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In honor of J. Tits on the occasion of his sixtieth birthday 

ABSTRACT. Affine polar spaces are polar spaces from which a hyperplane (that is a proper 
subspace meeting every line of the space) has been removed. These spaces are of interest as they 
constitute quite natural examples of 'locally polar spaces'. A characterization of affine polar 
spaces (of rank at least 3) is given as locally polar spaces whose planes are affine. Moreover, the 
affine polar spaces are fully classified in the sense that all hyperplanes of the fully classified polar 
spaces (of rank at least 3) are determined. 

O. INTRODUCTION 

In 1959, Veldkamp [9] initiated the synthetic study of  geometries induced on 

the set of absolute points, lines, planes, etc. with respect to a polarity, and 

named the subject polar  geometry. After subsequent work of  Tits [7], 

Buekenhout  and Shult [2] and Buekenhout  and Sprague [3] a somewhat  

larger class of point, line geometries emerged which could be characterized by 

the beautiful axiom 

I f  p is a point and L a line, then the set of points incident with L and 
collinear with p is either a singleton or the set of all points incident 

with L, 

which we shall quote as the 'one or  all' axiom. An incidence system (P, ~ )  [-i.e. 

a pair consisting of a set P (of points) and set ~q~ (of lines) together with a 

relation between them, called incidence, such that  each line is incident with at 

least two points]  is called a polar space if the 'one or all' axiom is satisfied. An 

incidence system is called nondegenerate if no point  is collinear with all 

others, and it is called singular if any two of its points are collinear. If  X is a 

subset of  the point  set P of the incidence system (P, ~ )  and L ~ ~q~, we denote 
by X(L) the set of points in X incident to L, and by ~q~(X) the set of all lines in 

incident to at least two points of X. Thus, 5¢(X) -- { L e S I  IX(L)] > 1}. 
Restricting incidence of  (P, ~#), we can regard (X, 5°(X)) as an incidence 

system. If  each point  incident to a line in ~ ( X )  belongs to X, we say that  X 
is a subspace of (P, 5(). A subspace of a polar space is again a polar space. 
The singular rank of an incidence system (P, ~o) is the maximal number  n 
(possibly oo) for which there exists a chain of distinct subspaces 
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¢ X 0 c X~ c ... c X,  such that (Xi,~(Xg)) is singular for each i 
(0 ~< i ~< n), with the understanding that n = - 1 if X = ~ .  The rank of a 
polar space (P, 2,¢) is the number n + 1 where n is its singular rank. By 
definition, this number is 0 if P = ~Z~, and 1 if P ~ ~ but 5e = ~ .  The main 
characterization results hinted to above imply that if (P, £#) is a nondegen- 
crate polar space of finite (singular) rank/> 3, then it is one of a known list of 
examples (cf. Buekenhout and Sprague [3]). In this paper we shall limit 
ourselves to the situation in which all lines are thick (i.e. are incident to at 
least three points); the list of 'thick' examples can be found in Tits [7]. (See 
also Section 5 below.) 

One of the main tools in Veldkamp's original approach is the notion of a 
hyperplane, a proper subspace with the property that every line is incident to 
(at least) one of its points; it did not recur in the subsequent papers quoted 
above. It is the goal of this paper to study the hyperplanes B of nondegenerate 
polar spaces (P, ~ )  of finite rank ~> 3 whose lines are thick, as well as to 
synthetically describe the incidence systems (A, Y(A)) induced on their 
complements A = P\B. 

Section 2 gives some properties of these hyperplane complements. The 
interest in these 'aNne polar spaces' (A ~(A)) arose from the abundance of 
properties analogous to those of the usual anne  spaces, i.e. the geometries 
induced on the complements of hyperplanes in projective spaces. Notably, the 
fact that (classical) affine spaces Q are locally projective spaces (in the sense 
that, for each point a e Q, the incidence system whose points are the lines of Q 
on a and whose lines are the affine planes on a is a projective space), 
corresponds to the property of (A, ~(A)) being a locally polar space. This 
draws attention to the question whether all spaces that are locally polar can 
be classified. The analogous question for projective spaces has given rise to 
various characterizations (see, e.g., Teirlinck [6]). Adopting a stronger notion 
of locally polar spaces (P, Se), namely that x ± rather than 5¢x:= 
{L ~ ~qo ] x e L}, carry the structure of a polar space for each xe P, Johnson 
and Shult [5]\have obtained a satisfactory characterization without any 
assumptions on'~ank, thickness of lines, or degeneracy. (For a review of other 
results in this direction, see [loc. cit.].) In Section 3, we characterize affine 
polar spaces by an axiom system in which the locally polar space axiom is 
prominent (cf. 3.1.iii). Some of the proofs involved are based on ideas of J. I. 
Hall as displayed in the characterization of 'locally cotriangular graphs' of 
Hall and Shult [4]. In the remainder of Section 3, properties are derived from 
this axiom system, which alleviate the proof, to be found in Section 4, that the 
system of Section 3 is indeed a characterizing axiom system. 

In view of the classification of nondegenerate polar spaces of rank at least 3 
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(due to Veldkamp [9] and Tits [7]) the classification of affine polar spaces 

comes down to the determination of all hyperplanes in well-known polar 

spaces. This determination is carried out in the last section (Section 5). 

1. H Y P E R P L A N E S  

In this section, (P, A °) is a polar space all of whose lines are thick. I f X  _ P, we 
write X ± for the subset P of points collinear to each point of X, and 
x ± = { x }  ± if xEP.  Furthermore, ( X )  denotes the subspace of (P,L~ v) 

generated by X. (It exists since the intersection of an arbitrary collection of 

subspaces is again a subspace.) If X is a subspace, then so is X c~ X ±. The 
latter is called the radical of X, denoted by rad X. A subspace X is called 
nondegenerate if (X, ~(X))  is nondegenerate, i.e. rad X := X c~ X ± = ~ ,  and 
degenerate otherwise. The quotient space of X with respect to rad X is the 
incidence system whose points (resp. lines) are the subspaces ( t ad  P w {x}) 

for x e P \ r ad  P (resp. ( rad  P u {z [ z e I}) for I e ~ such that no point of rad P 
is incident with l) and in which incidence is symmetrized containment. The 
quotient space of P with respect to rad P is a nondegenerate polar space. The 
rank of this quotient space will be referred to as the nonsingular rank of 
(P, ~ ) .  We recall that a hyperplane B of (P, ~e) is a proper subspace such that 
B(L) v~ :2~ for each line L s 5~. 

1.1. LEMMA. Let B be a hyperplane of (P, 5Y). 

(i) I f  (P, ~ )  has nonsinyular rank at least 2, then B is a maximal proper 
subspace and the collinearity 9raph induced on P \B  is connected of 
diameter at most 3. 

(ii) I f  X is a subspace not contained in B, then X ~ B is a hyperplane of 
(X, ~(X)).  

Proof (i) Take x, y E P\B. We show that y ~ (B, x)  (the subspace generated 
by B and x). If x and y are collinear, say both on the line L ~ ,  then 
y ~ (x, B(L)) and we are done. 

Assume that x and y are noncollinear. If t ~ {x, y}±\B, then applying the 

above argument to x and t, and once more to t and y (instead of x and y), we 

are done, again. 
Thus we remain with the case where {x, y}" _ B. Since the nonsingular 

rank of (P,~L#) is at least 2, there are noncollinear v, wE{x,y} ± (of. 
Buekenhout and Shult [2]). Let M be a line on x and v and N a line on w and 
y. Lines are thick, so there is a point u on M distinct from x and v. By the 'one 
or all' axiom, there must be a point z on N collinear with u. This point is 
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distinct f rom y and w. N o w  x, u, z, y is a pa th  in P \ B  and we can finish by 
applying the first pa rag raph  three times. The  conclusion is that  y • (B, x} for 
each y • P\B,  whence (B,  x} = P. 

(ii) Is obvious  f rom the definition. [ ]  

1.2. R E M A R K .  In (i), the bound  on the nonsingular  rank  is necessary, the 

subspace B = L1 being a counterexample  in the polar  space (Q, {L1, L2, L3}) 

where L~, LE, L3 are lines meet ing in a fixed point  of  Q = L 1 u L z u L 3. 
The l emma  implies that,  if P is nondegenerate ,  B can have at mos t  one deep 

point, i.e. a point  incident with no line of  ~(P\B) ,  as we shall see f rom the 
corol lary  below. Clearly, for each point  x e P, the subspace x ± is a hyperplane  
with deep point  x. 

1.3. C O R O L L A R Y .  Assume B is a hyperplane of a polar space (P, Za) of 
nonsingular rank at least 2. 

(i) I f  B is degenerate, then B = b ± for some b e r a d  B \ r a d  P; moreover, 

rad B = ( r a d  P, b} is a point of the quotient space of (P, ~Lf) with respect 
to rad P. 

(ii) Any deep point of B is in rad B \ r a d  P; in particular, if (P, ~o) is 
nondegenerate, there is at most one deep point in B. 

(iii) The nonsingular rank of B is at least one less than the nonsingular rank 

of V. 

Proof. (i) Suppose  b e rad B. Then B __ b I. But b ± is a hyperplane,  so by (i) 
of  the above  lemma,  B = b ±. N o w  b ~ r a d P  as B is a proper  subspace 
of (P, =L~a). Moreover ,  B = b ± contains  rad P and the image of B in the 
quot ient  space of (P, ~e) with respect  to rad P is again a hyperplane  of the 
quot ient  space. Thus,  for the p roof  of  the second assertion of (i), we m a y  
assume (P, LP) is nondegenerate .  But then b Z ± =  {b}, whence rad B = 
B c~ b ±l  = {b}. 

(ii) Suppose  d e B is incident with no line of  ~(P\B) .  Then  by thickness 
every line on d must  have ano ther  point  in B, and so all of  its points  lie in B. 
Thus  d -t c_ B. By maximal i ty  of  d ± (cf. L e m m a  1.1(i)) and B ~ P, we obta in  
B = d ±, and we can finish as before. 

(iii) Is obvious.  [ ]  

We now recall the const ruct ion of a linear space - i.e. a space in which 
every pair  of  points  lie on a unique line - on the set ~ of all hyperplanes  of  
(p, ~c~a) in which (P, 5e) can be embedded.  The  basic idea is caught  in the 
following lemma.  
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1.4. L E M M A .  Suppose (P, ~ )  is a polar space of nonsingular rank >73, and 
B1, B2 are distinct hyperplanes. 

(i) I f  x ~ B I \ B 2 ,  then B 1 = ( x , B  1 (~B2>. 

(ii) I f  p ~ P\(B1 n B2) , then there is at most one hyperplane containing p and 

B 1 ( 3 B  2. 

Proof. Observe  that  BI and B 2 a r e  polar  spaces. 

(i) In view of Corol lary  1.3(iii) and L e m m a  1.1(i), B1 n B 2 is a maximal  
subspace of B r  Hence (i). 

(ii) Suppose p ~ P\(B 1 n B2) and B is a hyperplane  containing B 1 n B 2 and 
p. By (i), we may  assume p~  Bi for i = 1, 2. Then B 1 ~ Bx m B ~_ B 1 n B2, and 

so, by (i), we must  have B1 c~ B = B 1 n B 2. Also, (i) applied to B1 and B gives 
13 = <131 c~ B, p>. We conclude that  B = <B 1 n B2,p> , whence B is the unique 

hyperp lane  containing B1 c~ B 2 and p. [ ]  

This l emma  implies that  the pair  (iF, 5 e) where 5P is the collection of all 

intersections B1 n B 2 with Ba, B 2 E J t  °, B 1 5 ~ B2, becomes a linear incidence 
system if incidence of B e J g  and S e 5 e is defined by S _~ B. This incidence 
system will be called the Veldkamp space of (19, 2,¢). 

1.5. L E M M A .  Suppose (19, ~ )  is a nonsingular polar space of rank at least 3. 
Then the map x ~ x ± from P to ~ is an injective morphism from (19, <LP) to 
(Jr, 5 ¢) mapping lines onto lines. 

Proof. In  view of Corol lary  1.3 the m a p  is injective. Now,  let L s S e ,  take 
two points  x, y incident with L, and let B be a hyperplane  containing x ~ n y±. 
We have to show B = z ± for some point  z of the line L. By L e m m a  1.1 there 
exists b ~ Bk{x, y}±. Then, by the 'one or all' axiom, there is a unique point  
z ~ b ± on L. According to the previous l emma there is at mos t  one hyperplane  
containing b and {x, y}±. But z ± and B are such hyperplanes.  Therefore 
B = z ± as required. [ ]  

2. H Y P E R P L A N E  C O M P L E M E N T S  

T h r o u g h o u t  this section, (19, L~') is a non-degenerate  polar  space all of whose 
lines are thick. Since there is at  most  one line incident with any two points  (cf. 
Buekenhout  and Shult [2]), a line is uniquely determined by the set of all 
points  incident to it. We shall thus frequently view member s  of ~o as subsets 
of P. Also, if x, y are collinear and distinct, we shall write xy to denote  the line 
containing them. 

Let B be a hyperplane  of (19, .LP) and set A = 19\B. We m a y  define a derived 
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incidence system (A, 50(A)) where incidence is that of (P, 50). We wish to 
examine some of the properties of (A, 50(A)) - enough to show that (A, 50(A)) 
carries with it sufficient information to recover (P, 50). More precisely we 
shall show that if (A, 50(A)) is embedded in a second polar space so that its 
complement there is also a hyperplane, then the embedding extends to an 

isomorphism of (P, 50) onto the second polar space. 
First observe that, for each line L ~ 50(A), the set P(L)\A(L) is a singleton. If 

(P, 50) has rank at least 3, each line of (A, 50(A)) lies on at least two affine 
planes. Any three pairwise coil±near points of (A, 50(A)) lie on an affine plane. 
This implies (A, 50(A)) is a gamma space - i.e. a space in which, for every point 
p and line L, none, one or all points of L are coil±near with p. 

For  each Le50(A), set A(L)= {aeA]a±cnA(L) = ~ or A(L)}, where A(L) 
denotes the set of all points in A incident to L. We define an equivalence 

relation on 50(A) as follows: L 1 is parallel to L z if and only if A(Lx) = A(L2). 
We denote this relation by L1 II L2. The symbol [L] will denote the 
equivalence class of all lines in 50(A) parallel to L. 

2.1. LEMMA. Two lines of 50(A) are parallel if and only if their intersections 
with B coincide. Moreover, if L ~ 50(A), each point of A(L) lies on a unique 

member of ILl.  Thus A(L) is the disjoint union of the lines of ILl,  regarded as 
point sets of A. 

Proof Suppose x ~ A(L). Then x is coil±near with the unique point b of 
B incident with L. Set M = xb. Then M ~ 50(A), as x~ A. Now, A(L)=  
{y e A I y _1_ b} = A(M). Thus M e [L] .  This proves the second assertion. 

If N e 50(A) is a line on x distinct from M, it meets B in a point c ~ b so the 
choice of a point y ~ b ± r~ A\ (x  ± u c ±) (possible since lines are thick and (P, 5 °) 
is nondegenerate!) leads to y • A(M)\A(N). Hence M is the unique member of 
[-L] on x. This establishes one implication in the first assertion. The other 
implication is a direct consequence of the 'one or all' property of polar 
spaces. []  

Let 50(A)/[] denote the collection of parallel classes ILl  on 50(A). A direct 
consequence of the previous lemma is 

2.2. COROLLARY. There is a 1-1 correspondence f : B\rad B ~ 50(A)/11, 
which takes each point b e B \ r a d B  to the parallel class f (b ) :=  
{L e 50(A) [ b e B(L)} = [M], where M e 50(A) with b e B(M). [] 

2.3. LEMMA. Assume (P, 50) has rank 3 or more. I f  L e  50(B) does not contain 
a point of rad B, then there exists an affine plane rc in A such that the restriction 
f IL:L  ~ {[M][Me50(r0}  o f f  as given in the previous corollary is a 1-1 
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correspondence. Conversely, for each affine plane zc in A, the elements f -  l([-M]) 
for M E 5f(~) comprise a line of B not containing a point of rad B. 

Proof First assume L ~ ~q~(B) and B(L) c~ rad B = ~ .  Since (P, ~ )  has rank 
at least 3, there exists a projective plane T on L such that T ~ B (to see this, 
use Corollary 1.3(ii) to find x ~ L\ rad  B, y ~ x-L\B, and use that the rank of the 
quotient space of x ± by its radical, denoted by Px, has rank ~> 2 to find 
z ~ {x, y}±\B such that xz and L span a singular subspace of Px). Then (T\B, 
LP(T\B)) is an affine plane zc whose parallel classes are (via f )  in 1-1 
correspondence with the points of the line T c~ B ~ L,e(B), the so-called 'line at 
infinity'. Thus if L~ 5~(z~) and b is the 'point at infinity' in B(L), then 

f(b) = [L] by the previous corollary. 
Conversely if ~ is an affine plane in A then we see that the union T of P(L) 

over all L ~ LP(70 is a projective plane (since it is clearly generated by any two 
of the lines L). It follows that { f -  ~[L] ] L c  LP(7~)} coincides with the line B(T). 
This line clearly contains no point of rad B since no point of B(T) is in tad B. 

[] 

2.4. LEMMA. Again assume (P, ~o) has rank at least 3. Then two points bl 
and b2 of B\rad B are collinear by a line disjoint from rad B if and only if there 
exist lines L, M ~<LP(A) such that A(L) ~_ A(M), L~ f(bx), and M ~ f(b2). 

Proof. Suppose first that bl and b 2 are collinear by a line R in ~(B) 
disjoint from rad B. Then by the previous lemma, there exists an affine plane 

containing two lines L and M which are not parallel and for which 
f ( b x )  = [L-] and f(b2) = [M]. It follows that A(L) ~_ A(M). 

Conversely, assume lines L and M exist with L~f(bO,  M~f(b2),  and 
A(L) ~_ A(M). Then for each point p of A lying in L, we have p± • A(M) = ~J 
or A(M). In either case p is collinear with the point b2 comprising B(M). Thus 
A(L) ~_ b~. Since L is thick, [A(L)[ ~> 2, so b~ contains the point b~ of B(L). 
Thus b2 is collinear with b~. Finally if the line R on b~ and b2 contains a deep 
point of B, no point of A could be collinear with both b~ and b2. But we have 
just seen that the points of A(L) are collinear with both b~ and b2. Thus R 
contains no point of rad B. [] 

For L, M ~ ~¢(A), set ILl  ~ [M] if there are L', M'~ ~(A) with L [I L', 
M [I M', and (L', M' )  a projective plane in (P, ~) .  By the above lemma, we 
have f (b 0 ~ f(b2) if and only if there are lines L ~f(bl)  and M Ef(b2) such 
that A(L) ~_ A(M). 

Let = be the relation on the set of parallel classes of ~C~(A) defined by 
[L] = [M] if and only if A(L) c~ A(M) = ~ .  

2.5. LEMMA. Suppose, for two lines L., M of ~(A), we have ILl = [M]. 
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Then there is a unique partition A = UN~xA(N) with L, M s X  ~_ ~ .  The 
points f I([L]) and f - a ( [ M ] )  of B are collinear by a line R and the set 
{ f - 1 ( I N ] )  I S 6 X} coincides with B(R)\rad B. Moreover, if (P, 5f) has rank 3 
or more, then rad B ~_ B(R). 

Proof Suppose A(L)c~ A(M)=  ~ for L, M sSf (A)  and set B(L)- -{b} ,  
B(M) = {c}. Then each point of A(L) is collinear with exactly one point of 
A(M) and vice versa, forcing a 1-1 correspondence A(L) -* A(M) defined by 
collinearity. Since (P, 5~) is a polar space, b ¢ c and b and c are a collinear 
pair of points. Let R be the line in 5~ on b and c. Clearly R e 5¢(B). Suppose a 
point x in A were collinear with two points of R. Then x s b I c~ c ± and as 

f(b) = [L] and f(c) = [M] this means x e A(L) ~ A(M), a contradiction. 
On the other hand, the polar space property forces x ± ~  B ( R ) ¢  f25 for 

x s A and so we see that each point of A is collinear with exactly one point of 

B(R)\rad B. Since collinearity of x e A with r s B(R)\rad B means x s A(f(r)), 

we have a partition 

(2.1) A = 0 A(f(r)). 
rsB(R)\rad(B) 

If(P, £,e) has rank at least 3, then by the proof  of Lemma 1.5, R must contain a 

deep point of B. It remains to show that this partition of A is the unique such 
one containing A(L) and A(M) as components.  Suppose instead there were a 

second partition 

A = A(L) ~ A(M) u 0 A(N). 

Since this partition is assumed to differ from that in (2.1), there exists 
at least one line N e  Y such that A(N) is not one of the components of 
(2.1). Set {y} = f - l ( [ N ] ) =  N ~ B ,  yCR.  As argued for b and c alone, 
A(N) c~ A(L) = ~ implies b is collinear with y via some line R' distinct from R. 
But similarly A(N) ca A(M) = ~ implies y collinear with c whence R' _~ R l, so 
(R, R ' )  is a plane. This means (P, ~ )  has rank at least 3. Then by the above, 

R' and R both contain a deep point. But by Corollary 1.3, there is only one 
deep point. Thus R c~ R' ~_ {b, d} with b ~ d. This implies (P, ~o) is not linear, 
defying the nondegeneracy of (P, 2,q) by well-known arguments. [] 

As an immediate consequence, we have 

2.6. COROLLARY.  Suppose (P, ~,q~) has rank at least 3 or rad B ~ ffS. Then 
the reflexive closure of =-- is an equivalence relation on £q~(A)/]l. l f  X is an - -  
class on ~(A)/I[ of size at least 2, then there is a line R e • ( B )  with 

B(R) = rad B w { f -  1(IN]) I IN]  e X}. 
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2.7. PROPOSITION.  For i = 1,2, let (Pi, 5f i) be a thick nondegenerate polar 
space of rank at least 2. Let Bi be a hyperplane of (Pi, 5~i). Set Ai = PikBi. 
Suppose qS:(A1,581(A1))~ (A2, ~2(A2)) is an isomorphism of incidence sys- 
tems. Then 0 can be uniquely extended to an isomorphism 

~b :(P1, ~°1) ~ (Pc, 5F2). 

Proof. For L e ~°~(A~), let [L] be the parallel class in (A~, ~i(A~)) containing 
L -  i.e. all lines L' of L~ai(A~) such that A(L') -- A(L). Then, for each i = 1, 2, 
there are bijective mappings fi: B~\rad Bi ~ ~(Ai)/H from the set of non- 
deep points of Bi to the set of parallel classes on ~(A~), i = 1, 2. 

Obviously 4', being an isomorphism, maps parallel classes on ~1(A1) to 
parallel classes on ~/(A2), and commutes with the 'functor' A: ~(A~) 
~(Ai), the power set of A~, i = 1, 2. Since the property of (Pi, ~a) having rank 
at least 3 can be recognized in (A1, ~1(A1)) by the property that each line lies 
in an affine plane, it follows that 

(2.2) (P1, ~ l )  has rank at least 3 if and only if (P2, ~'LP2) does. 

If (PI, ~ )  is a generalized quadrangle, then the presence of a deep point in 
B1 can be recognized by the fact that the reflexive closure of the relation = 
(defined for (P~, ~ )  as above for (P, ~) )  is an equivalence relation on the set 
of parallel classes LPl(A1)/[[. 

On the other hand, if (P1, ~1)  has rank at least 3, the presence of a deep 
point in B 1 is indicated by the appearance of two lines L, M in L,e~(A1) with 
[L3 ~ [M]. Thus 

(2.3) B 1 has a (unique) deep point if and only if B 2 does. 

We now extend q~:A 1 --* A 2 t o  ( ~ : P 1  ~ P2 as follows. First @ restricted to 
A 1 is q~. If beBlkrad B 1 is a nondeep point of B1, set ~(b)=  f21([(a(Lb)]) 
where L b is any representative of the parallel class fl(b). Put another way, 
since A is 'functional', there is an induced map ~ : ~l(A1)/ll ~5~'2(A2)/[ I. Then 
~(b) = fz- 1. ~. fl(b). Finally, if dl is a deep point of B l, then dl is unique via 
Corollary 1.3 and, by (2.3), B E has a unique deep point d2, and we write 

(~(d,) = d2. 
From the above it is clear that, if there is an extension of q~ as stated, it must 

coincide with ~. Thus uniqueness follows and it remains to show that 
: P1 ~ P2 induces a mapping ~ : -qa 1 ~ ~ 2  via incidence. We already have 

that ~ : ~L~I(AI) ~ ~2(A2) is a bijective mapping-preserving incidence since 
was an isomorphism (A1, ~l(A1)) ~ (A2, ~2(A2)). 

Suppose, first, (P1, ~1)  is a generalized quadrangle and B~ has a deep point 
d~. Then the reflexive closure of the relation -~ on ~al(A1) is an equivalence 
relation, and so the reflexive closure of _~ on ~qa2(A2)/I I is also an equivalence 
relation. Since each line of &a~(B~) is formed by taking di together with 
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fl I([L]) where [L] ranges over a fixed =-class on 50i(A~)/ll, we see (p induces 
a bijection 50~(B)---> 502(B) and we are done. Next, suppose (P1,500 and 
(P2, 502) are still both generalized quadrangles but the reflexive closure of = 
is not an equivalence relation on 50~(Ai)/[I. Let R ~ 501(B) be a line containing 
no deep point of B 1. Then still it is true that whenever b, c ~ R we have 
A(L) n A(M) = gO L, M lines with f l -  I([L]) = b and f l -  I([M]) = c. Thus a 
unique partition results: 

A, = 0 A(fi(r)). 
rER 

Then 

(2.4) A2 = 4(A0 = 0 ¢(A(A(r)) = 0 = 0 a(f2($(r)) 
reR rcR reR 

is a partition on A 2 containing A(f2(~(b)) ) and A(f2(~(c)) ) as components. By 
Lemma 2.5, ~(b) and ~(c) are collinear by a line R 2 in 502(B) and there is a 
partition 

(2.5) A 2 = Q) A(f2(r')) 
r" ~R2 

also containing A(f2(~(b))) and A(A(~(c))) as components. But by Lemma 2.5 
such a partition is unique subject to containing these two components and so 
the right side of(2.5) is the same partition as the one in the expression after the 
last equal sign of (2.4). This means ~(R) = R2. 

Now assume (PI, 500 has rank at least 3. Then the reflexive closure of - is 
an equivalence relation whose classes of size at least 2 represent lines in 
501(B~) on a deep point dl of B r Then, just as in the first part of the proof 
when (Px, 501) was a generalized quadrangle, ~b takes the point-shadows of 
lines of 501(B 0 lying on a deep point of B1 to the point-shadows of lines of 
..~2(B2) lying on a deep point of . .~2(B2)-i.e. ~ induces a 1-1 mapping of all 
lines on dl in 501 to all lines of 502 on a deep point d 2. 

There remain the lines of 501(B1) contained in B\ rad  B. Since (P1, 5°1) has 
rank at least 3, such a line R has as its points the set {fl- I([L]) [ L ~ 50(rc)} for 
some affine plane zc of (Ax, 501(A1) ) (cf. Lemma 2.3). Then ~ ( f l - l ( [L ] ) )=  
f2- l([~bL]), so t~(R) = {fz- 1([L2]) I L2 ~ 50(q~z)} where q~r~ is an affine plane of 
(A2, 502(A2)). By Lemma 2.3 once more, f 2  l([~b(L)]), q~(L) E q~(~z), now ranges 
over all points of a line R z of :502(Bz).not containing a deep point of B 2. This 
means ~(R) = R 2. As  (P2, ,.~2) has rank 3, this procedure is reversible and so 

induces a bijective mapping of the lines o fB 1 not containing a deep point to 
the lines of B E not containing a deep point. It is now clear the ~ induces a 
complete bijective mapping 50x ~ 502 via point shadows and so ~ is an 
i s o m o r p h i s m  (P1,501)  ~ (P2, 502) extending ~b. []  
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3. A F F I N E  POLAR SPACES 

We consider here the following axioms concerning an incidence system 
(P, 5('): 

(3.1) The incidence system (P, ~ )  is a connected gamma space supplied 

with a nonempty collection 17 of subspaces (called affine planes) such 
that 
(3.15) any two collinear points x, y lie on a unique line (thus, ~ can 

be viewed as a collection of subsets of P), denoted by xy; any 
three pairwise collinear points x, y, z not on a line lie in a 
unique member  of H; 

(3.1.ii) for each 1r~17, the incidence system (re, ~(~)) is an affine 
plane; 

(3.1.iii) if p ~ P and rce 17, then p ± n  rc is either empty, is the set of 
points on a line or coincides with the set of all points in re; 

(3.1.iv) x ± _ y± implies x = y for any two points x and y. 

The introduction of rI is not needed if all lines have length > 2. For  then we 
can take I I  to be the set of all singular subspaces of singular rank 2. Condition 
(3.1.ii) means that (P, 5e) is locally a polar space. By (3.1.iv) the polar space Px 
is nondegenerate for each x e P. 

Any line lies in a member  of 17. For, if L ~ 5¢, then by connectedness of the 
incidence system, we may assume there is M e ~ with L n M ~ ~ and a 
plane r~ e I I  with M c r~; invoking (3.1.iii), we see that there is a line M'  
contained in rc n L±; thus, according to (3.1.i), there is a unique member  of 17 
containing (L, M' ) .  

3.1. REMARK. The triple (P, ~ ,  17) satisfying (3.1) is a residually connected 

geometry of points, lines, and planes. This leads to an alternative description 
of the geometry in terms of a diagram: For  incidence systems (P, 5f) with 
finite singular rank n, hypothesis (3.1) is equivalent to the following: 

(3.2) P, L~ °, 17 is the triple of the sets of objects of respective types 0, 1, 2 
of a residually connected geometry F over {0, 1 . . . . .  n} (n ~> 2) such 
that 
(3.2.i) F has diagram 

0 A f  1 2 n - 2  n - I  n 

0 0 O -  . . . .  0 0 0 

(3.2.ii) the residue of an object of type 0 is a building - i.e. a non- 
degenerate polar space of rank n; 

(3.2.iii) the incidence system induced on (P, &o) is a gamma 
space; 
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(3.2.iv) two points lie on at most one line; three collinear points 
not on a line belong to a member  of 11. 

It is straightforward that (3.2) implies (3.1). 
Assume (3.1). We first argue that each point lies on some affine plane 

(member of II) and that each such plane has a fixed universal order q ~> 2 
independent of the plane or the point. Since (P, £~o) is connected and H is not 

empty it suffices to show that if a point x lies on an affine plane of order q and 
y is a point collinear with x then y lies on an affine plane of order q. Thus, 
suppose x lies on an a n n e  plane n. If y ~ ~ we are done, so suppose y ~ re. Since 

y± n ~ contains x, by (3.1.iii), y± n rc is a line or is re. In any event, there is a 
line L in y± n zc lying on x. Then by (3.1.i) (L, y)  lies in an affine plane on y. 

Since L has cardinality q + 1, the order of the new affine plane is q as well. 
Consequently, every point lies on a plane of order q. 

Now consider the sets of lines and of planes on a point p-i.e, the residue 

geometry at p. Thus we regard the lines on p as Points and the planes on p as 
Lines. Then by (3.1.iii), two Points L and M on p are collinear if and only if 
M _ L ± (so, by (3.1.i), (L, M )  lies in an affine plane). Moreover,  i fn is a plane 
on p and L is a line on p with L n ~ = {p} it follows that L ± n ~ is either a line 
on p, or includes all lines on p within r~ - i.e. one or all Points incident with the 
Line ~. Thus the residue geometry at a point obeys the fundamental 'one or 
all' polar space axiom. Moreover, (3.1.iv) implies this residue geometry has no 
radical. Thus by the theorem of Buekenhout and Shult [2], the residue 

geometry is a nondegenerate polar space of rank at least 2, and so is a 
building. Since (P, A °) is a gamma space, the subspaces of the residue 

geometry of a point corresponds to singular 'affine' subspaces (that is, closed 
with respect to taking affine planes on triples of collinear points not on a line) 
whose point residues are projective. Hence, if the singular rank of (P, ~ )  
equals n < o% including singular affine subspaces of rank i (0 ~< i ~< n) as 
objects of our geometry, we obtain a diagram geometry with diagram that of 
(3.2.i). It is clearly residually connected, and all parts of (3.2) hold. 

Note  that if F Satisfies (3.2), the polar space comprising the residue of a 
point has thick lines. This is because for each Line of Res(x) := (~e x, fix) there 
is ~ e II~ such that all lines through x incident with ~ have q + 1 points. Since 
q t> 2, any Line of Res(x) must have at least 1 + q ~> 3 points. Thus all Lines 
of Res(x) are thick. This is important  in applying the results of Section 2. 

For the remainder of this section, we assume that (P, ~ )  satisfies (3.1). We 
shall now derive properties of the affine polar space (P, S ) .  

3.2. LEMMA. For any two points x and y, the polar spaces Res(x) and Res(y) 
are isomorphic. 
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Proof First, assume d(x, y) = 2, that  is x and y are at distance 2. The lines 
on x are of two types: the set 5Ca(X, y) of lines which meet  y± and the set 

~B(x,  y) of lines which do not  meet  yi .  
Similarly, by (3.1.iii), there are two sets of planes on x, the set Ha(X, y) of 

planes meeting y± at a line and the set liB(x, y) of planes which do not  contain 
a point  of y±. N o w  each plane in HA(X , y) meets y± at a line L and carries 

exactly one line on x parallel to L. As 2'A(X, y) is not  empty  (recall 
d(x, y) = 2), this means,  (5~B(X, y), liB(X, y)) is a hyperplane  of the polar  space 

Res(x). Similarly (YB(Y, X), FIB(y, X)) is a hyperplane  of the polar  space Res(y). 
For  every line M in £Pa(X, y), there is a corresponding line q~(M)= 

( M  n y±, y )  in ~A(Y, X). Moreover ,  for each plane rc in liA(X, y), there is a 
corresponding plane qS(Tr) containing (re n y±, y) .  These mappings  preserve 

incidence and have bo th  left and right inverses. Thus we have an 

i somorph ism 

4) (2e A(X, Y), hA(X, y)) --" (~A(Y, X), hA(y, X)). 

Since the polar  spaces Res(x) and Res(y) are bo th  thick nondegenera te  and of 

rank at least 2, by Propos i t ion  2.7, ~b can be extended to an i somorph ism ~: 
Res(x) -~ Res(y). Thus the conclusion of the l emma  holds when x and y are at 

distance 2 f rom one another.  
Next  suppose x and y are collinear, and set L = xy. Since Res(x) is a 

nondegenera te  polar  space of rank at least 2 there is a plane ~ on L. Then 
choose z e n \L.  Again since Res(z) is a nondegenera te  polar  space there is a 
plane ~1 on z not  lying in rc ± and intersecting ~ at the line L' on z parallel to L. 
Then, for any point  weTrl\L',  we have d(w, x) = 2 = d(w, y). Thus,  f rom the 
a rgument  of the previous case, Res(x) - Res(w) ~ Res(y). We see that  if x and 

y are collinear, then Res(x) -~ Res(y). 
Finally, since (P, L~) is connected,  the i somorphism holds for any x, y 

in P. [ ]  

3.3. L E M M A .  The collinearity 9raph of (P, ~ )  has diameter at most 3. l f  x 
and y are at distance 3, all lines on x contain a point at distance 2 from y. 

Proof Assume d(x, y) = 3. Then there exists a point  z collinear with x and 
at distance 2 f rom y. The  lines and planes on z which meet  y± at a point  or line 
respectively, form the incidence system (~a(Z,  y), HA(Z, y)), and complements  
the hyperp lane /~  = (~B(z, y), Hs(z, y)) of Res(z) for which the line L = zx is a 
deep point. By Corol lary  1.3, L is the unique deep point  o f /~  a n d / ~  = (L) ±. 
Thus  ~s(Z, y) is simply the set of all lines on z lying within x ' ,  and every point  
o f /~  distinct f rom L is adjacent  to a line of SeA(Z, y). This means,  that  each 
point  r ¢ x I c~ z I not  on the line Lr  is collinear with a point  of  y"  (since zr lies 
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in a plane with a line of £,eA(z, y) carrying a point  of  y±). Thus  we see that if L 

in Res(x) contains a point  z at distance 2 from y, then the same holds for any 

line M of Res(x) with M ___ L ±. Since Res(x), being a nondegenerate  polar  

space of  rank at least 2, is connected, we see that  every line of Res(x) carries a 

point  at distance 2 from y. It follows that  no pair of  points of  P are at distance 
4, and, since (P, ca) is connected, it has diameter at most  3. [ ]  

3.4. D E F I N I T I O N .  We define an equivalence relation ' lr  on ~ as follows. 
For  each line L in £~0, set 

A(L) = { p E P l p  ± n L  = L or ~ } .  

We write L 1 I[ L 2 if and only if A(L1) = A(L2) and say L 1 is parallel to L2, for 

any two lines L~ and L z of~C~. Manifestly, '[[' is an equivalence relation on G a. 

For  each line L of  ~q¢, we let IL l  be the equivalence class of  ~ containing the 
line L - i.e. the set of all lines parallel to L. 

Note  that if n is a plane, and L 1 and L 2 belong to the same parallel class in 

the ordinary sense of parallelism for an affine plane, then di(L1) -- A(L2), and 
so L~ and L 2 are parallel in the sense of the previous paragraph.  For,  if 

p E A(L1) then by (3.1.iii), p± n n is either empty, or is a line, or  is n. In the first 

and last cases peA(L2). If  p ± n  n = M E &  a, then clearly, as peA(L1),  either 

M = pX n L i = L l or M n L l  = px n L i = ~ . I n a n y c a s e , M i s p a r a l l e l ( i n  

the ordinary sense) to L~ and hence to L2. Thus, in all cases, p ~ A(L2). 

This shows that  'll' contains at least the transitive extension on ~q' of  the 
relation of being parallel lines within an affine plane. In the next two lemmas 
and Corol lary  3.9 it will be seen that parallelism is precisely this extension. 

3.5. L E M M A .  Suppose y E P and L ~ 5f .  Then,  fo r  at least one line L o ~ I L l ,  

the intersection y± n L o is nonempty.  

P r o o f  Let y, L be such that  there is no plane n on L with y± n n ¢ ~Z~. By 
the previous lemma, there is a path y I t ± x with x ~ L. 

Take a plane pl  on tx. As H 1 = y± n p~ contains t but  not  x, it is a line, so 

there exists an affine plane a i containing ( H i ,  y) .  Similarly K 1 = L ± n p~ is a 

line (observe that t('_L ± since otherwise the affine plane containing (t, L )  

defies the hypothesis) and there is nl  ~YI containing (K1, L) .  If  H1 n Ka 
contains a point, say w, then w e nl  n y±, contradict ing the hypothesis. Thus 

H1 ~ K1 = ~ ,  and s o  H 1 I] Ki.  
N o w  choose Xx E K I \ { X } .  Take ti to be the point  o n  H 1 and on the line in 

pl,  th rough xl  parallel to tx,  and take y~ in rr~ such that N~ = yy~ is parallel 

to H~ and t~y~ is parallel to  ty. Denote  by L~ the line in 7c I on x I parallel to L. 

I f x l  ± Yi, then x~ E(t~yl)  ±, so xi  eA(t i  Yl) = A(ty) whence, as xi ± t, we have 
xi  ~(ty)X, and so xi ~y± n n~, a contradiction.  Thus d(xl ,  Yl) = 2. 
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From now on assume that there is no line L 0 tl L with y ;  (n L o ~ ~ .  This 
implies the earlier assumption on L that there is no plane ~ on L with 
y± ca ~ ¢ ~ .  Suppose # is a plane o n  L 1 with # ca y~ ¢ ~ .  Then, as x~ 6#ky~, 
we have that # rn y~ is a line. If this line i sa  parallel of L1, then the affine plane 

on (y l ,  # ca y~) contains a parallel L 0 of L with Yl e Y  ± ca Lo, a contradiction. 
So # ca y]  is a line o f #  meeting L1 in a point, say Zl. Now z~ EA(K 0 = A(N0 
and z 1 ~y~ imply zl ~N~ so z I .L y, again a contradiction. Hence there is no 

plane v on L~ such that y~ ca v # ~ .  We repeat the construction of the 

previous paragraph to get H 2, K2, Nz,  L2 as H l, K 1, Na, L~, this time starting 
from L~, Xl, y~, t~ instead of L, x, y, t. We choose an affine plane P2 on 
(H2, K2)  and t l x  I in such a way that y~ c~ P2 and y± ca Pz are distinct lines. 
(In Res(t0, this simply means that Ha ¢H2~.) Then N 2 IJ H2 II K2 (as before) 
and N~ ~ N~. Therefore, yX ca Nz = {y~}, whence y¢A(N2)  = A(K2). Conse- 
quently, y± ca K2 is a point, and so y± n 7~ z ~ ~ .  But now there is a line 

L3 II L1 [t L in/c 2 with L 3 ca y± # ~ ,  the final contradiction. []  

3.6. COROLLARY.  I f  y6A(L) ,  then y lies on a line of [L]. In other words, 

A(L) is the point-set union of the lines of [L]. 
Proof Suppose L 0 e FL] and L o _~ y±. If y ~ L 0 we are done. Otherwise we 

may form the affine plane on (y,  Lo) and find a parallel of L 0 in y and again 
we are done. So we may assume no line of [L] lies in yl.  But since y ~ A(L), 
this means y~ ca L o = ~ for each L o ~ [L], contrary to the previous lemma. 
Hence the corollary. [] 

3.7. LEMMA. A(L) is a subspace and each point is on a unique line of  [L]. 
Proof Suppose L1, L2~ [L]  and p 6 L  1 ca La. Then, in Res(p), we have 

L~- = L2 ~, so L 1 = L2 by nondegeneracy of Res(p). In view of the above 

corollary, this gives that each point of A(L) lies on a unique line in ILl.  
Suppose x, y ~ A(L) are distinct points of the line M ~ 5~, and let z be a point 

of M. In order to show that A(L) is a subspace, we derive that z belongs to 

A(L). If M ~ ILl  this is obvious, so assume the contrary. Let L 0 be the member  
of [L] containing y. Then (M,  Lo) is a singular subspace generated by three 
points not on a line, so it lies in an affine plane. In this plane, there is a line 

L111 Lo on z. As L 1 E ILl,  we have z ~ A(L). The proof is complete. [ ]  

We see from Corollary 3.6 and Lemma 3.7 that A(L) is the union of disjoint 
lines from ILl.  Moreover, if L~ and Lz are two distinct lines of [L], either 

± L~- ca L2 = ~ or L 1 _~ L~. In the latter case L~ and L2 are parallel lines within 
the affine plane containing ( L  1, Lz). For, if L 1 _~ Lz ~ and x E Lz there exists 
7~ @ 1-[ on  ( E l ,  X), SO X carries a line L' in n parallel to L 1. But then L2 and L' 
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are lines of [L] lying on x, so L' = L 2 by Lemma 3.7 again. Thus (LI, L2) is 
the plane n. 

From this it is clear that, for L e 2~ o, we may form a linear incidence system 
whose points are the lines of [L] and whose lines are the sets of lines of [L] 

lying in planes generated by two mutually perpendicular members of ILl.  We 
denote this incidence system by the symbol A(L)/L. 

3.8. LEMMA. Assume Le~LP and x is a point not in A(L). Then the lines on x 
which do not meet A(L) form a hyperplane B(x, [L]) of Res(x). 

Proof Suppose n is an affine plane on x containing a point z of A(L). Then, 
by Corollary 3.6, z lies on a line L 1 in [L]. Since x is not in A(L) --- A(L0, 
x a c~ L1 = {z} and so L~ c~ n is a line M not on x. But M ___ A(L). Any further 
point of n n A(L1), since it lies in z ±, must lie in L~ whence A(L)c~ n = 
A ( L 0 ~ n  = L~c~ n = M. 

Thus every line on x lying in n meets A(L) (at a point of M) except one, 

namely, the line M1 on x parallel to M (in n). As, obviously, M~ c~ A(Lx) = ~ ,  
we have thus seen that every Line of Res(x) has exactly one or all of its Points 
represented by lines on x not meeting A(L). Furthermore,  B(x, [L]) # Res(x). 

It follows that the lines on x not meeting A(L) represent a hyperplane 
B(x, EL]) of Res(x). [] 

For  x eA(L), we also consider the incidence system A(x,[L])= 
(SaA(x, ILl), Ha(x, ILl)) of all lines on x which meet A(L) and all planes on x 
which meet A(L) at a line. Then A(x, [L]) and B(x, [L]) together form Res(x). 

3.9. COROLLARY.  I f  x and y are two points not lying in A(L), then 
B(x, ILl)  ~ B(y, [L]) as incidence systems. Moreover, A(x, ILl)  ~- A(L)/L. 

Proof For  each line L1 of I-L] there is a unique point x(L 0 with 
{x(L0} = x ± c~ L1 and a unique line 05x(L1) := x(LOx on x meeting A(L) at a 
point of L 1. If L 1 and L 2 lie in [L], then L1 _c L2 x if and only if x(LO ~ x(L2) ± if 
and only if 05x(L1) - (L2) ±. Also, for M ~ 5CA(x, [L]), Lemma 3.7 yields that 
there is a unique point y~  M c~ A(L) and a unique line Lo ~ [L] so that 
05x 1(M) = Lo. Thus 05x: [L] ~ ~°a(x , ILl)  is a 1-1 correspondence preserving 
collinearity so 05x is an isomorphism 05: A(L)/L ~ A(x, [L]) of linear incidence 
systems. 

Similarly, A(L)/L ~ A(y,[L]) and so f = 05y05~-1 is an isomorphism f :  
A(x, [ L ] ) ~  A(y, [_L]). By Proposition 2.7, f extends to an isomorphism 
Res(x)~Res(y) ,  whose restriction to the complementary hyperplane 
B(x, I-L]) defines the required isomorphism B(x, I L l ) ~  B(y, EL]) between 
hyperplanes. [] 
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3.10. L E M M A .  Let L be a line and x a point in P\A(L). Suppose M is a line on 

x, representing a deep point of  B(x, [L]) in Res(x). Then 

(i) A(L) n A(M) = ~ ;  
(ii) there is no line in [ M ]  on which there is a plane meeting A(L). 

Proof By hypothesis,  no plane on M meets A(L) (nontrivially). Let [M]o  
represent  those lines M '  of  [ M ]  for which no plane on M'  meets A(L). Thus  

M ~ I-M] o. 
If u e A(L) c~ A(M), then u carries a line M' ~ [M], and any plane on M'  will 

contain u, so meets A(L) nontrivially, whence [ M ] \ [ M ] o  is nonempty .  Thus  
(i) will be a consequence of (ii). 

As for (ii), suppose,  by way of contradict ion,  that  [ M ] \ [ M ] o  is nonempty .  
Since A(M)/M is connected (cf. Corol lary  3.9, L e m m a  3.8, and L e m m a  1.1(i)) 

and [M]o  :# ~ ,  there is a line M1 e [M]o  lying in a plane nl with a line 
M2 ~ [ M ] \ [ M ] o .  Then M 2 lies in a plane rc 2 which meets A(L) nontrivially, 
whence at a line N. Since 7z I n A(L) = ~ ,  by hypothesisl  we see N is parallel 
to M 2 = ~1 n rt 2 in zc 2. Since N lies in A(L) and N ¢ [L],  it corresponds  to a 
plane p in A(L) representing a line of  A(L)/L. (Observe that  p is the affine 
plane on (N ,  L I )  for each L~ ~ [L] meeting N at a point.) Take  a point  

y e Ms. The  fact M s c~ A(L) = ~ implies that  y± n p is a line My not  in [L].  

Moreover ,  if q ~ M r ~ N, then y± n ~z 2 contains M2 and q and hence all of 7z 2. 
Thus  N _~ y± and so (y,  N )  lies on an affine plane ~z 3 containing a line N '  on y 
parallel to N. F r o m  the above,  N e [M], so N ' e  [M] ,  and, by L e m m a  3.7, 
N ' =  M1. But then rt 3 is a plane containing M 1 and meet ing A(L) in N, 

contradict ing M1 ~ [M]o. 
Thus  Mr  must  be parallel to N. N o w  choose any point  z on Mr. Then 

z ± c~ M1 is not  M 1 as M1 ~ [M]o,  so z ± n M 1 = {y} and z ± n ~1 is a line S not  
parallel with M1. Thus S n M2 = {Y2}. Then y2 l c~ p includes bo th  N and z 
not  lying on M. Thus  y~ contains all of  p. But since p contains lines f rom [L] 

we have Y2 e A(L), so nl meets A(L) nontrivially against  our  choice of  M 1 as 
lying in [ M ]  o. This contradict ion completes  the proof.  [ ]  

3.11. R E M A R K .  Quite clearly the converse of  L e m m a  3.10 h o l d s -  that  is 

I f  A(L)c~ A ( M ) =  ~ and x ~ A ( M )  and M'  is the unique (see 
L e m m a  3.7) line of  [ M ]  lying on x, then M'  represents a deep point 

of  the hyperplane B(x, [L])  of Res(x). 

Proof Clearly as M'c~ A ( L ) =  ~ ,  the line M '  represents a point  of 
B(x, ILl).  But if M '  were not a deep point,  there would be a plane n on M '  
meet ing A(L) at a point  y. But then y carries a line M" parallel to M '  so 
y E A(M) c~ A(L), a contradiction.  [ ]  
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3.12. D E F I N I T I O N .  We denote by &o/[[ the collection of parallel classes of 

lines of £,e. We define the relation = on £,e/lt by asserting [L] _= [M] if and 
only if A(L) n A(M) = ~ .  Considering that L '~  [L] if and only if A(L) = A(L'), 

this relation is certainly well defined. 

3.13. LEMMA. The reflexive closure of the relation =- is an equivalence 
relation on ~/[t.  

Proof Assume A(L)n A(M) = ~ - A(M)c~ A(N) for lines L, M, N, and 
that A(L)n A(N) contains a point u. Then there exist lines L' and N'  on u 
belonging to [L] and [N],  respectively, and, by the above remark, L' and N'  
both represent deep points of the hyperplane B(u, [M])  of Res(u). As Res(u) is 

a nondegenerate thick polar space of rank at least 2, Corollary 1.3 forces 
L' = N'  and hence A(L) = A(N). This proves the assertion. []  

3.14. COROLLARY.  Suppose A(L1)n A(L2) = ~ for two lines L 1 and L2. 
Then the sets A(L) for [L] runnin9 over the members of the --class  of [L1], 
form a partition of P. 

Proof Denote by X the = -class of [L1]. Clearly, for distinct [M],  I-N] ~ X, 
we have A(M) ~ A(N) = ~ so it only remains to show that each p ~ P lies in 

some A(L) for [L] = I-L1]. We may (and shall) assume p¢A(L0.  Choose 
x~A(L 0 and y~A(L2). Then B(y, [La] ) contains a deep point - some line 
parallel to L 2 - s e e  Remark 3.11. But, by Corollary 3.9, B(y , [L1])~  
B(p, [LI])  and so the latter contains a deep point in Res(p) represented by the 
line L. By the above lemma, A ( L ) n A ( L 0  = ~ and so IL l  = [L1] as 
required. []  

We now wish to define a second relationship on £,e/II. Write [L] ~ [M]  if 
some line L' of [L] and some line M'  of [L] lie together in a plane. Note  that 
in this case A(L)n A(M) is not empty (it contains every point of the 
aforementioned plane, for example). The next several lemmas concern this 
relation ~ .  

3.15. LEMMA. For any two lines L and M with L ~_ A(M), we have 
[ L ]  ~ [ M ] .  

Proof Without loss of generality, [L] ~ [M].  Take distinct points u, v on 
L and M'  ~ A(M) on u (cf. Corollary 3.6). Now v e A(M') and u E v ± c~ M'  so 
M'  ___ {u, v} l = L ± and there is an affine plane containing L and M'. []  

3.16. LEMMA. Let L and M be lines such that L n A ( M ) =  ~ and 
A(L) n A(M) ~ ~Z~. Then [L] ~ [M].  

Proof There exists a point u ~ A(L) c~ A(M) and by Corollary 3.6 u lies on a 
line M'  of [M]  and a line L' of [L]. Since diam(A(L)/L) ~< 3 (for it is a polar 
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space minus  a hyperplane ,  see Coro l l a ry  3.9, L e m m a  3.8, and  L e m m a  1.1(i)), 

there exist planes  rc 1, rc 2, and  7r 3 such tha t  rc 1 conta ins  L', rr 1 n re 2 = 

L 1 E [L]k{L'}, lr 2 n re 3 = L 2 E[L] ,  L 3 ~ / r 3 ,  L 3 5 ~ L2, L 3 E I L l  so tha t  the line 

L is ei ther  L3, L 2 o r  L 1. 

N o w  (M')± n ~1 is a line N~. If  N1 E l L ]  we are done  since (N~,  M ' )  is 

con ta ined  in an  affine plane. So we m a y  assume N~ is not  paral le l  to L~ and  

so N 1 c~ L1 is a poin t  p~ eL1.  N o w  in the affine plane on (N1,  M ' )  and  on the 

poin t  p~ there is a line M~ paral le l  to M'.  As Pl ~A(M), the a s sumpt ion  

L n A(M) = . ~  yields L # L1. So L = L 3 o r  L 2. N o w  (MO x n 7[" 2 ~-- N 2 is a 

line. Again  if N2 e[L]  we are  done  since (N2,  M 1 )  is on an affine plane and 

M~ e [ M ] .  Thus  we may  assume N2 is not  para l le l  to L 2 and hence N2 n L 2 is 

a po in t  P2 which lies in A(M). Again  L n A(M) = ~ yields L ~ L2, whence 

L = L 3. O n  P2 there is a line M 2 paral le l  to M1, s o  M 2 6 [ M 1 ,  and again  

(M2)  ± (3 ~3 is a line N 3. If N 3 E [L]  we are done  as  ( N 3 ,  M 2 )  is con ta ined  

in an  affine plane. Thus  N 3 is not  paral le l  to L a = L  and  so ~ 

N 3 c~ L 3 ___ L ~ A(M) = ~ ,  a cont radic t ion .  This comple tes  the proof.  [ ]  

3.17. L E M M A .  Let L and M be lines. Assume ILc~A(M)I ~ 1 and 
[L]  ~ [M] .  Then L ~ A(M). 

Proof Since [L] ~ [M] there exists a p lane 7r ~ l l  con ta in ing  L 1 6 I L l  and  

M 1 e [M].  Suppose,  by  way of cont radic t ion ,  that  L does  not  lie in A(M). 

Then [L n A(M)[---1  by hypothes is  and  L e m m a  3.7. Choose  we LkA(M). 
Then w ± ~ M1 is a po in t  p, and  so w ± ~ ~r is a line N not  paral le l  to  M~. If  N 

were not  paral le l  to L 1 we would  have [w ± n LI[ = 1 agains t  w ~ L  ~_ A(L1). 

Thus N is paral le l  to L r Then there is a line N '  on w in the affine p lane  on 

(w, N )  paral le l  to N. Thus  N ' ~  IL l  and  since it lies on w, L = N'. Thus 

L ± n  7z -- N. Recall  there is a po in t  v E L  n A(M). N o w  v ± n  lr conta ins  N, 

whence the po in t  p of  M1, and  so, as v ~ A(M), we mus t  have M ~ v ±. This 

means  v ±nrc~_ (N ,  M1).  Tak ing  q~Mlk{p} ,  we see that  q~A(L)  and  

v e q  ± n L, whence q ~ L  ± ~ w ±. Therefore,  w ± _ M~, so w eA(M),  con t r a ry  to 

assumpt ion .  This completes  the proof.  [ ]  

The next  l emma combines  bo th  rela t ions = and  ~ on  ~/1[.  

3.18. L E M M A .  Let L, M, and R be lines with [R]  ~ [L]  - [M] .  Then either 

JR] = [L ]  or JR] ~ [M] .  
Proof We m a y  assume that  R and  L intersect  a t  a po in t  x in an  affine plane 

~r. W i t h o u t  loss of  general i ty,  [L]  ¢ [ M ] .  Then R _~ A(L), whence (as 

[L] - [M])  we have R n A(M) = ~ ,  and  in view of  L e m m a  3.16 we m a y  

assume [R] - [M]  (otherwise the p r o o f  is complete).  But then, by L e m m a  

3.13, JR] = EL], so, by L e m m a  3.7, R = L. [ ]  
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3.19. LEMMA. Suppose L and M are (distinct) intersectin9 lines of an affine 
plane TteII. I f  N is a line in  7z which is not parallel to L then A(L) n 
A(M) = A(L) n A(N). Moreover, IN] n ~(p)  ~ (~ for each plane p containing 

members of both [-L] and [M]. 
Proof Let y e A(L) n A(M). If y± n ~z = ~ ,  then y i  n N = ~ .  Otherwise, 

rc ~_ y l  (as y_L n X # ~ for at least one X E {L, M}) so N _ y±. Thus, y e A(N) 
in each case. This establishes A(L)n A(M)_~ A(L)n A(N), and the other 
inclusion follows by symmetry in M and N. Hence the first assertion. 

Now suppose p is a plane containing the lines L' parallel to L and M' 
parallel to M, and take x e L' n M'. As x ~ A(N), there is a line N' on x parallel 
to N. Let U be any line on x contained in {L,M} z. Then U % A(L)n 
A(M) ___ A(N), so U is coplanar with N'. This shows that the point N' of Res(x) 
belongs to {L, M} ±± = ~(~)x. Hence the lemma. [] 

4. C H A R A C T E R I Z A T I O N  OF A F F I N E  P O L A R  S P A C E S  

Starting with an affine polar space, i.e. an incidence system (P, ..~) satisfying 
(3.1), we form a new geometry (_P, Z~v). 

The points of _P are of three kinds 

_PI: the points of P; 
_P2: the elements of ~/11, that is, the parallel classes [L], L~ o_~; 
_P3: the symbol oo. 

The lines also, are of three kinds 

~ 1 "  for each L ~  a, the set L u  {ILl); 
5e2: the set {ILl I L ~ ( l r ) }  for each plane re; 
~e3: the sets {~}  u X  for each - -c lass  X of _~. 

Incidence on (P_, ~ )  is defined by containment. 

4.1. THEOREM.  Each line of the incidence system (P, 5e) not containin9 oo 

is thick. Moreover, 

(i) co ± =--P2 u P3 is a subspace of (P, ~ ) ;  the induced incidence system 
( ~ i ,  ~ (oo i ) )  is a polar space of rank at least 3; 

(ii) if some line containin9 ~ is thick, then all members of ~-~-3 are thick lines, 
and (if_, ~ )  is a nondegenerate polar space of rank at least 3 with 
hyperplane oo ± and P = p \ ~ l ;  

(iii) if none of the lines containing oo is thick, then (P_I uP--z, ~ 1  u ~-~z) is a 
nondegenerate polar space of rank at least 3, in which P2 is a 
nondegenerate hyperplane. 
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Proof To show that  a subspace of (_P, 5g) is a polar  space it suffices to 

verify the basic 'one or all' ax iom for all relevant nonineident  po in t - l ine  pairs. 
This task will be easier if we start  by reviewing what  ~ -co l l i nea r i t y  means  for 
points. 

First, two points  p, q of P1 are collinear if they are collinear in (P, ~ ) .  

Second, a point  Pc_P1 and a point  [L] of P2 are collinear if and only if 
p ~ A(L). Third, two elements [L]  and [ M ]  of 5a/H are collinear if and only if 

[ L ] -  [ M ]  or IL l  ~ [M].  Fourth ,  oo is collinear with all elements of  

~e2 u ~3. 
Clearly, lines not  containing oo have at least three points, oo ± - -  P2 k..) / } 3  is 

a subspace of (P, 2 ' )  with lines 2 , (oo  ±) = 2 '  2 u 2,3.  
(i) We verify the 'one or all' ax iom for oo ± in four cases. 

CASE 2,2. point I N ]  eP2 ;  lineA = {[L] ] L e  ~c°(n)} E 2 ,  2. If  a line N ' e  [N]  
meets rc nontr ivial ly then (N') ± c~ n is either a line R or all of n. In the former  
case N ' _  A(R) and [R]  is the unique point  [L] of A with N ' _  A(L). 

Therefore  I N ]  ~ [R]  and, for L E 5¢(n) with IL l  ~ [R],  neither [N]  - [L] 
nor  I N ]  ~ I-L] holds (cf. L e m m a  3.17). Thus [N]  is collinear with exactly one 
m e m b e r  of  A, namely  JR]. In the latter case, N '  _c A(L) for all L s ~ ( n )  and, 
by 3.15, [N]  is collinear with all members  of A. 

Thus we m a y  assume no member  of [N]  meets n nontrivial ly - i.e. 
n c~ A(N) = go. This means  each point  of n is collinear with exactly one point  
of  N '  for each N '  e [N] .  There are thus only two situations which can arise 

(a) There  exists a unique x 0 ~ N  with x~ ___ n and x±c~n  = gO for all 

x~NX{xo}. 
(b) Fo r  each x ~ N, the intersection x ± c~ rc = Mx is either empty  or a line, 

and the lines M~ all belong to one parallel class of ~r. 

Consider  first case (a). Take  two nonparal lel  lines L, M eSg(Tr). Then 
Xo e A(L)c~ A(M), so, according to L e m m a  3.7, there are lines L ' e  [L] and 
M'~[M] on x o. By L e m m a  3.17, L'_I_M', and by L e m m a  3.19, the affine 
plane ~z' containing L and M satisfies A = { [T] IT~SF0r ' ) } .  Thus,  upon  
replacing rr by z~', we are back  in the case where N meets 7r nontrivial ly which 
was covered at the beginning of this case, so we are done. 

Next  we consider case (b). Clearly, for each x eN, we have I M p ] c A  
whenever  Mx is a line. Consider  a line M x. If  y e N, then y± c~ Mx = M~ or go. 
Thus,  N c A(Mx), whence, by L e m m a  3.15, [N]  ~ [ M J .  Consequently,  [N]  
is ~ - c o l l i n e a r  with IMp].  

Next  assume [N]  - [L0] for some L o s 5g(~) with [Lo] ~ [Mx]. Then, for 

any L e  ~0r ) ,  we have [L] ~ [Lo] = [N] ,  and so, by L e m m a  3.18, [N]  ~ [L].  
Thus  [N]  is collinear to all points  of  A. 
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Therefore we may assume A(L)n A ( N ) ~  ~ for each LeSe(rc). Suppose 
L o e 5¢(z 0 is such that [Lo] is £,e-collinear with I-N] and distinct from [Mx]. 
Then [Lo) ~ [N]  and, for L e ~ (n )  with [L] # [M~], we have L n A(N) = 
(as each point of rc is collinear with exactly one point of N), it follows from 

Lemma 3.16 that [N]  ~ DL]. Thus IN]  is collinear with each member of 4.  
This completes Case 2,2. 

CASE 2,3. point I-N] eP2;  line A = {~}  u X e_~__~a3. Assume [N] ,-~ I-L] for 
some [L]eX.  Then, for any [ M ] e X  different from [L], we have 

[N-I ~ [-L] - [M],  and so, by Lemma 3.18, [N]  ~ [m] .  Thus, as [M]  was 

arbitrary in X\{[L]} ,  we see that IN]  is ___~-cotlinear with all points on the 
line A. 

Otherwise, IN]  ~ [L] for any EL] e X, which means - as [N]  ~ [L] for 
any [L] e X by the hypothesis [N]  CA - that I-N] is _~_~-collinear only with 
on A. This finishes Case 2,3. 

CASE 3,2. point ~;  line {EL] t L e ~(rc)} e _L~k°_L~° 2. The point ~ is collinear to all 

EL]. 
CASE 3,3. point oo; line ({oo} u X ) e  _Ze3. In this case oo is incident with the 

line, so there is nothing to prove. 
So far, we have shown that oo ± is a polar space. Since there are lines 

disjoint from oo in oo ±, the rank of oo ± exceeds 2. For  each L e ~ ,  taking x e L 
and M e 5e such that L, M are not collinear in Res(x), we find that [M]  is a 
point of ~ ±  not collinear to [L]. Thus, rad o o 1 =  {oo}. Therefore, the 
quotient space, denoted by oo±/oo, of oo I with respect to its radical has rank 
at least 2. 

(ii) Suppose that oo ± contains a thick line {oo} w X e L  s on oo. Then X is 

an - - c l a s s  of L/l] containing at least two members [X~] and [X2], say. If 
{~}  u Y is another line on oo such that X / Y, take Yo e Y. There are lines L 1 
and L2 in oo I on X1, Yo and X2, Yo, respectively. Since oo2-/oo is 
nondegenerate, it is a partial linear space, so (L~, ~ )  and (L2, oo) (having 
both {oo} u X and {~}  u Y in common) coincide. Thus, if {oo} u Z e  _£~'3 is a 
third line on oo in (o% X, Y) (such a Z exists as L 1 has cardinality at least 3), 

it meets both L1 and L 2. Due to Lemma 3.19 and the assumption X~ ~ X 2, 
the points Z n L~ and Z n L z are distinct, proving that all lines on oo lying in 
the singular subspace (oo, X, Y), with the possible exception of { oo } u Y,, are 
thick. It  readily follows (by repetition of the same argument) that { oo } u Y is 
also thick, and (by connectedness of oo±\oo) that each line on oo is thick. 

It remains to show that (P, ___~) is a polar space. We verify the 'one or all' 
axiom for the cases involving points from P or lines from &a. 

CASE 1,1. point peP;  line M u {[M]} ~ - ~  1. If peA(M)  then, by Corollary 
3.6, p lies on a line M' e [M] and M'  ~ {[M]} is a line on p, so p is collinear 
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with [M].  But as p e A(M), by definition, p± n M = ~Z ~ or M. Thus p is ~ -  
collinear to just [M] or to all of M u {[M]}. 

If p ~ A(M), then Ip ± n M[ = 1 and p is not collinear with [M] so p is 50- 
collinear with exactly one point of M u {[M]}. 

CASE 1,2. point p ~ P; line {ILl [ L e ~(rr)} e £,¢2. First assume p± n g -- ~ .  
Then, for all L e £~°(zc), we have p ± n  L = ~ so p cA(L), whence p is 5¢- 
collinear with [L]. Similarly, if p± ___ ~, then p e A(L) for all L e 5°(re) and the 
same conclusion holds. 

In the remaining case, p-~ n rE is a line N. Then, by definition of A(L), we 
have, for L e Y(~z), that p e A(L) holds if and only if [L] = [N], so p is 5 °- 
collinear with exactly one point of the line. 

CASE 1,3. point p e P; line __A = {oo} u X e50 3. Here, by Corollary 3.14, the 

sets A(L), ILl  E X, partition P, hence p is c_S-collinear with precisely one point 
of A. 

I 

CASE 2,1. point [N] eP2;  line M u {[M]} e___~r Since the point and line 

are not incident, we have IN]  v a [ M ] .  
Assume [N] is not 50-collinear with any point of M. Then M n A(N) = ~ .  

If A(M) cn A(N) = ~ ,  then [M] and [N] are collinear by a line of -~3. So 
assume A(M) n A(N) ~ ~ .  We have now attained the hypotheses of Lemma 
3.16 and so [M] ~ [N]  - i.e., they are 502-collinear. So far, we have shown 
that 

(4.1) I f  [N] is collinear with no point of M, it is collinear with [M].  

Next assume [N] is collinear with two points of M. They by use of Lemma 
3.7, M _ A(N), so each point of M is collinear with [N], and, by Lemma 3.15, 

[N]  ~ [M]. This means that 

(4.2) I f  IN] is collinear with two points of M, it is collinear with all points 

of M u {[M]}. 

It remains to consider the case where [N]  is collinear with [M] and a point of 
M. Then M n A(N) ~ #3. In particular A(M) n A(N) ~ ~ and so [N] ~ [M]. 
We now have the hypotheses of Lemma 3.17 and so M c A(N). This shows 

(4.3) I f  IN] is collinear with [M] and a point of M, then it is collinear 
with all points of M u {[M]}. 

The assertions (4.1), (4.2), and (4.3), put together, complete Case 4. 
CASE 3,1. point oo; line M u {[M]} e ~ l .  Then oo is adjacent only to [M] 

so the 'one or all' rule holds. 
This establishes that (P, c~) is a polar space. Nondegeneracy of (P_, £~o) 
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follows from the fact that, for each x e P, the space Res(x) is nondegenerate. 
Finally, oo ± is clearly a hyperplane of (P_, ___~). 

(iii) Assume that no line on oo is thick. Then the arguments of all cases but 
1,3 of the proof of (ii) still prevail: after discarding the point oo and the lines in 
£'q3, we obtain the final assertions of the theorem. []  

4.2. COROLLARY. I f  (P, 5f) is an affine polar space, then it is isomorphic to 
the derived incidence system (A, ~_(A)) on the complement A of a hyperplane Q[ 
a nondegenerate polar space (P, ~_) of rank at least 3. 

Proof. Immediate from assertions (ii) and (iii) of the above theorem. []  

5. C L A S S I F I C A T I O N  OF H Y P E R P L A N E S  

According to the fundamental result of Tits and Veldkamp (cf. Tits [7, Th. 
8.22]), a polar space of rank ~> 3 whose planes are Desarguesian is 
isomorphic to the polar space associated with a nondegenerate polarity, the 
polar space associated with a nondegenerate pseudo-quadratic form or the 
Grassmannian whose points are the lines of a 3-dimensional projective space 
p3 and whose lines are the pencils (X, n), where X is a projective point of the 
projective plane n, consisting of all projective lines on X in n. We shall deal 
with the latter case first. 

But before dealing with these three cases, we briefly discuss hyperplanes in 
generalized quadrangles (nondegenerate polar spaces of rank 2). Casting 
aside the nondegenerate hyperplanes, we remain with ovoids (those of rank 1) 
and hyperplanes which are subgeneralized-quadrangles (those of rank 2). If 
the generalized quadrangle is finite of order (s, t), an ovoid is characterized as 
a set of 1 + st point no two of which are collinear, and a subgeneralized- 
quadrangle is a hyperplane if and only if it has order (s, t/s). Many examples 
are known, and there is no hope for a classification of ovoids. The 
subgeneralized-quadrangles of the embeddable generalized quadrangles, 
however are known by Tits [7, Lemma 8.10]; the hyperplanes among them 
are easily recognized. 

The Grassmannian of lines in ~3. Let p3 denote the projective space of rank 3 
over some (skew) field. Setting P for the set of lines of p3 and ~e for the set of 
pencils (X, n), where X is a point of p3 incident to the plane n of p3, we obtain 
a polar space (P, £¢) of rank 3 if incidence of the line l ~ P with the pencil 
(X, n) is given by X ~ I _ n. 

5.1. PROPOSITION.  I f  B is a hyperplane of (P, ~ ) ,  then either B = l ± for 
some l~P, or there is a sympleetic polarity on ~3 (i.e. a polarity with the 
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property that all points of  ~3 are absolute) such that B coincides with its 
absolute lines. 

Proof Suppose B contains a plane of (P, £~o). Then, up to duality, we may 
assume B contains all lines le  P contained in a plane ~ of n z3. Take a point X 
of ~[~3 outside ~, and consider the plane of (P, Y)  consisting of all lines of ~3 
on X. There must be a line (X, ~') e 5¢ all of whose P-points belong to B. The 
plane ~z' meets ~z in a line, say I. Now any pa-line meeting 1 belongs to B. For, 
if m is such a line meeting I in Z, say, consider the plane ~z" on Z containing 
both X and m. Since the P-points ~z"c~ ~ and ~"c~ ~z' both belong to 
B c~ (Z, ~"), the whole P-line (Z, ~z"), whence m, belongs to B. Thus, B = I I. 

Next, suppose B has rank 2. Then, in each plane 7r of p3, there is a unique 
point ~(~) of ~z3 such that (a(~), ~)e ~(B). Also, each point X of p3, lies in a 
unique plane a(X) of D za such that (X, a(X))e ~(B). It is readily seen that t7 
defines a symplectic polarity, and that B = {l e P It T(/) -- l}, where t~(1) is the 
line ~(Xt) c~ tT(X2) whenever l = X 1 X  2 for X1, X2 distinct points of pa. []  

The embedding of (P, 5¢) in the Veldkamp space is a 'synthetic version' of 
the well-known Plficker embedding of the polar space (P, 5~) in the Klein 
quadric. In the finite case, o v e r  Fq, there are (q2 + 1)(q2 + q + l) points in P 
and qE(q3 _ 1) hyperplanes corresponding to symplectic polarities, together 
accounting for the (q6 _ 1)/(q - 1) points of the Veldkamp space. 

Projective embeddings. Now we suppose (P, Y) has an embedding (W, ~, ¢), 
that is, a thick projective space W with polarity ~ such that ¢: P -* W~W -L~ is 
an injection mapping lines to lines of W~, the polar space of totally isotropic 
points and lines with respect to ~, and such that W = [q~P]. (Here we adopt 
the terminology and much of the notation of Tits [7, §8.5].) We recall that a 
morphism #: (l~,, ~, q~) ~ (W, 7z, ¢) of embeddings of (P, ~ )  is a morphism 
#: I~-* W of projective spaces such that ~ =/~*~z and ¢ = #q~ (where 
#*~(x, y) = 7r(#x, #y) for x, y e I~), and that an embedding (W, 7r, q~) is called 
dominant if every morphism of embeddings to it is an isomorphism. 

By Tits [7, §§8.6 and 8.7], the embeddable polar space (P, ~ )  has a 
dominant embedding (IV,, lr, q~), and (P, ~o)~  W~ or W~, where ~ is a 
projective pseudo-quadratic form in W with associated polarity ~. In 
particular, up to polar space isomorphism, we have that (P, 5~) is one of W~ or 
W,,, and ¢ = ide. 

5.2. PROPOSITION.  Let (P, 5£) be a nondegenerate polar space of finite 
rank >>. 3 of the form W~ or W~, where W is a projective space and ~ is a polarity 
of W and tc is a projective pseudo-quadratic form with associated polarity ~. 
Suppose that (W, ~, idp) is a dominant embedding, I f  H is a hyperplane of 
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(p, ~a), then [HI,  the projective subspace of W spanned by H, is a hyperplane of 
W,, and H = [H1 n P. 

Proof. If [HI ~ W, then, for xEPkH, by Lemma 2.1, ( H , x ) =  P, so 
I-H, x] = [P] = W, showing that [HI is a hyperplane. Furthermore, [HI n P 
is proper subspace of P containing H, and so, by the same lemma, 

H = [HI ~ P, as required. 
Therefore, assume [HI  = W. Then (W,, re, idn) is an embedding of H. By Tits 

[7, §8.6] (and the observation rk H ~> rk P - 1 t> 2), there exists a morphism 

# of embeddings of H from a dominant embedding (I~, ~, q~) to (W,, re, idn). 
(Thus #q~ = idn and #*re = ~.) Since, by assumption H ~ P, Theorem 8.6 and 
Corollary 8.7 of [7] show that P = W~, and ~bH = l~g, where ~: is a projective 
pseudo-quadratic form with associated polarity ~. Now #*~¢ (cf. [-7, 8.4.1]) 
and ~ are both projective pseudo-quadratic forms with associated polarity 

-- #*n, and if ~ ~ I~ satisfies ~(~) = 0 (in the obvious interpretation that 
?/(~) = 0 for any pseudo-quadratic form ?/representing ~:), then Yc ~ ~H, so 
#(~) ~ H _ P, whence #*K(~) = x(#(~)) = 0. Thus, as [-/~] = 1~, (by I-7, 8.2.5]), 
we have ~ = # * x .  If x~P, taking ~ f f "  with x = # ( ~ ) ,  we get x (~)=  
#*x(~) = ~:(x)= 0, and so x = #(~)~#(~bH)= H, showing P = H, a con- 

tradiction. Hence the proposition. []  

Non-embeddable polar spaces. The classification of nondegenerate polar 
spaces possessing non-Desarguesian planes has also been completed by Tits 
[7, §9.1]. In this case, the planes are defined over a division Cayley algebra C. 
Conversely, for each division Cayley algebra C there is a unique nondegen- 
erate polar space of rank at least 3 whose planes are defined over C. It has 
rank 3 and is not embeddable in a projective space. 

Throughout  the remainder of this section, we let (P, £,¢) be a nondegenerate 
polar space of finite rank 3 whose planes are defined over a division Cayley 
algebra C. Denote by n the norm map from C to k, the center of C. The only 
properties of C that we shall need are that n is an anisotropic quadratic form 
on C and that dimk C = 8. By [loc. cit.], (P, £~a) has rank 3, is uniquely 
determined up to isomorphism, and for any two noncollinear x, y e P the 
subspace {x, y}± is isomorphic to the dual Q* of the generalized quadrangle 
Q associated with the quadratic form C 0) ]£4 ~ k defined by 

(Xo',, X1, X2, X3, X4)F'-"I'n(XO) - -  X I X  3 -~- X2X  4 

where Xo e C and xl, x2, x3, x4 ~: k. 
Let E be the algebraic k-group of linear transformations of C O k 4 that is 

the direct product of the anisotropic orthogonal group (of type D4) over k on 
C (acting trivially on the direct summand k 4) and the group GL(2, k) (an 
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algebraic k-group of type A1TI, where T1 indicates a 1-dimensional torus) 
acting trivially on C and on k 4 via 

(xl, x2, x3, x4) = axl + bx2, cxl + dx2, (ad-- be) " ( a d - - ~  -]" 

Then E induces a group of automorphisms of  Q, whence of Q*, of type 
D4A 1T 1, fixing the lines (0; *, *, O, O) := {(0; Xx, xz, O, O) [ x 1, Xz ~ k} and (0; O, O, 
*, *) of  Q. 

The following result, derived by study of Q, establishes nonexistence of 
certain kinds of hyperplane of Q*. 

5.3. LEMMA.  Let Q* be as above. 

(i) Each hyperplane of Q* of rank 2 is of the form p± for some point p of Q*. 
(ii) There is no E-invariant ovoid on Q* containing {x,y} ±, where 

x = (0; *, *, 0, 0) and y = (0; 0, 0, *, *). 

Proof Let H* be a hyperplane of Q*. Then its dual H is a set of points and 
lines of Q with the following properties: 

(a) If l, m are lines of H meeting in a point  p ~ Q, then p belongs to H. 
(b) If p is a point of H, then any line of Q on p belongs to H. 
(c) Every point of Q belongs to at least one line of H. 

As a direct consequence of (a) and (b), we obtain: 
(d) If p, q are noncoll inear points of H, then p± c~ q± is entirely contained in 

H. 

(i) Suppose H* has rank 2. Then it contains a line, and so H contains a 
point. Assume that  H* contains no deep point. Then, for each line l of  H, 
there is m ~ H with I c~ m = ~ .  We claim that H contains a quadrangle.  For  
take a point  Pl of H and a line l~ containing p~. Then, by (b), 11 belongs to H. 
As we have just seen, there is a line l 3 in H with 11 c~ l 3 = ~Z~. By the 'one or all' 
axiom, there is a line 12 on Pl with 12 c~ 13 = {P2} for some point  P2- Then 12 
and P2 belong to H in view of(b) and (a). Again by the above, there is a line 14 
in H disjoint from 12. Now, letting P3, P4 be the unique points of p2 ± c~ 14, 

p~ c~ 14, respectively, we obtain the quadrangle with points p~, P2, P3, P4 fully 
contained in H, as claimed. Since the au tomorphism group of Q is transitive 
on the set of quadrangles in Q (use that the group is Moufang or Witt 's 
theorem), there is no loss in assuming that Pl = (0; 1,0,0,0)k, P2 = 

(0; 0, 1, 0, 0)k, P3 = (0; 0, 0, 1, 0)k, and P4 = (0; 0, 0, 0, 1)k belong to H. Take a, 
b ~ C  with a ~ b and n(a)= n(b)= 1. (This choice is possible.) Then 
Pa = (a; 0, -- 1, 0, 1)k and Pb = (b; 0, -- 1, 0, 1)k are distinct points of Q con- 
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tained in p~ ca p3 x and so, by (d), belong to H. Moreover, they are non- 
coil±near, so for each 2 e k, the point qa = (0; 1, 2, 22, 2)k, being contained in 
p~ ca p~-, also belongs to H. Finally, P3 and qz are noncollinear, so 
(0; 0, 0, 2, 1)k being in p~ ca q~-, belongs to H for each 2 e k. We conclude that 
all the points of the line P3P4 = {(0; 0, 0, 2, p)k 12, # e k} of Q are in H, so that 
PaP4 is a deep point of H*. This contradicts the assumption, and so ends the 
proof of (i). 

(ii) Suppose H* is an E-invariant ovoid containing {x, y}±. Then H is a 
spread of Q, that is, every point of Q belongs to exactly one line of H. Notice 
that the part of the spread corresponding to the subset {x, y}± of H* covers 
all points (Xo; xl, x 2, x3, X4) of Q having Xo = 0. Suppose z were the line of H 
on the point p := (1; 1, 0, 1, 0) of Q. Let q = (qo; ql, q2, q3, q4) be a second point 
of Q on z. Now Po = 1 and qo are linearly independent over k (for otherwise, z 
would contain a Q-point of (0; *, *, *, *), and so meet a member of {x, y}±). 
Replacing q by a q + 2p for a suitable 2 e k, we may assume that qo is 
perpendicular to 1 (with respect to the bilinear form associated with n), that is, 
n(q o + 1) = n(qo) + 1. The stabilizer Ep of p in E contains the orthogonal 
group of type B3, SO there is an Ep-conjugate q' = (q~); ql, q2, q3, q4) of q with 
q~ ~ qo. Thus, if H* is E-invariant, the line on p and q' also belongs to the 
spread H, contains p and is distinct from z. This is absurd. Hence the 
lemma. []  

5.4. LEMMA. Let H be a nondegenerate hyperplane of (P, ~('). Then H has 
rank 2. For each a e H, the residue Ha of H at a is an ovoid in the generalized 
quadrangle Pa with the property that, if xa and ya are noncollinear points of P, 
(where x, yea±\{a})  with I{xa, ya} l ca Hal > 1, then {xa, ya} ± ~_ Ha. More- 
over, either {x, y}± ~_ H or {x, y}± ca H = {x, y, a} ±. 

Proof. It is immediate from part (i) of the above lemma that if H is a 
hyperplane of (P, Lf) of rank 3, then H = x ± for some x e P. Hence the first 
assertion. Also, the assertion about the ovoid is clear. 

For  x, y, a as indicated, take u, v to be points of H ca ai\{a} such that ua, va 
are distinct points of {xa, ya} ± ca Ha. Since H has rank 2,/4, contains no lines. 
In particular, the points u, v are noncollinear. The subspace {x, y}± ca H is 
either a hyperplane of the generalized quadrangle {x, y}± or coincides with 
{x, y}±. In the latter case, we have {x, y}± _ n and we are done, so assume 
the former. Then {x, y}± ca H is of rank 2 (as it contains the line ua) and, 
by the previous lemma, has shape {x,y, b} ± for some b e{x,y}±. But 
b ~ { x , y , u , a , v }  ± = {a}, so { x , y } i c a H  = {x ,y ,a}  ±, as required. []  

5.5. REMARK. The condition on an ovoid (9 of a generalized quadrangle 
Q* that I{x, y}± ca (91 > 1 for noncollinear points x, y implies {x, y}± _~ (9 
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seems very strong, but does not suffice for a nonexistence proof  as the 
following construction shows. For the special case k = R, a spread O* in Q 
will be given, whose dual has the indicated property. Consider the quadratic 
form f o n  C 2n given by 

f ( x )  = x2x4  - x l x 3  + Y'. x { x = xiei 
i=5 i= l  

with respect to the standard basis el . . . . .  e2,. Then U = C(iel  + e2) q- 

C(e 3 + ie4) + C(e5 + ie6) + "" q- C(e2n-1 d- ie2n ) is a m a x i m a l  singular 
subspace of the polar space O(f,  C 2") of (Dynkin) type D,. Let a be the 

semilinear transformation on C 2" performing complex conjugation with 
respect to the standard basis. Then a is an automorphism of O(f ,  C 2") and 
U m U" = 0, while the a-fixed points of O(f,  C 2") form a generalized quad- 

rangle, Q, say. Observe that Q is isomorphic to Q6. I fp  ~ Qzn, then p ~ U ~, so 
dimc(U~ + C p ) =  n + 1, whence there exists a point Pv contained in 
U c~ (U ~ + Cp). Moreover, U" is a hyperplane of U ~ + Cpv,  so the line PPv 

meets U" in a point, q say. As PPv contains three singular points of O(f,  C z") 
(namely p, Pu, and q), it is a singular line of the polar space. We claim it is the 
unique line through p meeting both U and UL (For, if L would be another 

such line, L and PPv would span a projective plane meeting both U and U" in 
a line, so the intersection of the latter two lines would be a point of U c~ U ", 

contradicting U c~ U ~ = gO.) But PPv is a line on p meeting both U (in q~) and 
U" (in p~), so coincides with PPv. In particular, q = pL The line PPv has more 
than one point of Q,. (For each point of shape 2a + 2av with 2 E C, p = Ea, 

Pv = E a r  for some a, av E C z" belongs to it.) Thus the a-fixed points of PPv 

form a line of Q,, which we denote by Lp. By what we have just seen, 
O* = {Lp I P ~ Q,} is a spread of Q,. If M, N are disjoint lines of Q, and Lx, Ly 
distinct members of the spread meeting both M and N, then every line of Q, 
meeting both M and N is also of shape L~ for some point z, whence a member 
of O*. It follows that O* provides an ovoid (9 of Q* satisfying the property 
described in Lemma 5.4. 

The following lemma states that every point of the Veldkamp space lies on 
a secant,  that is a line with at least two points of the form x ± for some x e P. 

5.6. LEMMA. Le t  H be a nondegenerate  hyperplane o f  (P, ~ ) .  For  each 

quadrangle V c H,  and any  two x,  y ~  V ± \ H ,  we have {x,  y}± = x I c~ H = 

y± c~ H.  

P r o o f  Clearly, x and y are noncollinear. Let a 3_ u _1_ b A_ v 3_ a be the 
circuit in V. The points xa,  ya  of Pa are noncollinear and satisfy 
{xa,  ya} ± c~ Ha ~- {ua, va}. By the previous lemma, {x, y}± ~ H implies 
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{x, y}± c~ H -- {x, y, a} ±. But then, likewise we have { x , y ) ± n H =  
{x, y, b} ±, contradicting ae  {x, y, a}*\b ±. Hence {x, y}± ___ H. 

Suppose h e x ± n H. If z • y± c~ hx\{h}, then z • {x, y}± ~_ H and h • H, so 
x e hz ~_ H, contradicting x ¢ H (for x • H would imply rk H = 3). Hence 
h • {x, y}±, proving {x, y}l = x ± c~ H. The remainder follows by symmetry in 

x and y. [] 

5.7. LEMMA. Let H be a nondegenerate hyperplane of (P, £,¢). I f  a, b e H are 

distinct, then {a, b} ±± ~ H. 
Proof I fa  5_ b, then {a, b} ±± is the line on a and b, and so belongs to H by 

the definition of subspace. Otherwise, let ce{a ,b}  x± and take distinct 
u, v e { a , b } ± n H .  There are x, ye{a ,b ,u , v }±\H.  By the above lemma, 
{x, y}± ~ H. Thus, ce{a,  b} ±± c_ {x, y}± c_ H, as required. []  

We shall exploit the following description of (P, ~,e). Recall that k is the 
center of the Cayley division algebra C and that n: C ~ k is the norm map. By 
Proposition 7 of Tits [8], there is an algebraic k-group ff of adjoint type E7 
whose anisotropic kernel is isogenous to SO(C, n)' (the commutator  subgroup 
of the group of all linear transformations the 8-dimensional k-vector space C 
that leave invariant the norm n). By G we denote the group of all k-rational 
points of ft. We adopt the labeling of Bourbaki [1] for the nodes of the 
Dynkin diagram of type E 7. According to Tits [7] the group G has a Tits 
system (B, N, W, R) of type C3 in which the maximal parabolic subgroups of G 
containing B are PI, P6, and PT, the indices indicating the nodes of the 
diagram to which they correspond. The group B c~ N contains the ani- 
sotropic kernel. The polar space (P, 5e) can be viewed as the rank 3 geometry 
whose points, lines, and planes are the conjugates of respectively P1, P6, and 
P7 in G, and in which two elements of type i, j e  {1, 6, 7} are incident if and 
only if their intersection contains a conjugate of P~ c~ Pj. 

A root group of G is a subgroup G-conjugate to the center of the unipotent 
radical of P~. It is isomorphic to k +. (The full unipotent radical R is unipotent 
of dimension 33 over k; its commutator  subgroup coincides with the root 
group.) Denote by Po the G-class of all root groups. For  any two x, y e Po, we 
have either [x, y] = 1 or (x,  y)  =~ SL(2, k). We shall write x ± y, and say x 
and y are collinear if [-x, y] = 1. This definition is justified by the choice of 

lines in the following lemma. 

5.8. LEMMA. The polar space (P, ~ )  of rank 3 defined over C is isomorphic 
to the space (Po, 5['0) whose lines are the sets {x, y}±± for any two distinct 

x, y e Po with [x, y] = 1. 
Proof By what has been said above, P can be viewed as {P~ I g e G}. Now if 
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x E Po, then x = x~ for some g ~ G, where x 1 is the center of the unipotent 
radical of P1. Thus NG(x ) ~ P~ and, by maximality of P1 as a subgroup of G, 
we have NG(x) = P~; setting f (x)  = P~, we obtain a well-defined bijection 

f : P o ~ P .  
Let n e N correspond to the fundamental reflection associated with the first 

node of the Dynkin diagram. Then, by the definition of Tits system (or a 
direct computation verifying that P1 n P'{ contains a conjugate of P1 n P6), 
for any g e G, the point P1 ~ P is collinear with the point P~ if and only if 
g e PlnP1. A direct computation also shows that x and x" commute. It follows 
that x is collinear with x g if and only if the intersection of f (x )  = P1 and 
f ( x  ~) = po contains a conjugate of P1 n P6, that is, if and only if P1 is 
collinear with P~. Hence the collinearity graphs of (Po, 5oo) and (P, 5 °) are 
isomorphic. Since (Po, 5oo) is built from its collinearity graph in the same way 
that (P, 50) can be obtained from its collinearity graph (namely by letting 
lines be the d o u b l e / s  of distinct collinear points), the lemma follows. [] 

We shall now identify (P, 5O) and (Po, 5oo). This enables us to consider P as 
a collection of (root) subgroups of G, and to consider G as a group of 
automorphisms of (P, 5O). 

Some more notation: for S _  G and X ~ P, we write S n X : =  
{x ~ X lx c_ S} and G(X) for the group generated by all x e X. 

5.9. LEMMA. Let X be a subspace of (P, 5('). Then 

(i) G(X) n P is a union of G(X)-orbits; any two points from different orbits 

commute. 
(ii) Suppose {u,v} ±±~  _ X for any two non-collinear u, v e X .  Then y e X  

implies that the full G(X)-orbit yZ(X) of y belongs to X.  

Proof (i) If for x, y ~ G(X) n P, we have Ix, y] # 1, then, as the subgroup of 
G generated by x and y is isomorphic to SL(2, k), we have x e y  G¢¢x'y~). In 
particular, x E yG(X). Thus, any two elements of G(X) n P either commute or 
are G(X)-conjugate, whence (i). 

(ii) Suppose y e X. By induction on the length of an element of G(X) 
expressed as a product of elements from root groups, it suffices for the proof 
of the last statement of the lemma to show that y¢ e X for any ~ e x E X. If 
[4, Y] = 1, this is trivial, so suppose the contrary. Then {x, y}±± _c X by the 
assumption on X. On the other hand, G({x, y}) stabilizes this subspace (for, it 
stabilizes ((x, y> n P)± which, by Lemma 5.8, coincides with {x, y}l), so 
y ~  {x, y}±±, whence y¢~X. [] 

5.10. PROPOSITION.  Let H be a hyperplane of (P, 5O). Then H = x ± for 

some x E P. 
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Proof Suppose H is a nondegenerate hyperplane of P of rank 2. By 
Lemma 5.6 there are noncollinear x, y E P  with {x, y}± __ H. Take uE {x, y}± 
and consider (9 = (H n u±)/u ofu±/u. The latter space is isomorphic to Q* and 
its subspace (9 must be a hyperplane of rank 1, so is an ovoid, and contains 
{xu, yu} ±. By Lemmas 5.7 and 5.9(ii) H is G(H)-invariant, so (9 is CG~m(u)- 
invariant. In particular, Ca({~,y})(u) induces an algebraic k-group of automor-  
phisms of u±/u of type D4A a T 1 fixing the points xu and yu, and stabilizing (9. 
But then Lemma 5.3(ii) asserts that no such (9 exists, a contradiction. Hence 

the proposition. [] 

5.11. REMARK. Part  of the difficulties in establishing the above result arise 
from ignorance: we do not know whether, apart  from the obvious algebraic 
subgroups, there are other overgroups in G of the algebraic subgroup 
G({x, y}±) of type 0 6. (Here x and y are as in the above proposition.) If the 
classification of all Moufang generalized quadrangles were available, another 
way to circumvent this problem would be to use that then the overgroup 
G(H) of the hypothetical nondegenerate hyperplane H of (P, £~¢) containing 
{x, y}±± is known: 

LEMMA. Any nondegenerate hyperplane H of rank 2 is a Moufang gen- 
eralized quadrangle (cf. p. 274 of Tits [7]) and the group of all root 
automorphisms U, (~ a root of H; notation of [loc. cit.]) belongs to G(H). 

Proof Suppose a _k u 2_ b 2_ v 2- a are the points of a quadrangle in H. Then 
the points and lines of this quadrangle form an apartment  of H. To verify that 
H is Moufang, we shall consider the representatives n = {u, ua, a, av, v} and 
2 = {ub, u, ua, a, av} of the two kinds of roots, and verify that G({a, u, v} u ua) 
contains the subgroup U~ for both c~ = n, 2. 

Assume ~ = n. Then, by definition, U~ is the kernel of the action of the 
pointwise stabilizer in Aut(H) of {u, a, v} u ua w va on the set of all lines 
through a ±. Assume b ' E { u , v } ± n H .  It suffices to find an element in 
U~ n G(ua) moving b to b'. The subgroup CG(u, v) of G centralizing u and v 

contains the orthogonal group D of type D 6 over k of Witt index 2; the root 
groups a, b, and b' belong to it and are 'classical root groups'  of the classical 
group D (centers of the unipotent radical of the stabilizer of a line in the 
classical embeddable generalized quadrangle Q associated with D). In 
particular, there is A E a E D, fixing {a} ± pointwise, such that b A = b'. But then 
A E a ~_ U~ n G(a), as required. 

c~ = 2. Then U, is the kernel of the action of the pointwise stabilizer of ua 
on the set of all lines passing through u or a. Assume b'Eub\{u} and 
v'Eav\{a} are collinear. We need to find B e  U~ moving by to b'v'. By taking 
x, ye{a ,b ,  u, v} ±, and considering Ca(x, y) (again an algebraic k-group of 



AFFINE POLAR SPACES 75 

t ype  0 6 corresponding to the 12-dimensional orthogonal group over k of 

Witt index 2), an element B ~ G(ua) _~ (k+) 1° can be found that fixes every line 
on a and on u lying in {x, y}~, and satisfies b e = b' and v B = v'. As ua ~_ H and 

B also fixes x and y, we have B ~ U~ n G(ua). Hence the lemma. [] 

We end the remark by indicating how we could use the above lemma to 
prove that every hyperplane of (P, ao) is of the form x ± if the only Moufang 
generalized quadrangles are the known ones: Suppose H is a hyperplane 
without a deep point. Then, as in the proof of Proposition 5.9 we can show 
that H is a nondegenerate generalized quadrangle and that there exist 
noncollinear x , y ~ P \ H  with {x,y} ±c_ H. Now, D:=  G({x,y} ±) is an al- 
gebraic k-group of type 0 6 (Witt index 2) contained in H. But then, by the 
(assumed) classification of Moufang generalized quadrangles, G(H) is an 

algebraic k-group which is an overgroup in G. The only maximal proper 
algebraic k-groups which are overgroups of D are parabolics of type D 6 

and DCG(D ) ~-D. SL(2, k). If  G(H) is a parabolic R of type D6, we get 
H _  R n P = z ± for some root z in the center of the unipotent radical 
of R, and if G(H) ~_ DC~(O), then H ~_ G(H) c~ P ~_ (DC~(D)) n P = {x, y}± u 

{x, y}±±. In both cases, according to Lemma 5.9, the rank of H must be 3, a 
contradiction. Since also G(H) = G leads to the contradiction H = P, this 
again establishes the nonexistence of rank 2 hyperplanes in (P, ~ ) .  

Summarizing the three propositions in this section, we obtain 

5.t2. T H E O R E M .  Every hyperplane of a polar space of rank at least 3 that is 
not of the form x ± for some point x, arises from a suitable embedding of the polar 
space in a projective space by intersecting it with a hyperplane of that projective 
space. 

A C K N O W L E D G E M E N T S  

Theorem 4.1 owes some inspiration to a result of J. I. Hall in [4] for the case 
of GF(2). We are grateful to Hans Cuypers and Peter Johnson for pointing 
out several improvements of the original manuscript. 
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