy bk) of bh. Denote the isomorphism by or>afk). Then with
o= Pz bk) ® C¢ and Lie bracket

¢, a]:=0

[adk), Blm)]:= k(o] B)Sy+ m,0d
we obtain a Lie algebra that clearly has & as a homomorphic image. In fact,
this is an isomorphism as we shall see in Corollary 3.7. In any case we will find
it convenient to use the notation a(k) for £ ¢;o;” (k) whenever « = E¢;0,”. In

particular we have the elements §(k) = X n,” o, (k) which are evidently central
since (6| Q) = 0.

REMARKS 1. From TA1 and TA3 [a;” (1), . (— 1)] = (& | " )¢ and [ x(e;),
X,(—a)] = —aY(n) so tis generated by the elements x,(+ «,).
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2. The choice of the sign on the right-hand side of TA3 is made for the
convenience of the vertex representation in Section 4.

Let § be the finite dimensional Lie algebra with Cartan matrix A, Cartan
subalgebra C X7 0, and-usual set of generators e;, f;, h;, i =1, ..., I Let
B=C[s,s %t t '] bethe r\mgof Laurent polynomials in two commuting
variables. Let & be the highest root-of A relative to IT = {oty, ..., 0} and let
eped % foed® be chosen so that {ey, ho, fo} is an sl,-triplet where
ho:= —Z!_, nYh,. Then the mapping

(3.2) ¢—0

o (k)—s*®@h i=0,...,1

Xm0t > 5™ ® e 1 /
(o) " ® i=1...,
Xp(to)— St & e
Xm(—0tg)> —s"t71 @ f,
defines a surjective homomorphism
mt->§:=Cls,s L, ,t 711 X
We wish to prove that t is the universal central extension of C[s, s~ !, ¢,
t'1®4
The result is similar to a result of Kassel [8, Cor. 3.4]. However the
presentations are different.
We begin by introducing a grading of t by Z x Q by assigning degrees to
the generators as follows
(3.3) deg ¢:= (0, 0)
deg o;” (k):= (k, 0)
deg xi(+o):=(k, o))
foralli=0,...,!/and for all ke Z. We denote the space of elements of degree
(k, ®) in t by tf.
We now define

]

Q= Z >0%:\{0}, Q0 =-0,

1l
(=]
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s, := linear span of all products? [ By -« > X, (B1)]
where fB,,..., Bell, n,,....,meZ, Zn.=n
sti=Y sf
neZ

s, and s~ similarly

sy ;= linear span of §, ¢ and the o(n), i=0,...,1, neZ

$0i= ) 59

neZ

si1=5T +s%° 45,

LEMMA 3.1. (i) t=s, tf = s}, and t* = s*.

() t,=1, +t0+t5;t=1t" +1°+t*,

Proof. Since s contains all the generators of t, to prove that s = t it suffices
to prove that s is closed by the action of ad(g) where g runs through all the
generators of t. This is very straightforward to prove. For instance, if
V= [X4 (Bi)s ..., X, (B1)] where B, ..., e and if (n, B)e Z x I1 then

[xn(ﬂ): J’] es” (ObViOHS)
[x.(—B) yles™ +s° (TA2, TA3)
[a¥(), y]les* (TA2).

Since s =t and s < tF, s? < 10 these inclusions must be equalities and

everything follows.
PROPOSITION 3.2.

1 if ae™A

d1mt,,={0 i adA

where "°A is the set of real roots of A.

Proof. The subalgebra t, of t contains the elements o, (0), xo(+a,), i = 0,
..., | which satisfy the relations for the affine Lie algebra g = g(4). Hence we
obtain a representation ¢ of g on t by g— t, 23 gl(t). Furthermore, the
representation is integrable because of TA4 and t, is a submodule under this
action.

Let N be the group of automorphisms on t generated by the elements

n;(a):= exp(paxq(x)exp(pa 1xo( —a)exp(eaxy(x))

21In a Lie algebra [a, . . ., a,]:=ada, - ad a,(a,).
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i=0,...,1 aeC*. We know by standard sl,-theory that »,(a)tZ = t7* [12]
where r;o0 = o — (o} o)’ ).

By Lemma 3.1, t is spanned by x,(x;) so dimt} = 1. Now if a € A, o0 = wa;
for some i and some w=r; *--r; and we obtain ge N with gtj! =t and
dimt? = 1.

Suppose now that ae Q\A. Write « = Z ¢;;. If the ¢; are of mixed signs
then tZ = (0) by Lemma 3.1. Suppose that the signs are all consistent, say, for
definiteness, all positive. Then 0 = (6| ) = Zn;(«;| o) and hence for at least
one j, (o;| o) > 0 (for otherwise (x;|«) = 0 for all j and xe Z5 = A). We have
dimt} = dimt*and r;o0 = o« — A for some Ae Q. If r;ac Q. we replace a by
r;o and repeat but with an element of reduced height. Thus we may assume
that r;a¢ Q.. If r;o has mixed signs we are done, so we may assume that
rjoeQ_. Then o = ka; with k > 1 since a¢ A. But ti* is spanned by the
products [x,, (;), ..., x, (a;)] = 0 by TA4. |

COROLLARY 3.3,
(TA4) (ad x,(o)) " x,(2;) = 0
(ad Xy (—2)) 45+ xp( ) = 0
foralli #j,m ne?.
Proof. o; + (—Aj; + Doy = ri(o; — o) €A O
COROLLARY 34. For each ae€™A, neZ,
Ct* + C[t%, t-7] + Ct=% ~ s1,(C).

Proof. Using the Weyl group we can assume that o = o;. Then the result
follows from TA2 and TA3. O

PROPOSITION 3.5. (1, ) is the universal central extension of § = C[s,s™ 1, t,
t™ 11 Q¢ 8. The kernel of = is contained in Zj .7 t*.

Proof. §is graded by Z x Q by assigning degrees in (3.2) according to the
degrees on the left-hand side. Then = is a graded homomorphism and, in view
of Proposition 3.2, kern < £, ., t*. Since [x,,(Fa;), Zpez 9] N % =
(0), the kernel is central.

To prove that the extension is universal we construct a mapping i from t
to u of Section 2 over §

t—"§
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Explicitly
¢|—~>m
e T
Xm(— ) —s" ® f; T
Xu(0p) = 5™ ® eg
X —g)> —s"t ' ® fo
o (k)y—>sF®@h;, i=1,...,1
oy (k) s8 ® hy + s 1dr.

One has to prove that the elements on the right-hand side satisfy relations
TA. The relations TAQ, TA2, TA4 are essentially trivial. Using the definition
of u in Section 2:

TA1: [s*® h;, s @ h;] = (ds¥)s™(h; | ;)
= ko4 mo08 ds(av | o).
TA3: We need only consider the case i = jsince (¢;| f;)} = 0if i # j. Suppose
i =j # 0. Then, using (2.1),

["®e, —5"® fi]l =—s""" @ h; — (ds")s"(e; | f)

2
=—5"""®@h; — MOy oS~ ds( T
Ifi=j=0,
a:=[s"t®ep —5"t ' ® fol = —s"T"® ho — (ds"))s"t ™ Neo | fo):
Now
dis™)(s"t ) = ms™ " M ds + 5"t Ldr
=My inos " ds + 5" 1 dt
and
2
(eo] fo) = =1 from (2.1).
("‘o]oC )

Thus together we have

a = —(Sm+"®h +m)_m5m+n,0 Alds
mé
- *¢<a0(m+n)+—*'"—+"9¢>
(o0 | 2to)

which is what we want.
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Thus y exists and wy = 7. On the other hand, by the definition of u there is
a unique homomorphism A: u — t such that ni= w. Then Y4 and Ay are Lie
endomorphisms of u and t respectively over §. By Lemma 2.1 they are
identity maps and we conclude that u ~ t. |

Let 7,:Q —Z be the map Zca—c, and let 2 Q —» 0 be the map
o —col 4+ Zio ;. From the definition of y we have for all o e™A

(34) it gy @ g

PROPOSITION 3.6. Under the isomorphism yy above we have
() ¥ (" ) = dk)et), keZ
T ds) et koreZ
L+1 if (k,r)#(0,0)
L+2 if (k, r)=(0, 0);

1 if (k,7) #(0,0)
2 if (k1) =(0,0)

(i) dimt}® = {
(i) dim t§° N centre(t) = {

Proof. (1)

Yo(k) = v (Z n;’ oy’ (k)>

I — _ -
:( Y sf® nivhi> + skt de = st tdt.

i<0
Fix any long real root a€ A and let {e,, [e,, e ,], ¢ ,} be an sl,-triplet with
e, €4’ e_,eg” % (for instance « = «;, e, = ¢;, e _, = f;). Define

Xp(Fa+ ké) =y H+s"* ey, forall m keZ.

In view (3.4) it is clear that x,,(+a + kd)eti***,
Now we have

Y([xm(o + k), x, (= +1d)])
=[s"*®e,, —s"Re_,]
— _{Sm+ntk+r ® [ea’ e_a] + (d(Smtk))(Sntr)}

— _Sm+ntk+r ® [ew e,a] _ msm+n—1tk+rds _ ksm+ntk+rﬂl dr.

Thus
(3.5) Y([xpm(x + kd), x,(—a + 10)]) — Y([x,(o + k), x,u(— 0 + 78)])

=(}’l _ m)Sm+n—1tk+r ds
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and hence
w - I(Sm+n— ltk-f-r dS) e tgi:)a

(Note that (3.5)isOif k+r=0and m+n #0)

(ii), (ili) The elements s*¢~1dt, ke Z and s*~'¢"ds, r # 0, and s~ ' ds form a
basis for QA /dA|,;. Since dim 8 = [ for all r, k, (ii) and (iii) follow from (i).

O

COROLLARY 3.7. o' ~a.

Proof. Let aeb\{0} and write it as « = & + ad where & = Z{_; ¢;0’, c;e C.
Then for ke Z the element o(k) of G is mapped by ¥ to

1
Ylok) =s*® Y. c;h; + as*t~1dt #0.
i=1

The result follows. il

COROLLARY 3.8. Suppose that s is a Lie algebra over C graded by Z x Q
and A {(A) — s is a surjective graded homomorphism of Lie algebras such that

(i) A is injective on 2 for all (n, w)e Z x ™A,
(ii) for all k, A(o(k)) # 0 and Alcsoy 1t Is injective;
(i) for all m, k, m # 0, k # 0,

M[Xloty + k), xo(—0a1)] — [xolaty + kb), Xpu(—0ty)]) # 0O
and
Aoy + ko), x_(—ay)] — [x_y(a; + k6), x1(—ay)]) # 0.

Then A is an isomorphism.

Proof. From (i), ker A = X, t*? and hence, by the argument in Proposition
3.6, ker A is central. Conditions (ii) and (iii) say that there is a non-zero central
element in s¥ for all (m, k) # (0, 0) and two independent central elements for
(m k) = (0, 0). |

4. VERTEX OPERATORS

From this point on we assume that the affine Cartan matrix A of Section 3 is
simply laced, ie. A = X{*) where X = A, D, E.

We assume that the lattice Q is a sublattice of a lattice I' admitting a non-
singular Z-valued symmetric bilinear form (-{-) that restricts to the previ-
ously chosen form on Q. Such a lattice I can be constructed in many ways. A
particularly interesting example for 0, @, I is the series of root lattices Eg, Eo
(=EY)), E,, which belong to the simple Lie algebra, the affine Lie algebra,
and the hyperbolic Lie algebra of the same names.
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We briefly review the notation and construction of vertex representation
spaces and the operators X, («) that act on it. This theory is due to Frenkel
and Kac [2]. For further details one may also consult [3], [5], [113].

Let T:=C ® ;I and define a Heisenberg algebra b:= @, .7 H(k) ® C¢
from a collection of copies (k) of ¥ as was done for b in Section 3. Thus
multiplication in b is defined by

Ledk), pm)]:= k(o] B0y + m,of

and & may be considered as a subalgebra of b. We let o be the conjugate linear
involution on b defined by ofn)— o —n) for all aefp:= R X 7I. Define

b= Y k) +Cich
ke Z\[0}

byo= Y k)
k=0

and a, a, similarly with b replacing f.
The Fock space representation of b is the symmetric algebra S(b_) of b_
together with the action of b on S(b_) defined by

¢ acts as 1
a(—m) acts as multiplication by a(—m), m > 0
a(m) acts as the unique derivation on S(b_) for which

b(—n)1— 0y, 0m(a | b)

for all a, bet, m, n > 0.

S(b_) affords an irreducible representation of b. However, S(a_) does not
afford an irreducible representation of a since the form (-|-) is degenerate
onb.

Let &2 Q x Q — {+1} be a bimultiplicative map satisfying

CC (i) elo, @) = (— 1)@=7?2

(i) (o, e, o) = (— 1)
(iii) (e, 0) =1
for all a, f e Q. Condition (iii) makes it casy to determine such an ¢ by using a
corresponding cocycle on Q.
We shall assume that ¢ can be extended to a bimultiplicative map

e QxTo{+1}.
No further assumptions on ¢ are needed.
* The following errors should be corrected in this paper: p. 191, 13}, 8,,. , om(x, ¥)c; p. 199, 9,

Saorl" @ x = nfa, Wp" ™1 ® x; 31, Huw, ) + ny + - + n, = n; p. 208, 61, (o, @) = —1; p. 209, 87,
[en(@), en(B)) = ~—mby 0 — cm + ) if (2, By = —2.



298 ROBERT V. MOODY ET AL.

For each y€TI let e” be a symbol and form the vector space C[I'] with basis
{e’} over C. In particular, C[I'] contains the subspace C[Q]:= Z,co Ce"
Following Borcherds [1] we define a twisted group algebra structure on

C[Q] by
e*e? = g, Ple*

and make C[T'] into a C[Q]-module by defining
e*e’ = glo, y)e**? for all o, fe@Q, yel.

Let M < S(b_) be any a-submodule (with respect to the Fock space action).
We define

VT, M):= C[T] Qe M.

Of particular interest in the sequel will be V(T', S(a_)) and V(I', S(b_)) which
we simply denote by V(') and V(T’, b) respectively.
We extend the action of a on M to a on W(I', M) by

am)y- (@ @u:=e"@am)-u ifm#0
al0)- (" @u):=(aly)e’@u ifm=0.

Let z be a complex-valued variable and let x € Q. Define
1
Telo, 2):=— ) —a(n)z™"
nzo

Then the vertex operator for a on V(I', M) is defined as
X(a, 2):= 2“2 exp T{(a, z)
where
exp T(a, z):= exp T_(x, z)e*z* P exp T, (a, z)
and the operator z*® is defined by
2207 @ y:= 2o’ @ u.

Strictly, for each ze C* the operator X(a, z) maps V(I', M) into the space
c{I] ®S/(bj where S(/b.\) = [1,5(b_)" is the completion to formal power
series of S(b_). However X(a, z) can be formally expanded in powers of z to
give

X, z)= ) X,(0)z7"

neZ
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and the ‘moments’ X ,(2) are indeed operators on V(I', M). Moreover, for ail
veM, X, (o)e’ ®v) = """ ® v’ where v e M is obtained from v by applying
some polynomial expression in the operators a(m), aeh, me Z\{0}.

The powers of z in X(o, z) are so construed that X («) is an operator of
degree (—n, o) relative to the Z x I grading on V(I', M) for which

degle’ @ a(—m) - ay(—n)) = GO1Y) + ny + -+ my, )

Assigning X ,(«) degree (n, «) would seem more natural for what is to come
but the grading on V(I', M) is well established in the literature.

The basic commutation relations for the operators «(k) and X,,(%) on
WV(I', b) are these ([2], [5], [11]):

CRO  [ak), X,(B)] = (@] BX,+1(B)

CR1  [X,(@), X,(A]=01if (x|f) =0

CR2  [X,(0), X,(B)] = &, HXpsnle + ) if (] f) = —

CR3 [ X, (), Xo(—)] = —adm 4+ n) — md, 0t if (}o) = 2.

In fact CR3 is a special case of
LEMMA 4.1. Let o, feQ with (x|a) = (f|f) = —(a|B) = 2. Then
CR4  [X,(2), X,(B)]

=&, ){mX (o + B) + kzz (k)X i + )}

where the normal ordering symbols : . indicate that the operators are to be
applied in the order of increasing degree. In particular here

W)X pr-i(f) Hhk<m+n—k

RV X -l = {Xmﬂ_k(ﬂ)a(k) if k>m-+n—k.

This result is itself a special case of the general commutator formula (8.4.43)
of [3]. However, it is also easily derivable from the technique of residue
calculus so we offer a short proof if it here.

Proof. We begin with the general formula
&lot, PLX (@), X, (B)]

<2m> f f dw{ L2+ m LD+ s T w) + T(B, 2)): (2 — )P}

where exp(T(a, w) + T(B, z)): means
exp(T-(x, w) + T_(B, 2))e* " Pw OzF @ exp(T.(a, W) + T.(B, 2)).
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This may be found in [5], [11], or [9, (15.14), (15.15)]. In these references
C[Q] is not twisted so the left-hand side is X ,,(%)X,(8) — (— )®PX ,(B)X ().
The contour ¢ runs around z and does not have 0 in its interior. The contour
¢’ is around 0. Since we are assuming that (o] o) = (8] ) = 2 and (x| ) = —2
we can compute the inner integral by the straightforward computation

d-dm—z {wmz"* 1 exp(T(a, w) + T(B, 2)):}w=

=mz""" :exp T(x + B, 2):

4-zmtn :{ Y ok)z ™+ «(0) + ) oc(k)z"‘}: exp T(ax + B, 2)::

k<0 >0

=zm+"{m S Xple + pz* +kz k) X, (x + ﬁ)z""*”:}.

Applying (1/2zi)f dz/z we obtain CR4. 0
LEMMA 4.2. Let o, BeQ with (x]a) = (B| f) = — (| B) = 2. Then

(i) the operators X, (o + f) commute with all operators X,(¢), p€Q;

(i) [X,(2), X,(B)] — [Xa(2)) Xi(B)] = et BYm — m)X,, 4 n(c + B).

Proof. (i) The assumptions on «, f imply that & + f is isotropic and hence a
multiple of 4. Thus (i) follows from CR1.
(ii) In Lemma 4.1 interchange m and n and subtract. O

PROPOSITION 4.3. The Lie algebra t of operators on V(I', b) generated by
the operators X (o), me Z, x. € *°A, is isomorphic to 1(A) via the uniquely defined
map 2:H(A) - t for which x,,(+a,)— X, (o), ¢ 1.

Proof. From the relations CR it is clear that t is generated by the elements
Xpu(Foa),i=0,...,1, meZ and contains the operators «;(k) (=, (k)) and ¢.
The relations TA are very easy to check from the relations CR. For instance
in the case of TA4 the relation is trivial if A;; = O since then («;| «;) = O and we
can use CR1. If (¢;]a;) = — 1 then by CR2

[X (o), X ()] = e(oi, )X {0t + 02)).
Since (o fo; + o) = 1 >0,
[Xm(ai)a Xm+n((xi + o‘j):l =0.

The remaining case is («;|;) = —2 (which occurs only in the case of AW,
After using CR4 we are left to prove that (ad X o(2))*{;(k)X,(6)} = Ofor all k,
which is straightforward. This establishes a surjective homomorphism
t(A) > t.
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We have already seen that the operators X, (o) are operators of degree
(—m, o) on V(I', b). Using the map (—m, a)—> (m, &) we temporarily assign
X () degree (m, o). Then our mapping A is a graded homomorphism. We
now apply Corollary 3.8. Since the operators 8(k) and X, (k) are all non-
trivial and 8(0) is not a scalar map, we obtain {(A4) ~ t from Lemma 4.2. 7]

For each a-submodule M of S(b_) the space V(I', M) affords a subrepresen-
tation of t. In general this is not faithful. In fact for the case V(I') when
M = S(a_) it is not faithful as we shall soon see.

The following dictionary of central elements is useful

4.1) st 1de o (k)
sc7 1" ds > X, (nd), n#0unless k=0
(note that s~ ds « X ¢(0) = id = ¢ as expected). The first correspondence was

given in Proposition 3.6. The second may be deduced from the comparison of
(3.5) and Lemma 4.2 with « replaced by a + ké, f§ replaced by —a + ré:

(n — m)s™ IR ds > [ X (o + KS), X, (—a + r8)]
— [ X, + k), X,,(—a + rd)]
= ¢g(a + kd, —a+rd)m — n)X,,. . ((k + r)d)
=(n — mX 4,k + 1)5).

In the sequel we shall usually identify t and t(A4) by the isomorphism of
Proposition 4.3.

5. THE STRUCTURE OF V(I')

In this section we examine how V(I') decomposes as a t = {(4)-module and
look at the structure of its indecomposable constituents.
Let Ael" and define

V(A):=e*"2® S{a_).

Ee\operator X(a, z), xeQ, maps V(4) into the space e**2® S(a_) where
S(a_) = I>_; S(a_)" is the formal power series completion of S(a_). Thus for
each n the component X, () of X{(a, z) acts as an endomorphism on V(4) and
hence V(4) is a t-submodule of V(I').

Fix AeT" and observe that N := (4 + «| 6) is constant as A + o runs over the
coset 4 + Q.



302 ROBERT V. MOODY ET AL.

For each ae @ define the polynomials s,(x)e S(a_), pe Z, by

o0

exp T_(,z) =: Y, s,(0)z"

r=0
and
s,(@):=0 if p<O.
Furthermore,
Y X0z (e ®1)=X(2) (e ®1)
meZ
=g(a, A)z@2z@ it 2 @ exp T (o, z) - 1
=8(OC, A)e}.+a ® z Sp(a)zp+(a|1+a/2)
r=0
and hence

‘)(m(o‘).(e';L ® 1) = 8(0(, A)el+zx® s—m*(a]l+a/2)(a)'

We note two special cases of this

(5.1) X—(a]).+a/2)(fx).(el ® 1) = ¢, P @1
(5.2) X u(kd)-(e* ® 1) = e(kd, A)e* " @ 5 g 4 ) (D).
LEMMA 5.1. V(J) is a cyclic t-module with generator ¢* ® 1.

Proof. S(a_)is a cyclic a-module with generator 1 and the result follows at
once from this and (5.1). O

Using (5.2) we obtain
LEMMA 5.2. For all k, meZ
eké, e’ TP ® s_,, n(kd) ifm+ kN <O

X, (kd)e* ® 1) = { e(kd, Ne* T @ 1 ifm+kN=0
0 ifm+kN>0. [

Set t:= X _x(0) (where N = (1] 9)).

PROPOSITION 5.3. Let k, meZ.

(i) The operators X,,(kd) centralize the action of t on V(4).

(i) X _.n(kd) acts as multiplication by &(8, A)¢e** on V(J). In particular T acts
as multiplication by &(0, A)e® and X _, (k) acts as multiplication by t* on
V().

(iil) X,,(kd) annihilates V() iff m + kN > 0.



TOROIDAL LIE ALBEGRAS 303

Proof. The operators X ,,(kd) commute with t because of CR1. By Lemmas
5.1 and 5.2, X _,x(ké) acts on V{4) by multiplication by &8, A)*¢*® and the rest
of (ii) follows. Similarly (iii) follows from Lemmas 5.1 and 5.2. O

PROPOSITION 5.4. Let meZ.

(i) The operators 8(m) centralize the action of t on V(A).
(i) 8(0) acts as scalar multiplication by N on V(4).
(111) o(m) annihilates V(A) iff N 20 and m >0 o0r N=0and m = 0,

Proof. (i) is obvious from TA2 and (ii) and (iii) follow from Lemma 5.1 and
the definitions of the action of 6(m) on ¢* ® 1. !

Figure 1 clarifies the meaning of Propositions 5.3 and 5.4. We think of the
lattice point (m, k) as representing X ,,(kd) if k # 0, 6(m) if k = 0.

In the example N = (1]0) is taken to be 2. The line shown is given by
m + kN = 0. There are two linearly independent central elements in tg, 5(0)
and X(0), corresponding to (0,0). On V(1) they act (dependently) as
multiplication by N and 1 respectively.

PROPOSITION 5.5. (i) The kernel of the representation of t on V(1) is
precisely the span of the elements X, (kd), m + kN > 0, 6(m), m > 0, and 6(0) if
N =0.

(i) The kernel of the representation of t on V(') is the linear span of the
elements o(m), m > 0.

Proof. The elements of t% operate with degree (—m, o) on V(A). Thus the
kernel ¢; of t on V(4) is generated by its homogeneous elements.

Now for any oe™A the operators X,(+ o) generate an affine Lie algebra
that is faithfully represented on the subspace e**%* ® S(Z; <, Ca(k)). In fact

/"/

72 0

T /
s 52

§(-1)

3~

-1

Fig. 1.



304 ROBERT V. MOODY ET AL.

this is the Frenkel-Kac construction of the level 1 representations of affine
A, Thus, in particular. the operators X,(+a) are faithfully represented.
Hence ¢, = Xt and, by the now standard argument, ¢, is central. The result
follows from Proposition 5.3 and 5.4. 1

We define C(4) to be the algebra of endomorphisms of V(1) generated by
the operators d(m), me Z ., and t*, ke Z. The subalgebra D of C(A) generated
by the 6(m)’s is in fact a symmetric algebra

D~S§ ( > Cé(m))
m<0
since the action of S(a_) is faithful on V{1). The %, ke Z, generate an algebra
C[r, T~'] isomorphic to the group algebra of the infinite cyclic group (7).

LEMMA 5.6. The map
Clr, "1 ®cD - C(2)
f®g- 19

is an isomorphism of associative algebras. In particular, C(4) is an integral

domain.
Proof. The isomorphism is obvious by looking at the actions of the ¥ and

o(—m) on V(2). I

Let a_:=Zy.0ZyegCalk) = a_ and let S:=S(a_) be the symmetric
algebra on a_. Then
(53) S(a_)DS ~D®eS
(5.4) V() =e**2 Q) Sa_)
=¢10tZ @ DS
=C[7, t D¢ ® )
=CUN 2 ® S).
PROPOSITION 5.7. V(4)is afree C(A)-module with basis {¢*** ® s;} where &

runs over Q and {s;} is any basis of S.
Proof.

Y AW @ s) =Y o5, Vet T @ d¥s,.

i i
This is 0 if and only if Z,d%s; = 0 for all & and j and then d¥) = 0 from the
isomorphism of (5.3). J
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Consid/er\ the space L,:= ¢*7¢ @ S. This is a module for the affine Lie
algebra g(A4) generated by the operators X (oc) 4eQ. Since ¢ acts as 1 itis a
level 1 representation. There is a unique j1e P (=the weight lattice of Q) such
that (o) = Alay), i =1, , I. From the point of view of g(A) the
representation on L Lk is 1nd1st1ngulshable from the standard vertex operator
representation of g(A) on the Fock space efit9 ® S. But we know by the
Frenkel Kac theory [2] that this is an irreducible level 1 representation of

(A

It can be identified in the following way. Recall that the fundamental
weights @, ..., @, of P are defined by (@;1h) =6;,j=1, ..., 1. There are
exactly |P/Q| — 1 of these &; for which (&, ] Xi_,nyh;) = 1, and together with
@¢:= 0 they form a complete set of representatives of P/Q. For each of these
(including @) let ®; be the unique linear functional on Xi_, Ch; + C¢ such
that (w;1h) = (& 1h), j=1, ..., |, and (@;]¢)=1. The coset it + ¢ =
@; + O for exactly one of the special &;. Then ¢**¢ ® § is isomorphic to the
irreducible highest weight module L(w,). Indeed L{w,) is the only irreducible
module of level 1 which has weights whose restriction to § is in the class
i+ 0.

S
PROPOSITION 5.8. (1) For every subspace E of C(A), E-L, is a g(A)
submodule of V(J). Every g(A)-submodule of V(1) arises in this way.

(i) The @-module E- L, is a t-submodule if and only if E if an ideal of C(A).

Proof. (i) Let M be a@gbmodule of Iﬁ&‘)\ Let E:= {ee C(4)|exe M for
some x € L;\{0}}. Since U{g(A))  ex = e- U(g(A4))' x = e- L, we see that E is a
subspace of C(4) and E-L;, = M.

Let {e;};.; be a basis of E over C and {e;},.; an extension of it to a basis for
C(4). Suppose, if possible, that y = %,y e;x;€ M\(E - L,) where the x;e L, and
assume that K is minimal for such y. Fix ke K\I. Evidently there is a je K,
j # k. Suppose that x; and x, are Iinf:arly independent.ﬁ&ce L; is an
irreducible highest weight module for g(A), the centralizer of g(4) in End(L,)
is C. By the Jacobson density theorem [J] there is a ue U(g/(//i\)) such that
U X =X, u'x; =0. Then u'y = T e;-u-x;€ M contradicts the choice of y.
Thus we must have x; = ¢;x;, some ¢;€C, for all ie K. Then y = (Z¢;e)- x;
from which X, xc;e;e E and K < I, contradiction. This proves that
M=E-L,.

(ii) Let the g(A) submodule E- L, be a t-module. Then C(A)E-L, c E-L,.
In view of Proposition 5.7, C(2)E < E so E is an ideal. Conversely, if E is an
ideal then E - L, is closed under the action of all the operators X, (&), &€ Q and
all the operators d(k), ke Z. Now since (&|9) =

X(, 2)X(kS, 2) = X(& + k3, 2)
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from which we have the very interesting identity

(5.5) Y X.(3)X,,(k8) = X, (@& + kd).
n+m=r
Although the left-hand side is an infinite sum, for any fixed element of V(1)
only finitely many terms can act non-trivially since the operators X, (f) kill
any clement for m > 0. Now

X(ké, z) = exp T_(kd, z)e*°z* O exp T (k6, z)

and evidently all the operators involved stabilize E- L,. Thus we conclude
from (5.5) that X ,(& + k) stabilizes E- L, for all n, k. ]

PROPOSITION 5.9. (i) V(I) = @ V(A) where the sum runs over a complete
set of representatives of T'/Q.

(i) For all 4, V(2) is an indecomposable t-module.

Proof. (i) is obvious.

(i) Suppose that V(4) = M, @ M, for some AeT” where M, and M, are
submodules. Then M;=E; L, for some ideal E; of C(A). But then
E\E,-L, c M, n M, =(0) so, by Proposition 5.7, E,|E, = 0. By Lemma 5.6,
E,=0o0r E,=0. |
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