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ABSTRACT. The paper describes the theory of the toroidal Lie algebra, i.e. the Lie algebra of 
polynomial maps  of a complex torus C x x C × into a finite-dimensional simple Lie algebra g. 
We describe the universal central extension I of this algebra and give an abstract presentation for 
it in terms of generators and relations involving the extended Cartan matrix of g. Using this 
presentation and vertex operators we obtain a large class of integrable indecomposable 
representations of t in the case that g is of type A, D, or E. The submodule structure of these 
indecomposable modules is described in terms of the ideal structure of a suitable commutative 
associative algebra. 

1. INTRODUCTION 

The study of Map(X, G), the group of polynomial maps of a complex 
algebraic variety X into a complex simple algebraic group G, and its 
representations is only well developed in the case that X is a complex torus 
C ×. In this case Map(X, G) is a loop group and the corresponding Lie 
algebra Map(X,g) is the loop algebra C[t , t  -x] @ef t .  Here the represen- 
tation theory comes to life only after one replaces Map(X, g) by its universal 
central extension, the corresponding affine Lie algebra g- One then obtains 
the well-known theory of affine highest weight modules, vertex represen- 
tations, modular forms and character theory, and so on. 

The next easiest case is presumably the case of a torus X = C × × C × and 
indeed there have been a couple of papers [8], [13] that describe the universal 
central extension I of C[s, s-  1, t, t -  a] ® ~. However, the theory seems to have 
stopped there due to the difficulty of producing any interesting represen- 
tations of t. 

In this paper we show how to construct a great number of representations 
of I (for simply laced g) through the use of vertex operators. The represen- 
tations that we have looked at in detail (and we have not looked at them all) 
are integrable to a group action and are reminiscent of highest weight 
representations of affine Lie algebras. However, there are considerable 
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differences, the most notable being that the representations are not complete- 
ly reducible and the structure of the indecomposable representations is 
matched by the ideal structure of a suitable ring depending on the represen- 
tation in question. 

In more detail this is what happens. Unlike the affine case where ~ is a one- 
dimensional central extension of the loop algebra, t is an infinite-dimensional 
central extension of C[s, s-  1, t, t -  1] ® g. The centre has a basis that can 
naturally be parametrized by (Z x 7/) w {*}, where {*} is just some singleton. 

Let Q be the root lattice for the affine Lie algebra fi and construct the Fock 
space V(Q):= C[Q] @ c  S(a_) where a is the (degenerate) Heisenberg algebra 
defined by Q. The space V(Q) affords a representation for the Lie algebra 
generated by the Fourier components X,(c0 of the vertex operators X(c~, z), 

~ A, where A is the affine root system of ~. This Lie algebra is a (non-faithful) 
homomorphic image of t. It can actually be made faithful by enlarging Q to a 
non-degenerate lattice F, forming the Heisenberg algebra b on F, and using 
v(r, b):= c[r] @c S(b_). 

The centre of t, in terms of the operators, is the linear span of {Xm(k6)}, m, 
k e 7/, k ~ 0; 6(m), m ~ 7/; and Xo(0), where 6 is the null root of A. For 2 ~ F, 
e~® 1 generates a t-module V(2) which is indecomposable. Set V(F):= 

@ ~ r  v(~) = c [ r ]  ® s(a ). 
Let (216) =: N and let ~ := X_N(~ ). Then ~ operates as an invertible (but 

not scalar) endomorphism on V(F), commuting with the action of t. Let D be 
the symmetric algebra on the space Ek<o C6(k) and let C(2) be the ring of 
operators C[z, z 1]D. Then V(2) is a free C(2) module over some irreducible 
level 1 affine representation L (depending on 2) and the submodule structure 
of V(2) is isomorphic to the ideal structure of C(2). 

In this paper we begin with V(F, b) but only study the structure of V(F) in 
detail. The classification and structure of the remaining modules in V(F, b) 
remains to be worked out. In retrospect it is clear why good representations 
of t are hard to find. On irreducible representations the centre should act as 
scalars. But this seems to reduce the representation to trivial variations of 
affine modules. In fact what happens in V(2) is that there is a rational straight 
line through (0, 0) in the lattice 7 /x  7/ such that the central operators 
corresponding to the points above it are 0 on V(2), those corresponding to 
points on the line are the powers of r, and those corresponding to points 
below it are non-invertible maps V(2) --+ V(2) whose images are submodules 
of V(2), 

The structure of this paper is this. In Section 2 we discuss central extensions 
of A @ c  g as a Lie algebra over C where A is any commutative associative 
algebra over C and g is a finite-dimensional simple Lie algebra over C. The 
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results here are due to Kassel [8] and are valid for a very large class of 
commutative (associative) algebras A over commutative rings k. Here we give 
a much more efficient proof that works for commutative algebras over fields 
of characteristic 0. This is based on Wilson's proof [153 for the affine case. In 
Section 3 we give an abstract presentation of a toroidal Lie algebra t based on 
an arbitrary Cartan matrix A of finite type. In Section 4 we prove that t is 
faithfully represented by vertex operators, and in Section 5 we analyse the 
structure of V(F). 

2. T O R O I D A L  LIE A L G E B R A S AND C E N T R A L  E X T E N S I O N S  

Let g be a perfect (i.e. [g, g] = g) Lie algebra. A central extension of g is a Lie 
algebra ~ and a surjective homomorphism n: ~ -~ g whose kernel lies in the 
centre of ~. The pair (~, n) is a covering of g if in addition ~ is perfect. A 
covering (fi, n) is a universal covering algebra (uca) of g if for every central 
extension (e, go) of g there is a unique homomorphism ~: ~ --} e for which 
g0~b = n. Every perfect Lie algebra has a uca. A good reference for this theory 
is [4]. 

LEMMA 2.1. Let (~, n) be a covering of g. I f  q: ~ -o ~ is a Lie endomorphism 
which induces the identity map on g then q = ida. 

Proof. Let x, y ~ g and let 2, ) ~  ~ with n(~)= x, n@)= y. Then [2, Y3 
depends only on x and y. Thus ~/([~, Y3) = [qx, nY3 = U,, Y3 and since ~ is 
perfect, r /=  id. [] 

Let A be a commutative algebra over C and let ~ be a finite-dimensional 
simple Lie algebra over C. Our object in this section is to describe the uca of 
A @ c  g (as a Lie algebra over C) and then to make the structure of this uca 
quite explicit in the case that A = C[s, s-  1, t, t -  1]. 

The structure of the uca of A ~ )c  g has already been worked out by Kassel 
[83 . His argument is based on an argument due to Garland in [4] for the case 
A = C[t, t - 1 3  , Wilson [15] gave a very elegant proof of the C[t, t -1] case, 
and it generalizes easily to general A to give a more economical proof than 
the Garland-Kassel  approach (provided one accepts some basic coho- 
mology theory of simple Lie algebras). We wish to sketch out the Wilson 
approach here. For more on the history of these results see [143 . 

We begin by recalling a few facts about ~ that we shall need for the sequel. 
The over-dot notation is used for consistency with later sections. 

Let ~ be a Cartan subalgebra of ~, let A denote the corresponding root 
system, A c [)*, and let 1] = {~ . . . . .  ~!} be a base for A. The Killing form 
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(" I ") is non-degenerate on b, and we will usually identify b* with b by means 
of it. We assume that (. I ") is so normalized that after this identification long 
roots have square length equal to 2. 

For each root c~eA the Lie algebra ~" + [~ ,  ~ - ' ]  + ~-~ is isomorphic to 
~12(C ). An ~12-triplet for this is a choice of e, e ~ ,  e_,  e ~-" for which with 

h~ := [e~, e_~] we have [h~, e~] = 2e~, [h,, e_~] = - 2 e _ , .  Using our identifi- 
cation of t)* with b we have 

(2.1) [e~, e _ j  = (e~le_~)~ 

(c¢1~) 

2 
(% [e_ ~) - (~1~)" 

Let A be any commutative algebra over C. The module of differentials 
(~A, d) of A is defined in the following way. Let {ai} be any basis for A over C 
and let F be the free left A-module on a b a s i s  {dai} w h e r e  {dai} is some set 
equipotent with {ai}. We treat F as a 2-sided A-module by setting 
b(da) = (da)b for all a, b e A. Let c~ A ~ F be the C-linear map Z clai ~-, E cldai 
and let K be the A-submodule of F generated by the relations 

d(ab) - ((da)b + adb), a, b ~ A. Then ~ a  := F/K  and the canonical quotient 
map a ~ da + K is the differential map d: A ~ f~a. 

Up to evident isomorphism (~A, d) is characterized by the property that for 
every A-module M and every derivation D: A--* M there is a unique A- 

module map f: f~A ~ M such that 

d 
A 

M 

commutes. In this way Derc(A, M) _~ HOmA(f~A, M). 

Let --:f~A ~ f~a/dA be the canonical linear map. Observe that from 

d(ab) = 0 we have adb = - (da)b = - b d a  for all a, b ~ A. 
Consider the vector space 

and define a bilinear multiplication [ . ,  • ] '  on u by 

[a ® x, b ® y]' = ab ® Ix, y] + (da)b(xl y) 

l ~ ]  = LdA'  dAJ  = O. 
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This makes  u into a Lie algebra. Generally,  we shall write [ . ,  . ]  instead of 
[ . ,  - ] '  in the sequel. Let co: u ~ A @ c  g be the project ion with kernel ~a/dA.  

P R O P O S I T I O N  2.2 (Kassel). (u, co) is the uca of  A ® ~. 
Proof(fol lowing Wilson [15]). Let 

o ~ 3 ~  ~ A  @c~--,0 

be a central extension. Let r: A @ c  g ~ g be any linear m a p  so that  2 o z = id. 

Define 

z*:A x A x ~ x g ~ 3  

by 

z*(a, b, x, y) = [z(a ® x), z(b ® y ) ]  - "c(ab ® Ix, y]). 

One should recall that  for u, y e A  @ c g ,  and fi, ~ preimages of them in ~, 
[fi, ~] depends only on u and v. One  can thus prove  directly that  

(A) "c*(a, b, x, y) = - z*(b, a, y, x) 

(J) z*(ab, c, Ix, y], z) + z*(bc, a, [y, z], x) + r*(ca, b, [z, x], y) = O. 

One now proves  that  there is a section z o for which 

z ~ ( a , l , x , y ) = O  for a l l a e A ,  x, y e g .  

To  do this define for each a ~ A 

fa:  ~ ~ Uomc(~ ,  3) 

by v ~ f~  where 

f~(u) = z*(a, l, u, v) for all u ~ ~. 

Put t ing b = c = 1 i n  (J) we obtain  

0 = f ~ ( [ x ,  y])-f["y,zl(x)  + f~ ( [ z ,  x]) 

f rom which 

• a a 

(2.2) 0 = y" f~ -- z f y - f [y ,z l -  

Here Homc(~ ,  3) is given the g-module  structure ( x ' f ) ( y )  = f ( - I x ,  y]). 
N o w  (2.2) says t h a t f  ~ is a 1-cocycle on ~ with values in Homc(~ ,  3) and 

since HI(~, Homc(fi ,  3) ) = 0 ([61]) there is an element g " ~ H o m c ( ~ ,  3) for 
which dg" = f" .  Yhusf~  = y .g"  and hencef~(x) = g"([x, y]). Since g is perfect 
gO is unique and then, since f "  is linear in a, g~ is linear in a. 

1 The standard result is for finite-dimensional B-modules. However, Homc(  ~, 3) is a sum of 
finite-dimensional B-modules, so the result easily extends. 
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Define g: A @ e  g ~ ~ by a ® y ~-~ gO(y) and set z o :=  z + g: 

z*(a, 1, x, y) = z*(a, 1, x, y) + {[g(a ® x), 9(1 ® y)] - 9(a ® [x, y])} 

=f~(x)  - 9"([x, y]) = O. 

Let us replace z by %. Fix a, b e A and define 

f :  g x ~ - - *  3 

by 

f (u ,  v):= z*(a, b, u, v). 

Then with c = 1 in (J) we obtain 

0 = f ( [ z ,  x l ,  y) + f ( x ,  [z, y]) for all x, y, z e ~. 

T h u s f  is invariant. Since ~ has a unique invariant bilinear form up to scalars, 

it follows that  there is z,, b e 3 such that  

z*(a, b, u, v) = f ( u ,  v) -= (u[v)z,.b for all u, v~g.  

F r o m  (A) and (J) and the fact that  (. [ .) is symmetric we have 

(2.3) (i) Za, 1 = 0 

(ii) Za,b = -- Zb,, 
(iii) Z.b.c + zbc,. + Zc.,b = 0 

for all a, b, c e A. 

Let F be the A-module  defined above and define a map  

F ~  

Z b, da,~-~Z Zo,,b,. 

F r o m  2.3(iii) K dies and hence we have an induced map  

f~a --* 3. 

Finally for a ~ A, da ~ z~,a = 0 and hence 

fla 
- -  -* 3 bda ~ Z.,b. 
dA 

The map  u -~ ~ defined by 

c ® x + b d a ~ z ( c  ® x) + Z~.b 

is a h o m o m o r p h i s m  and this completes the proof  of the proposition. [ ]  
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We call the universal central extension of  C[ t l ,  t [  1, . . . ,  t , ,  t21]  @ c  g a 

toroidal Lie  algebra and denote it by tr, 1. The algebra At, 1 :=  C[t~, t l  1 . . . . .  t,,, 
t ,  1] is the ring of  polynomial  functions of the torus C × x -.- x C × and the 

Lie algebra It, 1 :=  At, 1 @ c  g may  be viewed as the Lie algebra of polynomial  
maps of C × x .. .  x C × ~ ~. In the case n = 1 we have the well-known loop 

algebra Im. Its uca is the corresponding affine Lie algebra. In that sense it 

might be more  appropr ia te  to call lt, j a toroidal algebra, but  we felt that  the 

uca was more  impor tant  and should have a suggestive name. 
In the remainder of this paper we are going to treat the case n = 2. We shall 

simply denote the Lie algebra tt21 by t and t 1 and t2 by s and t respectively. An 

explicit description of  f~ ,%/dAt .  ~ has been given in [13]. Since this is 

impor tant  to use when n -- 2 we work it out  here. 

The A[2]-module f~=t2A~) has generators d(sPt q) and relations 

d(ab) = adb + bda. Thus f~ is freely generated over A by ds and dt and hence 
freely over C by {sPt q ds} w {sPt q dt}. In f~/dA 

0 = d(sPt q) = psp -a tqds  + qsPt q-~ dt. 

Thus for q # 0 

sPt q-1  dt  = - p- s p -  l tq ds  
q 

and a set of generators for ~ / d A  over C is 

(2.4) a(p, q) :=  s P - l t q d s ,  

a(p, 0) :=  sPt 1 d t ,  

*(0, 0 ) :=  s -  1 ds. 

(p, q)E7/ x (7/\{0}) 

p~7/ 

It is elementary to see that  these elements are linearly independent over C and 

hence form a basis for f2/dA. 

3. PRESENTATIONS OF T O R O I D A L  LIE A L G E B R A S  

Let A = (A~j)Ij=o be an indecomposable  Car tan  matrix of affine type XI 1) 

(X = A, B . . . . .  G). Let Q be the free 7/-module on generators ~o, . . . ,  ~z and 

identify the affine root  system A defined by A with a subset of Q by identifying 
{c% . . . . .  c~} with a base 17 of A. We know [10] that there is a 7/-valued 

symmetric bilinear form ('1") on Q for which after suitable choice of indexing, 

2(c~ I ~j)/(~jl ~j) = A,~. 
Let 6 :=  I;I_ 0 n~7 i, ni ~ 7/+, gcd(n o . . . . .  nt) = 1, be the null root. We assume 

that the notat ion is chosen so that no --- 1, so c~ o is an 'extension node '  and 
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A = (Aij)[j= 1 is of  finite type X,. We assume that  ( - [ . )  is scaled so that  
(%[ao)  = 2. In general, objects associated with A carry an over-dot,  so for 

instance 0 := Za l  + "'" + Zaz ~ Q, l'I := {el . . . . .  el}. 
For  each i =  0, . . . ,  l let a~ := 2a~/(~il c~). Then  {c~' . . . . .  e v} forms a 

base for the coroot  system A ~ whose Car tan  matr ix  is A T. Its null root  is 
Z~ v v = 6  where n~:=ni(~i[c~)/2. The fact that  the n / ~ e Z  can be i= 0 ni ~i 

verified by inspection, case by case. 
We let t = t(A) be the Lie algebra over C with the following presentation:  

(3.1) generators: 

4, ~/(k),  

relations: 

TA0 

TA1 

TA2 

TA3 

TA4 

x ~ ( + ~ )  i = 0 . . . . .  1, k e Z  

for all i, j = 0, . . . ,  l, 

[, ,  ~7(k)] = [4, x,(_+c~)] = o 

[~/V(k), ay(m)]  = k(~[o:y)6k+,,,o 4 

[-o~/V(k), Xm(-]- &j)] = -I--(o~ / I O~j)Xm+k(-}-O~j) 

2m6,,+,,o 
[x,.(~i), x . ( - cg ) ]  = - 6 i j  ~y(m + n) -t (~il~i) 

[Xm("~), X.("3] = 0 = [Xm(-- "3, X . ( - - . 3 ]  

(adxo(O~i))-A'i+lXm(O~J) = ~ }  
(adxo(_Cq)) Aj,+ lx , , (_a j  ) i =¢ j 

k, m, nE~.  
The elements {c~y (k)} generate an infinite-dimensional Heisenberg algebra 

6 whose structure is made  somewhat  more  t ransparent  by extending the 
no ta t ion  a bit. We set b : =  C @ z Q  and for each k ~ 7 / t a k e  an i somorphic  
copy [(k) of b. Denote  the i somorph ism by c~--.cffk). Then with 
a' := @k~Z b ( k ) 0  C4 and Lie bracket  

[4, a' ] :=  0 

[~(k), fl(m)] := k(~ I fl)G+m,o4 

we obta in  a Lie algebra that  clearly has fi as a h o m o m o r p h i c  image. In fact, 
this is an i somorph ism as we shall see in Coro l l a ry  3.7. In any case we will find 
it convenient  to use the nota t ion  e(k) for E eiay(k ) whenever c~ = 2 cia~.  In 
par t icular  we have the elements 6(k) = Y. n~ a~ (k) which are evidently central 
since (61 Q) = 0. 

R E M A R K S  1. F r o m  T A I  and TA3 [aU(1 ), c~?(-  1)] = (aU [ c~Y)4 and [xo(al), 
x , ( - c q ) l  = - a ~ ( n )  so t is generated by the elements x,(+_ai). 
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2. The choice of the sign on the right-hand side of TA3 is made for the 
convenience of the vertex representation in Section 4. 

Let g be the finite dimensional Lie algebra with Cartan matrix A, Cartan 
subalgebra C @ z  0, and-usual set of generators % fi, hi, i = 1 . . . .  , I. Let 
B = C[s, s-  1, t, t -  1] be the rJhg of Laurent polynomials in two commuting 
variables. Let ~ be the highest ro~..of/k relative to fI = {al, . . . ,  ~l} and let 

eoS~ -e, f o e ~  e be chosen so that {eo, ho, fo} is an ~I2-triplet where 
l n~ hi. Then the mapping ho := --~i=1 

(3.2) ¢ ~ 0 

o~?'(k)~s k ® h i  i = O  . . . . .  l 

Xm(O{i) ~ S m @ ei ) 

x,,(--oh)w-~ - s" ® fi~ i =  1 . . . . .  1 

x~(%)~-~s"t ® eo 

x,.(-eo)~--~ - s"t -1 ® f o  

defines a surjective homomorphism 

7c:f--~g:=C[s,s  1, t, t - I ]  @c~.  

We wish to prove that t is the universal central extension of C[s, s-  1, t, 
t - l ]  @~. 

The result is similar to a result of Kassel [-8, Cor. 3.4]. However the 
presentations are different. 

We begin by introducing a grading of t by 7/ x Q by assigning degrees to 
the generators as follows 

(3.3) deg ¢ := (0, 0) 

deg ~/~ (k):= (k, O) 

deg Xk( +_ei):= (k, +oh) 

for all i -- 0 , . . . ,  l and for all k ~ 7/. We denote the space of elements of degree 
(k, a) in t by t~,. 

We now define 

l 

Q+:= 
i - O  

:= y_, t:, 

e : =  Z t: 
nEZ 

Q_ :-~- --Q+ 

t-+:= y 
neZ 



292 R O B E R T  V. M O O D Y  ET  A L .  

52 := linear span of all products  2 [X.k(flk) . . . . .  X.I(flX) ] 

where fix . . . . .  f ig~H, nl . . . . .  nkeT/, Z n k = n  

5 + : =  ~" 5, + 
nEZ 

~- and 5-  similarly 

~o := linear span  of 6n,o~ and the a/~(n), i = 0  . . . . .  1, n67/  

0 50 : =  2 5in 
n ~ g  

5: - - :  5 + -F 5 ° -I- 5 - .  

L E M M A  3.1. (i) t = 5, t~ = 5~, and t +- = s +-. 

(ii) t , = t , -  + t  ° + t . + ; t = t -  + t  ° + t  +, 

P r o o f  Since 5 contains  all the generators  of  t, to prove  that  5 = t it suffices 
to prove  that  5 is closed by the act ion of ad(g) where 9 runs through all the 
generators  of  t. This is very s t ra ightforward to prove. Fo r  instance, if 

y = [X.k(flk) . . . . .  X.,(fll) ] where ]~1 . . . .  , flk e H and if (n, fi) s 7/x H then 

[x.(fl), y ] s , +  (obvious) 

[ x . ( - f l ) ,  y ] e 5  + + 5 ° (TA2, TA3) 

[a v(i), y] e 5 + (TA2). 

o o Since 5 = t and 5 + c t +, s n c t. these inclusions must  be equalities and 
everything follows. 

P R O P O S I T I O N  3.2. 

{ ~  / f  ~ r e A  

dim t~ = /f ct ¢ A 

where reA is the set  o f  real roots o f  A. 

P r o o f  The subalgebra  t o of  t contains the elements ~/~(0), Xo(+~) ,  i =  0, 
. . . .  I which satisfy the relat ions for the affine Lie algebra g = g(A). Hence  we 
obta in  a representat ion (p of g on t by g ~ to ~ gI(t). Fur thermore ,  the 
representat ion is integrable because of TA4 and t, is a submodule  under  this 
action. 

Let N be the group  of au tomorph i sms  on t generated by the elements 

ni(a ) :--- exp(qmXo(~i))exp(~oa 1X0(-- ~i)))exp(cpaxo(~i)) 

2 In a Lie algebra [a k . . . . .  a l ]  :=  ad a k --" ad a2(al). 
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i = 0 . . . . .  1, a e C  ×. We know by standard ~la-theory that ni(a)t~, = t~ ~ [12] 

where riO~ = 0c - -  (0~ [ ~ v ) 0 ~ i .  

By Lemma 3.1, t, ~' is spanned by x,(ei) so dim t, ~' = 1. N o w  if e e reA, e = wc~i 

for some i and some w = r ~ ' . . r  h and we obtain 9 s N with 9t, =' = t, ~ and 

dim t, ~ = 1. 

Suppose now that c~eQ\A. Write c~ = Zcicq. If  the c i are of mixed signs 
then t~ = (0) by Lemma 3.1. Suppose that the signs are all consistent, say, for 

definiteness, all positive. Then 0 = (6 [ e) = Z nj(~jI e) and hence for at least 

one j, (c~j] c 0 > 0 (for otherwise (c~j L c0 = 0 for all j and ~ e 7/6 c A). We have 

dimt~ = dim t~, ~ and rjc~ = ~ - 2 for some 2 6 Q + .  If r j a ~ Q +  we replace c~ by 

rje and repeat but with an element of  reduced height. Thus we may  assume 

that r2c~$Q+. If rja has mixed signs we are done, so we may  assume that  
rjc~ ~ Q_. Then ~ = kc~j with k > 1 since e ¢ A. But tk, "j is spanned by the 

products  [x,k(c~j) . . . . .  xn~(~j)] = 0 by TA4. [ ]  

C O R O L L A R Y  3.3. 

(TA4') (adx,(ai))-As'+lXm(aj) = 0 

(ad x , ( -  el))-AJ' + lX,,( _ C~j) = 0 

for all i # j, m, n e Z .  
Proof  ctj + (- -  Aji  -4- 1)cq = ri(o~ J -- o:i)~A. []  

C O R O L L A R Y  3.4. For each ct ~ r~A, n 6 27, 

ct: + crt:, t_:] + ct:: 

Proof Using the Weyl group we can assume that  c~ = ~ .  Then the result 

follows from TA2 and TA3. [ ]  

P R O P O S I T I O N  3.5. (t, 7r) is the universal central extension of  ~ = C[s, s -  ~, t, 

~-~] @ c  g. The kernel of  rc is contained in ~ e z  tk~. 
Proof ~ is graded by 7/ x Q by assigning degrees in (3.2) according to the 

degrees on the left-hand side. Then ~z is a graded homomorph i sm  and, in view 
of  Proposi t ion 3.2, ker~  ~ Y,k~/Tt k~. Since [x~(+c~), Xgezt  ~°] O Y~ksytkO= 
(0), the kernel is central. 

To prove that the extension is universal we construct  a mapping  q/f rom t 

to u of  Section 2 over 

t ~ - - + ~  

U ~o __>~ 
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Explicitly 

¢~--~s-l  ds 

x , . ( s i )  ~ s m ® ei t 
Xm(__Si )  l._ + __sm@ f i j  i =  1 . . . . .  1 

Xm(SO) ~ smt @ eo 

x ~ ( - S o ) ~  - s~ t  - '  ® fo 

s v ( k ) ~ s  k ® h i ,  i =  1 , . . . , l  

s ~  (k)w+ s k ® h o + Skt -1  dt.  

One has to prove  that  the elements on the r ight-hand side satisfy relations 
TA. The  relations TA0, TA2, TA4 are essentially trivial. Using the definition 

of u in Section 2: 

TAI :  Is k @ hi,  S m @ hj] = ( d s k ) s m ( h i I h j )  

= kbk+m,oS 1 ds(slv i Sjv). 

TA3: We need only consider the case i = j since (el [ f j)  = 0 if i ~ j. Suppose 
i = j  ~ 0. Then, using (2.1), 

[ Sm @ el, - -  Sn @ f l ]  = - -  sm+ n @ hi _ (ds")s"(ei[ f l)  

: - - S  m+n @ h i - -  m6m+n,O S - 1  ds - -  

i f i = j = o ,  

N o w  

2 

(Sil Si)" 

a := [smt @ eo, --  s " t - ,  ® fo]  = -- sm+" ® ho - (d(smt))( sn t -  1)(eo [ fo). 

d(smt)(s"t -1)  = ms ~+"-  a ds + s"+"t  -1 dt  

= m6,,+,,o s - a  ds + sm+"t -a dt  

which is what  we want.  

2mfim +.,o ) = - 0  s~(m+n)+ ~ * 

and 

2 
(eolfo) - - 1 f rom (2.1). 

(So I So) 
Thus together  we have 

a = - (s "+"  ® h o + sm+"t- 1 dt) -- mfim+.,os-  1 ds 
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Thus ~ exists and co 0 = re. On the other  hand, by the definition o fu  there is 
a unique homomorph i sm 2: u ~ t such that 7z2 = co. Then ~2 and 2~ are Lie 
endomorphisms of u and t respectively over 8. By Lemma 2.1 they are 
identity maps and we conclude that u ~ t. [ ]  

Let ~o:Q--+Z be the map Zci~xi~--~Co and let - :Q--+(~ be the map 
Zcio:i~ -+ -Co~ + £I_1 cicq. From the definition of ~ we have for all eereA 

(3.4) t~ 0 ~ s,t~o(~) ® g~. 

P R O P O S I T I O N  3.6. Under the isomorphism O above we have 

(i) O-  1( skt-1 at) = a(k) e t °, k e Z 

I ~ - l ( s k - l t r d s )  Etrka , k, rE7 / ;  

d i m t [ a = ~ l + l  /f (k, r) ¢ (O, O) (ii) (l + 2 /f (k, r) = (0, 0); 

dimt~, a c~centre(t) --= ~'1_ /f ( k , r ) ~ ( 0 ,  O) (iii) 
(2  /f (k, r) = (0, 0). 

Proof. (i) 

Oa(k) = ~,(Y, n:~/(k))  

= ( ~ = o s k ® n V h ~ )  + s k t - ' d t = s k t - l d t "  

Fix any long real root  c~e A and let {% [ %  e ~], e ~} be an d2-triplet with 
e=eg =, e_=eg  -= (for instance ~ = ei, e= = el, e_~ =f/).  Define 

x~( + e + ka) = O-  ~( + smtk ® e +_~) for all m, k e Z .  

In view (3.4) it is clear that x,,(+_e + ka)et,~ ~+ko. 

Now we have 

O([Xm(~ + ka), x . ( - ~  + ra)]) 

= [s=t k ® e~, - s"t ~ ® e_ =] 

= - - { sm+ntk+r® [e=, e_=] + (d(smtk))(sntr)} 

= --sm+Ot k+~ @ [e~, e_=] -- ms m+'-ltk+~ds -- ksm+"t k+~-I dr. 

Thus 

(3.5) ///([Xm(O( -1- k(5), Xn(--o~ Jr- rt~)]) - -  t~([-Xn(O{ q- k(~), Xm(--O{ q- r a ) ] )  

=(n -- m)sm+n-ltk+'ds 
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and hence 

~1 - l ( s m  + n - 1 t k + r  d s )  = ~(k + r)~ 

(Note that  (3.5) is 0 if k + r = 0 and m + n ¢ 0.) 

(ii), (iii) The  elements skt -a dt, keY_ and sk-atrds, r ~ O, and s -1 ds form a 

basis for ~Atzj/dAt2 j. Since dim fi[,~ = I for all r, k, (ii) and (iii) follow from (i). 
[ ]  

C O R O L L A R Y  3.7. a' -~ ft. 
Proof Let c ~ b \ { 0 }  and write it as 7 = d~ + a6 where & = Zti=l ci~Y,cieC. 

Then for k ~ 7 / the  element 7(k) of fi is m a p p e d  by @ to 

1 
@(c~(k)) = s k ® ~ cihl + askt- 1 dt ¢ O. 

i=1 

The result follows. [ ]  

C O R O L L A R Y  3.8. Suppose that ~ is a Lie algebra over C graded by 7/ x Q 
and 2: t(A) --* ~ is a surjective 9raded homomorphism of Lie algebras such that 

(i) A is injective on t~ for all (n, c 0 e ~ x reA; 

(ii) for all k, 2(6(k)) ~ 0 and 21c6(0)+c~ is injective; 
(iii) for all m, k, m ~ O, k ~ O, 

,~([Xm(O~ 1 -1- k0), x 0 ( - - g l )  ] - -  [Xo(~ 1 -/- k~), Xm(--0~l)] )  5 & 0 

and 

,l(x~(~1 + k~), x _ ~ ( - ~ ) ]  - [x_~(cq + k~), x~(-cq)])  ¢ 0. 

Then 2 is an isomorphism. 

Proof F r o m  (i), ker 2 c Z,,.k t~ ° and hence, by the a rgument  in Propos i t ion  
3.6, ker 2 is central. Condi t ions  (ii) and (iii) say that  there is a non-zero central 
element in ~a  for all (m, k) -¢ (0, 0) and two independent  central elements for 
(m k) = (0, 0). [] 

4. V E R T E X  O P E R A T O R S  

F r o m  this point  on we assume that  the affine Cartan matrix A of Section 3 is 
simply laced, i.e. A = XI 1) where X = A, D, E. 

We assume that  the lattice Q is a sublattice of a lattice F admit t ing a non- 
singular y,-valued symmetr ic  bilinear form ( ' l ' )  that  restricts to the previ- 
ously chosen form on Q. Such a lattice F can be constructed in m a n y  ways. A 
part icularly interesting example  for 0 ,  Q, F is the series of root  lattices Es, E9 
( =  E(81)), Elo  which belong to the simple Lie algebra, the affine Lie algebra, 
and the hyperbol ic  Lie algebra of the same names. 
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We briefly review the notation and construction of vertex representation 
spaces and the operators Xm(ct) that act on it. This theory is due to Frenkel 
and Kac [2]. For further details one may also consult [3], [5], [113]. 

Let l :=  C @ z F  and define a Heisenberg algebra I~:= @k~zl (k)O C¢ 
from a collection of copies f(k) of f as was done for [ in Section 3. Thus 
multiplication in b is defined by 

and fi may be considered as a subalgebra of b. We let a be the conjugate linear 
involution on Fa defined by e(n)t--,ct(-n) for all c~t~m:= ~ @inF. Define 

k ~ ~\{0} 

b+ := ~ ~(k) 
k~0 

and a, a ± similarly with b replacing ~. 
The Fock space representation of b is the symmetric algebra S(b_) of b_ 

together with the action of b on S(b_) defined by 

¢ acts as 1 
a ( - m )  acts as multiplication by a(-m),  m > 0 
a(m) acts as the unique derivation on S(b_) for which 

b(-n)~--* ,~m-.,om(a l b) 

for all a, b e l, m, n > O. 
S(b_) affords an irreducible representation of b. However, S(a_) does not 

afford an irreducible representation of a since the form (. 1.) is degenerate 
o n  D- 

Let e: (2 x Q ~ { + 1 } be a bimultiplicative map satisfying 

C C  (i) ~(0¢, ~) = ( - -  1) {al~)/2 

(ii) e(:~, fl)e(fl, a) = ( -  1) (~l~l 
(iii) e(c~, 6 ) =  1 

for all e, fl ~ Q. Condition (iii) makes it easy to determine such an e by using a 
corresponding cocycle on O- 

We shall assume that e can be extended to a birnultiplicative map 

~: (2 x r - , { + l } .  

No further assumptions on ~ are needed. 

3 The following errors should be corrected in this paper: p. 191, 13,[, (5,~+,,om(x,y)c; p. 199, 9,[,, 
~o),U" ® x = n(a, ,u),u"- ~ ® x; 3]', ~,u, ,u) + n~ + --" + nk = n; p. 208, 6T, ~(a, c 0 = - 1; p. 209, 8T, 
[%(c~), e,(fi)] = - m 6  . . . .  o - a(rn + n) i f  (c~, fl) = - 2 .  
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For each ? e F let e y be a symbol and form the vector space C[F]  with basis 
{e ~} over C. In particular, C[F]  contains the subspace C]-Q] := Z~eQCeL 

Following Borcherds [1] we define a twisted group algebra structure on 
C[Q] by 

e% p = ~(o~, fl)e ~+ p 

and make C[F]  into a C[Q]-module by defining 

e~e ~ = e(a, 7)e "+~ for all ~,/~ e Q, ? ~ F. 

Let M c S(b_) be any a-submodule (with respect to the Fock space action). 
We define 

V(F, M):= el-F] ~ ) c  M. 

Of particular interest in the sequel will be V(F, S(a )) and V(F, S(b_)) which 
we simply denote by V(F) and V(F, b) respectively. 

We extend the action of a on M to fi on V(F, M) by 

a(m) ' (e  ~ ® u ) : =  e "e®a(m).u i f m ~ O  

a(O). (e ~ ® u):= (a I Y) e~ ® u if m = O. 

Let z be a complex-valued variable and let ~ ~ Q. Define 

T+ (~, z ) :=  - Z 1 ~(n)z-".  
n~O n 

Then the vertex operator for :~ on V(F, M) is defined as 

X(a, z) := z (~1~)/2 exp T(~, z) 

where 

exp T(a, z):= exp T_(o~, z ) e ' z ' ( ° ) exp  T+(e, z) 

and the operator z ~(°) is defined by 

z~(°)e 7 ® u := z(=lY) e ~" ® u. 

Strictly, for each z e C x the operator X(a, z) maps V(F, M) into the space 
C(F] ® ~ Z )  where S - ~  = H, S(b_)" is the completion to formal power 
series of S(b_). However X(a, z) can be formally expanded in powers of z to 
give 

x(~, ~)= ~ x.(~l~-" 
n~77 
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and the 'momen t s '  X.(:¢) are indeed opera tors  on V(F, M). Moreover ,  for all 

v~ M, X.(7)(e ~ ® v) = e ~+~ ® v' where v' ~ M is obta ined f rom v by applying 
some polynomial  expression in the opera tors  a(m), a ~ b, m E Z\{0}. 

The powers  of z in X(~, z) are so construed that  X.(~) is an opera to r  of 
degree ( - n ,  ~) relative to the Y x F grading on V(F, M) for which 

deg(e ~® a k ( - - n k ) " "  a l ( - - n 0 )  = (~(717) + nl + " "  + nk, 7)- 

Assigning X,(e)  degree (n, e) would seem more  natural  for what  is to come 

but  the grading on V(F, M) is well established in the literature. 

The basic commuta t i on  relations for the opera tors  e(k) and Xm(~) on 
V(F, b) are these ([2], [5], [11]): 

CR0 [~(k), X.(fl)] = (~lfl)X.+k(fl) 

CR1 [X,.(~), X.(fi)] = 0 if (~]fl) t> 0 

CR2 [Xm(~), X.(fl)] = e(~, fl)Xm+.(a + fi) if (a[fl) = - 1 

CR3 [Xm(~), X . ( - a ) ]  = - ~ ( m  + n) - mbm +.,o¢ if (a[~) = 2. 

In fact CR3 is a special case of 

L E M M A  4.1. Let ~, f l~Q with (~]a) = (fl[fl) = -(:~lfl)  = 2. Then 

CR4 EXm(~), X.(fl)] 

=~(~,/~){mXm+.(~ +/~) + Z :~(k)Xm+._~(~ +/~):} 

where the normal ordering symbols :: indicate that the operators are to be 
applied in the order of  increasing degree. In particular here 

5e(k)Xm+.-k(fl) if k ~ m + n - k 
~o~(k)Xm +n- k(fl)~ "x 

[X,,+,_k(fl)a(k) if k > m + n - k. 

This result is itself a special case of the general c o m m u t a t o r  formula  (8.4.43) 
of [3]. However ,  it is also easily derivable f rom the technique of residue 
calculus so we offer a short  p roof  if it here. 

Proof. We begin with the general formula  

~(~, ~)[xm(~), x.(/~)] 

( 1 ) 2 ; c d z ; d w  {w[(~la)/2]+rnz[(~,~)/2]+n:exp(T(o~,w) + T(fl, z)):(z_w)(~,e)} 
- - ~  ,T  G- 

where :exp(T(~, w) + T(fl, z)): means  

exp(T_(~, w) + T_( B, z))e~'+~w~°)zt~°)exp(T+(a, w) + T+(fl, z)). 
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This m a y  be found in [-5], [11], or  [9, (15.14), (15.15)]. In  these references 
C[Q]  is not  twisted so the left-hand side is X,,(cc)X,(fl) - ( -  1)('l~)X,(/~)Xm(c¢). 
The con tour  c runs a round  z and does not  have 0 in its interior. The contour  

c' is a round  0. Since we are assuming that  (e I e) = (/~i/7) = 2 and (~1 fl) = - 2 
we can compute  the inner integral by the s t ra ightforward compu ta t ion  

d 
dw {w"z"+l :exp(T(~, w) + T(fl, z)):}w=~ 

= mz m +" :exp T(e +/~,  z): 

Applying (1/2zci)Sdz/z we obta in  CR4. [ ]  

L E M M A  4.2. Let ~, fl~ Q with (~ I ~) = (fl I fl) = - (~ [ ~) = 2. Then 

(i) the operators X, . (e  + fl) commute with all operators X,(qo), q)~ Q; 
(ii) [X~(c0, X,(/~)] - [X,(7), Xm(/~)] = e(ct, fl)(m - n)Xm+,(C~ + ~). 

Proof (i) The assumpt ions  on c¢,//imply that  e + fl is isotropic and hence a 
multiple of J. Thus  (i) follows f rom CR1. 

(ii) In L e m m a  4.1 interchange m and n and subtract.  [ ]  

P R O P O S I T I O N  4.3. The Lie algebra t of operators on V(F, b) 9enerated by 
the operators Xm(e), m ~ 7/c¢ ~ teA, is isomorphic to t(A) via the uniquely defined 
map 2: t(A) ~ t for which x,,( +_~i)~--~ X, , (  +ei), ~--~ 1, 

Proof F r o m  the relations CR it is clear that  t is generated by the elements 
X,,(_+ c~i), i = 0, . . . ,  l, m e 2 ,  and contains  the opera tors  col(k) ( =  e~(k)) and ~. 
The relations TA are very easy to check f rom the relations CR. For  instance 

in the case of  TA4 the relation is trivial if Aj~ = 0 since then (el I e j) -- 0 and we 
can use CR1. If (c~1%-) = - 1  then by CR2 

EX.,(~), x.(ccj)] = ~(c~, c~)xm+.(~ + %). 

Since (ei lct i + e j) = 1 > 0, 

[xm(~+), x~.+.(~, + %)3 = 0. 

The remaining case is (a~l c~j) = - -2  (which occurs only in the case of  A~) .  
After using CR4 we are left to prove  that  (ad Xo(c~i))z{ai(k)X,(6)} = 0 for all k, 
which is s traightforward.  This establishes a surjective h o m o m o r p h i s m  

t(A) --. t. 
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We have already seen that the operators X,,(~) are operators of degree 
( - m ,  ~) on V(F, b). Using the map ( - m ,  ~)~-+ (m, ~) we temporarily assign 
Xm(~) degree (m, ~). Then our mapping 2 is a graded homomorphism. We 
now apply Corollary 3.8. Since the operators 6(k) and Xm(k6) are all non- 
trivial and ~(0) is not a scalar map, we obtain t(A) -~ t from Lemma 4.2. []  

For each a-submodule M of S(b_) the space V(F, M) affords a subrepresen- 
tation of t. In general this is not faithful. In fact for the case V(F) when 
M = S(a_) it is not faithful as we shall soon see. 

The following dictionary of central elements is useful 

(4.1) skt- ~ dt ~ ~(k) 

sk- l tn  dS ~--~ Xk(n6), n # 0 unless k = 0 

(note that s -  1 ds ~-+ Xo(0) -- id --- ¢ as expected). The first correspondence was 

given in Proposition 3.6, The second may be deduced from the comparison of 
(3.5) and Lemma 4.2 with c~ replaced by ~ + k6, fl replaced by - c t  + r6: 

(n -- m)s m+"- ltk+rds +-+ [X,.(~ + k6), X . ( - ~  + ra)] 

- [ X . ( ~  + kb), X = ( - ~  + rb)] 

= e(~ + ka,  - ~ + r a ) ( m  - n)X~+.((k + r)a)  

= ( n  - m)Xm+.((k + r)a) .  

In the sequel we shall usually identify t and t(A) by the isomorphism of 

Proposition 4.3. 

5. THE STRUCTURE OF V ( F )  

In this section we examine how V(F) decomposes as a t = t(A)-module and 
look at the structure of its indecomposable constituents. 

Let 2 ~ F and define 

V(2) := e ~+Q ® S(a_). 

The operator X(~, z), ~ Q ,  maps V(2) into the space e x+q ® S ~  where 

= II~,=o S(a_)" is the formal power series completion of S(a_). Thus for 
each n the component  X,(~) of X(~, z) acts as an endomorphism on V(2) and 
hence V(2) is a t-submodule of V(F). 

Fix 2 ~ F and observe that N := (2 + ~ 16) is constant as 2 + ~ runs over the 
coset )~ + Q. 
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For each c~ e Q define the polynomials sp(c 0 e S(a ), p s Y_, by 

exp T_(a, z )= :  ~ sp(oOz p 
p : O  

and 

sv(c 0:= 0 if p < 0 .  

Furthermore,  

and hence 

Z 
m~Z 

Xm(COz-m'(e;~® 1) : X(o¢, z)'(ea® 1) 

=~(~, 2)z(~l~)/2z(el'Oe "z+~ @ exp T_(e, z). 1 

=e(~, 2)e ~+~ ® ~ s,(~)z p+(~la+'/2) 
p=O 

xm(~)" (e x ® 1) = e(,, ,l)e~+" ® s-m-(,l~+,m(~). 

We note two special cases of this 

(5.1) X_(,la+~/z)(e ) ' ( e a®  1) = e(,, 2)ea+~ ® 1 

(5.2) Xm(k6 ) "(e x ® 1) = e(k6, 2)e a+ko @ S_(m+kU)(k6 ). 

L E M M A  5.1. V(2) is a cyclic t-module with 9enerator e ~ ® 1. 
Proof S(a ) is a cyclic a-module with generator 1 and the result follows at 

once from this and (5.1). [] 

Using (5.2) we obtain 

L E M M A  5.2. For all k, m ~ 

e(k6, 2)e "~+k~ @ kN(k6) S-m 
Xm(k6) (eZ®l )= lo (k6 ,  ~)eX+ka ® 1 

Set "c := X_N(6 ) (where N = (216)). 

i f m +  kN  <O 

i f m + k N  =O 

if m + kN  > O. [] 

P R O P O S I T I O N  5.3. Let k, m ~ 77. 

(i) The operators Xm(k6 ) centralize the action o f t  on V(2). 
(ii) X_kN(k6) acts as multiplication by e(6, 2)ke kz on V(2). In particular r acts 

as multiplication by e(6, 2)e ~ and X_kN(k6) acts as multiplication by ~k on 
V(,~). 

(iii) X.~(k6) annihilates V(2) iff m + kN  > O. 
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Proof  The operators X,,(k~) commute with t because of CR1. By Lemmas 
5.1 and 5.2, X-kN(k6)  acts on V()0 by multiplication by ~(6, 2)ke k~ and the rest 
of (ii) follows. Similarly (iii) follows from Lemmas 5.1 and 5.2. [] 

PROPOSITION 5.4. Let m e l_. 

(i) The operators 6(m) centralize the action of  t on V(2). 

(ii) 6(0) acts as scalar multiplication by N on 1/(2). 
(iii) 6(m) annihilates V(2) iff N ¢ 0 and m > 0 or N = 0 and m >~ O. 

Proof  (i) is obvious from TA2 and (ii) and (iii) follow from Lemma 5.1 and 
the definitions of the action of 6(m) on e ~ ® 1. [] 

Figure 1 clarifies the meaning of Propositions 5.3 and 5.4. We think of the 
lattice point (m, k) as representing Xm(k6) if k ¢ O, 6(m) if k = 0. 

In the example N = (216) is taken to be 2. The line shown is given by 
m + k N  = 0. There are two linearly independent central elements in t °, 6(0) 
and Xo(0), corresponding to (0, 0). On V(2) they act (dependently) as 
multiplication by N and i respectively. 

PROPOSITION 5.5. (i) The kernel of  the representation of  t on V(2) is 

precisely the span of  the elements X,,(k6), m + k N  > O, 6(m), m > O, and 3(0) if  

N = 0 .  
(ii) The kernel o f  the representation of  t on V(F) is the linear span o f  the 

elements 6(m), m > O. 

Proof. The elements of t~ operate with degree ( - m ,  e) on V(2). Thus the 
kernel % of t on V(2) is generated by its homogeneous elements. 

Now for any e e'cA the operators X,(+_ e) generate an affine Lie algebra 
that is faithfully represented on the subspace eX+Z~ ® S(Zk<O Ce(k)). In fact 

k 

6(i) ° 6(/2 ) / 
' ' @ 1 )  

Fig. 1. 
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this is the Frenkel -Kac  construction of the level 1 representations of affine 
A] ~). Thus, in particular the operators X,(_+c¢) are faithfully represented. 
Hence cx = 22 t, ka and, by the now standard argument, c~ is central. The result 
follows from Proposition 5.3 and 5.4. [] 

We define C(2) to be the algebra of endomorphisms of V(2) generated by 
the operators 6(m), m ~ Z < o, and z k, k e Z. The subalgebra D of C(2) generated 
by the 6(m)'s is in fact a symmetric algebra 

since the action of S(a_) is faithful on V(2). The zk, k e Z, generate an algebra 
C[z, r -1 ]  isomorphic to the group algebra of the infinite cyclic group (z>. 

LEMMA 5.6. The map 

C[z, z -  1] @ c  D --+ C(2) 

f ®g~--~ fg 

is an isomorphism of associative algebras. In particular, C(2) is an integral 
domain. 

Proof The isomorphism is obvious by looking at the actions of the r* and 
6( -m)  on V(2). []  

and let S :=  S(d ) be the symmetric Let a_ := Zk<OZ~QCcc(k) c a_ 
algebra on d_. Then 

(5.3) S(a_) DS ~- D @ c  

(5.4) V(2) = e x+Q ~)c  S(a_) 

=e ;`+~+z6 ® DS 

=C[z,  z-lJD(e ;~+0~ ® S) 

= C(2)(e;,+ 0 ® g). 

P R O P O S I T I O N  5.7. V(2) is a free C(2)-module with basis {e ;" +~ ® si} where 
runs over Q and (sl} is any basis of S. 

Proof 

J (~) ,~+~ ,~)je,~+a+j6 d(a).~ "g dij  (e Q si) = ~ ~((~, (~ --ij -i .  
i,j,~ i,j,6: 

This is 0 if and only if Z i d!~.l.~. = 0 for all ~ and j and then d(@ = 0 from the ~t3 ~l tJ 
isomorphism of (5.3). [] 
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Consider the space L~:= e a+~ @ c S .  This is a module  for the affine Lie 
algebra g ~  generated by the operators  X,(&), & e 0. Since ¢ acts as 1 it is a 
level 1 representation. There is a unique it e 16 ( = the weight lattice of (~) such 
that  ( / t l~ i )=  (21~i), i =  1 . . . .  , I. F rom the point  of view of g ~  the 
representat ion on Lz is indistinguishable from the s tandard vertex opera tor  
representat ion of g ~  on the Fock space e ~+~ ® S. But we know by the 
F r e n k e l - K a c  theory [2] that this is an irreducible level 1 representat ion of 

It can be identified in the following way. Recall that the fundamental  
weights cb 1 . . . . .  (b l of 16 are defined by (cbl] hj) = ~Sij, j = t, . . . ,  I. There are 
exactly 116/(~1 - 1 of these (b i for which (cbil Z} = 1 n~ h~) = 1, and together with 
d~o := 0 they form a complete set of representatives of t6/0. For  each of these 
(including cbo) let co~ be the unique linear functional on Zzg_ 1 Ch~ + C~ such 
that  (eoiLhj)= (~bgLhj), j = 1 . . . .  , l, and (09~[¢)= 1. The coset /t + 0 = 
~bg + 0 for exactly one of the special cbg. Then e ~+~ ® S is isomorphic to the 
irreducible highest weight module  L(~o~). Indeed L(co~) is the only irreducible 
module  of level 1 which has weights whose restriction to [1 is in the class 

P R O P O S I T I O N  5.8. (i) For every subspace E of  C()L), E ' L a  is a g(A) 
submodule of.~..V(2). Every g(A)-submodule o f  V(2) arises in this way. 

(ii) The g(A)-module E.  Lz is a t-submodule if and only if  E if an ideal o f  C()O. 
Proof. (i) Let  M be a g(A~-submodule of V(2). Let E := {e e C(2) I ex E M for 

some xeLx\{0}} .  Since U(g(A))" ex = e ' g ( g ( A ) ) ' x  = e. L~ we see that E is a 
subspace of C(2) and E . L ~  ~ M.  

Let {e~}~ be a basis of E over C and {el}g~j an extension of it to a basis for 
C(2). Suppose, if possible, that  y = F,i~ r e~x~ ~ M \ ( E "  Lz) where the x~ e Lx and 
assume that  K is minimal for such y. Fix k E K \ I .  Evidently there is a j e K ,  

j ~ k. Suppose that  xj and Xk are linearly independent.  Since Lz is an 
. . . .  ~ . z ~  ,'>.. 
Irreducible highest weight module  for g(A), the centrahzer of g ~ n  Endc (Lx) 
is C. By the Jacobson density theorem [J] there is a ue  U(g(A)) such that  
u. Xk = Xk, U' Xj = 0. Then u'  y = Z e~" u- xl ~ M contradicts the choice of y. 
Thus we must  have xi = C~Xk, some c i s C ,  for all i e K .  Then y = (Zcie~)'Xk 
from which Zi~Kcie~eE and K c I ;  contradiction. This proves that 
M = E . L  a. 

(ii) Let the g ~ - s u b m o d u l e  E- L a be a t-module. Then C(;t)E. La c E.  La. 

In view of Proposi t ion 5.7, C(2)E ~ E so E is an ideal. Conversely, if E is an 
ideal then E- Lx is closed under the action of all the operators  X,(&), & • (~ and 
all the operators  6(k), k • ~. Now since (&16) = 0 

x (a ,  z)X(k,~, z) = X(a + k,~, z) 
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from which we have the very interest ing ident i ty  

(5.5) Z x.(&)xm(ks) = xr(a + kS). 
n + m = r  

Al though  the lef t -hand side is an infinite sum, for any  fixed element  of V(2) 

only finitely m a n y  terms can act non- t r iv ia l ly  since the ope ra to r s  X,,(/~) kill 

any  e lement  for m >> 0. N o w  

X(kS,  z) = exp T_(kS, z)ek~zk~°) exp T+(kS, z) 

and evident ly  all the opera to r s  involved stabil ize E . L ~ .  Thus we conclude 

from (5.5) that  X , ( h  + kS) stabil izes E . L ~  for all n, k. [ ]  

P R O P O S I T I O N  5.9. (i) V(F) = • V(2) where the sum runs over a complete 

set o f  representatives o f  F/Q. 

(ii) For all 2, V(2) is an indecomposable t-module. 

Proof  (i) is obvious.  

(ii) Suppose  that  V(2) = M1 • M2 for some 2 e F  where M I  and M 2 are 

submodules .  Then M i = E I ' L x  for some ideal Ei of C(2). But then 

E1E 2 . L  x c M1 c~ M z  = (0) so, by  P ropos i t i on  5.7, E I E  2 = 0. By L e m m a  5.6, 

E 1 = 0 or  E 2 = 0. [ ]  
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Added in proof. (1) Recently,  we have become aware  of Y a m a d a ' s  paper  [16] 

in which a vertex represen ta t ion  of a central  quot ien t  of t is realized. 

(2) In a fo r thcoming  paper ,  we [S. E. R. and  R. V. M.] show tha t  the results 

of this paper  have a na tu ra l  genera l iza t ion  to the universal  centra l  extension 
t[.] of C [ t  +1 . . . .  , t + l ] .  
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