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Detection of multiple outliers in multivariate data using Mahalanobis distances requires robust 
estimates of the means and covariance of the data. We obtain this by sequential construction of 
an outlier free subset of the data, starting from a small random subset. The stalactite plot pro- 
vides a cogent summary of suspected outliers as the subset size increases. The dependence on 
subset size can be virtually removed by a simulation-based normalization. Combined with 
probability plots and resampling procedures, the stalactite plot, particularly in its normalized 
form, leads to identification of multivariate outliers, even in the presence of appreciable masking. 
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I. Introduction 

The presence of one or two outliers in multivariate data can 
often be detected by calculation of the Mahalanobis dis- 
tance for each observation. However, the distances may 
fail to indicate the presence of any outliers when many  
are present. This masking effect is due to the influence of 
the outliers on the estimates of  the means and covariance 
matrix used in calculating the distances. To overcome this 
problem Rousseeuw and van Zomeren (1990) suggest the 
use of  distances based on robust estimates of  location and 
covariance. However, Cook and Hawkins (1990) show 
that this procedure may indicate a plethora of  outliers, 
the identity of  which can change dramatically with small 
changes in the parameters of  the algorithm for robust esti- 
mation. They commend instead backward procedures in 
which outliers are sequentially detected and deleted, start- 
ing from all n observations. It is the purpose of  this paper 
to consider rather a forward procedure which starts by 
using a small random subset of  the data for estimation of  
the means and covariances required for calculation of  the 
Mahalanobis distances. The size of  the subset is then 
increased in such a way as to exclude outliers. The proce- 
dure unambiguously identifies the outliers in the example 
studied by Cook and Hawkins. It also has the advantage 
of computational  modesty while yielding a simple graphi- 
cal summary,  the stalactite plot. 

We start in Section 2 with a discussion of  deletion 

0960-3174 :if, 1993 Chapman & Hall 

Mahalanobis distances. In regression, ' leave-one-out '  diag- 
nostics provide valuable information on outliers and influ- 
ential observations. We show that similar information is 
not obtained by use of  leave-one-out Mahalanobis  dis- 
tances. Section 3 describes the forward algorithm for the 
selection of  observations to be used in the sequential con- 
struction of  Mahalanobis distances. The crucial idea is 
that, given distances using m observations for estimation 
of the means and covariances, the m + 1 observations to 
be used for the next set of  distances are chosen to be those 
with the m + 1 smallest distances. Thus an observation can 
be included in the estimates for some values of  m, but can 
later be excluded as m increases. Two examples are pre- 
sented in Section 4: use of  the stalactite plot graphically 
illustrates the evolution of  the set of  outliers as the size of  
the fitted subset m increases. Probability plots are used to 
provide a distributional framework for interpretation of 
the distances. 

When the subset size tn is small relative to the number 
of  observations, the stalactite plot typically indicates the 
presence of many outliers, the number  decreasing as rn 
increases. This effect of  the size of  m, compounded by 
the way in which successive subsets are chosen, is over- 
come by a plot of  normalized distances introduced in Sec- 
tion 5. The normalization is obtained from stalactite 
analyses of  simulated data and depends on the dimension 
of  the data. 

I f  there are many outliers and the data are sparse, a single 
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run of  the stalactite analysis may fail to detect the outliers. 
Section 6 illustrates the properties of repeated analyses with 
different random initial subsets. The procedure, combined 
with the normalization of Section 5, leads to the clear 
identification of the four outliers in the data example used 
by Cook and Hawkins, the modified wood gravity data of 
Rousseeuw and Leroy (1987, p. 243). Cook and Hawkins 
state the need for 'better graphical displays' of  multivariate 
outliers. We believe that the stalactite plot, and other plots 
in this paper, provide such displays. 

2. The deletion Mahalanobis distance 

Let ),~r be the kth of  n observations on a p-variate normal 
population. Then the squared Mahalanobis distance for 
observation k is 

d 2 = - y )T  S - ' ( y k  - y )  = r rs-'r , (1) 

where j? is the p x 1 vector of means and S is the sample 
covariance matrix with 

s , j  =  (yk, - - y j ) / ( n  - 1) = r k , r , , j / ( , ,  - 1 ) .  

k k 

(2) 

Asymptotically the d~ follow a chi-squared distribution on 
p degrees of freedom. If P and S were not estimated but 
were known population parameters, outlying values of  Yk 
would yield large values of the squared distance d 2. How- 
ever, the effect of  such values on the estimation of ? and 
S leads to the rapid breakdown of  the Mahalanobis dis- 
tance for the"detection of outliers, particularly if several 
outliers are present. 

This problem is not overcome by consideration of the 
deletion Mahalanobis distance 

d ~ )  = {.,l' k - .Y(k) }* S(k) 1 {Yk -- ,V(k) }, (3)  

where )~{k) and S(~) l are the estimated means and covari- 
ances with observation k deleted. It is straightforward 
that 

// n 
) 'k --  ; ( k )  = ~ ( Y k  --  i f )  = ~ - - 1  rk"  (4)  

Further relationships are most easily found from the stan- 
dard deletion formulae of least squares regression diag- 
nostics (for example, Cook and Weisberg, 1982, w 
Atkinson, 1985, w The change in the elements of S on 
deletion follows from the change in the residual sum of  
squares of a regression model on deleton of an obser- 
vation, which yields 

( n -  2)Sij(k)= ( n -  l ) S i j -  n r i k r j k / (n -  1). (5) 

To find S(~) I, (5) is applied to the formula for updating 
a matrix inverse (Cook and Weisberg, 1982, p. 210; 

Atkinson, 1985, p. 19). The combination of  this form of the 
inverse with (4) leads to the compact expression for the 
squared deletion distance 

' ( n -  2)n2 { d ~ / ( 1 - n d 2 / ( n  - 1)2)}. (6) 
d(7~) - ( n -  1) 3 

Thus the deletion distance is a monotone function of  the 
usual Mahalanobis distance and so provides no additional 
diagnostic information. 

In regression models deletion of single observations pro- 
vides extra information because of the presence in the dele- 
tion formulae of the leverage m e a s u r e  h i as well as of the 
residuals r i. But in the calculation of the distances of this 
section there is no effect of  leverage: since we are only con- 
cerned with means, all h i = 1 In. Thus the simple reduction 
produced by the formulae of this section would not apply if 
distances were being calculated using the residuals from 
multivariate regression. 

3. The forward identification of outliers using 
Mahalanobis distance 

The results of the previous section show that there is no 
diagnostic information in single deletion distances which 
can be added to the information about outliers obtained 
from the standard distance d 2 given by (1). We therefore 
consider instead distances for all n observations calcu- 
lated using outlier free estimates of  the means and covar- 
lances. Rousseeuw and van Zomeren achieve this by the 
use of robust estimates based on the minimum volume 
ellipsoid covering half the data. We instead use the stan- 
dard estimates of the previous section, but from a subset 
of m observations chosen to be unlikely to contain 
outliers. 

Suppose that m < n observations have been used to cal- 
culate the means )7 and the covariance matrix S. Using 
these estimates n Mahalanobis distances can be calcu- 
lated. If the m observations used in fitting are all outlier 
free, any outliers present will give rise to large Mahalano- 
bis distances. The method for forward identification of out- 
liers which is the basis of this paper uses the m + s  
observations with smallest distances to calculate new esti- 
mates of the mean and covariances. Usually s = 1. Pro- 
vided the outliers were correctly identified by the fit using 
m observations, this fit will also exclude outliers, since 
they give rise to large distances. Outliers will only be 
included as m approaches n, when no good observations 
remain to be introduced into the fit. Hadi (1992) uses the 
same forward algorithm starting from robust estimates of 
the means and covariances for calculation of the initial 
Mahalanobis distances. His forward search terminates 
when m is the median of the number of observations 
when allowance is made for the effect of fitting. The 
method used here continues until m = n. 
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In the examples we start with a randomly selected sub- 
sample of observations with n7 = p + 1, the smallest num- 
ber from which the distances can be calculated. This 
starting point is the same as that used by Rousseeuw and 
van Zomeren in their random search algorithm for the 
minimum volume ellipsoid. It is also close to that used in 
the elemental set algorithm for approximate least median 
of squares regression (Rousseeuw, 1984) and for the identi- 
fication of  multiple outliers in regression (Hawkins et al., 
1984) where, however, elemental sets of  p observations 
are used. In the examples we take s = 1, so that one more 
observation is included at each step. For larger data sets 
than those considered here, larger values of  s would be 
appropriate. As with the elemental set algorithm, several 
starting points can be used to increase the probability of  
obtaining initial distances based on an outlier-free set. 
This technique is illustrated in Section 6. However this 
does not usually seem to be necessary. The repeated use, 
as m increases, of the observations yielding the m smallest 
Mahalanobis distances often results in the exclusion of out- 
liers, even if they are included at an early stage of the algo- 
rithm. This point is illustrated in Example 2 of the next 
section. 

The result of  this analysis is a matrix of (n - p - 1) x n 
Mahalanobis distances. As we shall see, the pattern may 
be quite irregular when m < n/2,  although the normalized 
distances of  Section 5 produce more regular patterns, at 
the cost of more computing. For larger values of m the pat- 
tern of distances settles down, giving large distances for the 
outliers, until m is so large that outliers begin to be included 
in the subset used for parameter estimation. As this hap- 
pens, masking begins to occur until, when m = n, there 
may be no apparent outliers. 

4. The stalactite plot 
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An example of a stalactite plot is given in Fig. l(a). The 
subsample size used in estimation is m. The plot indicates, 
for increasing m downwards, those observations for which 
the Mahalanobis distance is sufficiently large for the obser- 
vation to be considered an outlier. The cut-off point used to 
define an outlier is the maximum expected value from a 
sample of  n chi-squared random variables on p degrees of 
freedom, approximated by 

E(max X~) = Xp {(n - 0.5)/n}, (7) 

the actual approximation not being important. 
The stalactite plot shows how the pattern of  suspected 

outliers changes with m. It is also informative to look at 
the values of the Mahalanobis distances, typically when m 
is 80% or 90% of the sample size n. These values can be 
presented as index plots. However, probability plots are 
more helpful in interpreting the magnitudes of the dis- 
tances for suspected outliers. 

Fig. I. Example 1." brain and body weight. Stalactite plot: (a) origi- 
nal distances," (b) normalized distances. Subsample size M plotted 
against observation number 

The remainder of this section is devoted to the presenta- 
tion of examples. In order to provide a comparison of  our 
findings with those of Rousseeuw and van Zomeren 
and of  Cook and Hawkins, some of  their examples are 
reanalysed. 

Example 1. Brain and body weight 

Rousseuw and van Zomeren motivate their paper with an 
analysis of the logarithms of brain and body weight of 28 
animals given by Rousseeuw and Leroy (1987, p. 57). 
These data are an augmentation of  part of  a set given by 
Weisberg (1985, pp. 144-5) to illustrate the importance 
of transformations in the analysis of  data. A bivariate scat- 
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ter plot of the logarithms (to base 10) of the data is given by 
Rousseeuw and van Zomeren. This plot, and their analysis, 
indicate that observations 25, 6 and 16 (the three dinosaurs 
added to Weisberg's data on mammals) are the most 
extreme outliers. In addition observations 14 and 17 
(human beings and rhesus monkeys) may not agree with 
the bulk of the data. 

Figure l(a) shows a stalactite plot for these data. Since 
p = 2, the first set of distances are calculated for a subset 
of m = 3 randomly chosen observations. The first set 
chosen by the forwards procedure therefore has m = 4. 
Initially nearly all the distances are large enough to indi- 
cate outliers but, as m increases, there is a gratifyingly 
smooth evolution towards a few persistent outliers. For 
m > 21 these are the five observations already mentioned, 
namely 6, 14, 16, 17 and 25. For m > 24 only three outliers 
are indicated, 6, 16 and 25. The masking effect of these out- 
liers is shown by the distances for the full sample: only 
observation 25 has a distance greater than the maximum 
expected chi-squared. 

This analysis is supported by two further sets of figures. 
The index plots of Fig. 2 show the Mahalanobis distances 
when m : 90% of n, that is 25, and when all observations 
are used to estimate the means, variances and covari- 
ances. In Fig. 2(a) observations 6, 16 and 25 all have large 
values, with that for observation 14 only just below the cut- 
off. At m = 80% ofn  the plot, not shown here, is very simi- 
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observation n u m b e r  

lar, again with three clear outliers but with two further dis- 
tances just greater than the cut-off value. The plot when all 
the data are used in fitting, i.e. m = n, Fig. 2(b), again 
clearly shows the effect of masking - -  only observation 
26 is indicated as outlying, and that only just. In this 
example the masking effect arises because observations 6, 
16 and 25 form a distinct cluster, the presence of which dis- 
torts the estimates of the means and covariance matrix in 
such a way as to reduce the distances for these observations. 

In the second analysis of the distances we provide a samp- 
ling reference by using chi-squared probability plots. The 
plots of the squared distances for 80% and 90% subsamples 
are very similar, showing three clear outliers - -  the smaller 
values for observations 14 and 17 hardly lie off the prob- 
ability plot. Only that for the 90% subsample is given here 
as Fig. 3(a). As Fig. 3(b) shows, when all the observations 
are used in fitting, there is no evidence of the presence of out- 
liers, the plot sensibly following a straight line. The final con- 
clusion, that there are three gross outliers, agrees with 
inspection of Rousseeuw and van Zomeren's Fig. 1. 

Example 2. Synthetic data of Hawkins et al. (1984) 

A second example used by Rousseeuw and van Zomeren is 
the three explanatory variables of an artificial data set 
generated by Hawkins et al. (1984) to illustrate the effect 
of outliers at leverage points on least squares estimates of 
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Fig. 2. Example 1: brain and body weight. Index plots of Mahalano- Fig.  3. Example 1." brain and body weight. Chi-squared probability 
bis distances." (a)  m = 25;  (b) m = n plots of  squared Mahalanobis distances: (a)  m = 25;  (b) m = n 
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regression coefficients. For these data n = 75, p = 3 and 
there are two groups of  outliers: observations 1-10 and 
11-14. 

Figure 4(a) is a stalactite plot of  the Mahalanobis dis- 
tances for this example, arbitrarily shortened by the omis- 
sion of low even values of m. For m > 49, only 
observations 1-14 are indicated as outliers, a pattern 
which persists until m is so large that outliers start to be 
included in the subset used for estimation. Index plots 
and probability plots similar to Figs 2 and 3 support this 
identification o f  outliers in a manner parallel to that of  
the previous example, so are not repeated here, but there 
is one new point. 

The sequential procedure yielding the stalactite plot 
depends, in theory, on the initial subsample being clear of 
outliers, so that unbiased estimates are obtained of  means 
and covariances for calculating the distances. Since the 
initial subsample is selected at random, one or more out- 
liers could well be included, perhaps leading to a subse- 
quent failure to identify some o f  the outliers. To 
investigate this effect, the stalactite plot for the data of  
Hawkins et al. was recalculated using observations 1 14, 
that is all the outliers, as the initial subsample. The plot 
at first leads to identification of nearly all observations, 
other than 1-14, as outliers, followed, for increasing m, 
by a reduction in the number of  apparent outliers. But 
from m _> 48, observations 1-14 are identified as the only 
outliers, as they are in Fig. 4(a). The plot is not given 
here as the point is made more forcibly by plotting the nor- 
malized distances introduced in the next section. 

5. The normal ized  stalact i te  plot 

The stalactite plots of  Figs l(a) and 4(a) allow identifica- 
tion of  the outlying observations. However, particularly 
when m is small, an appreciable number of  outliers are 
identified. In this section we describe a normalization of 
the plot which, at the cost of extra computation, greatly 
reduces the number of apparent outliers for small m and 
leads to clearer identification of the observations which 
are truly outlying. 

Let the squared Mahalanobis distance (1) when all n 
observations are used in calculating ~ and S be denoted 
d~(n), with d~(m) the distance when a subset of  size m is 
used. Then if 

T(m) = ~ d~(m), (8) 
k=l 

it is well known, and follows from (1) and (2), that 
T(n) = p ( n - 1 ) .  In general T(m) will be greater than 
T(n). Furthermore, the way in which successive subsets 
~re selected by the forward method of Section 3 means 
Ihat, particularly for small m, T(m) will be very much 
greater than p(n - l). The consequent identification of a 
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Fig. 4. Example 2." synthetic data of Hawkins et al. Stalactite plot." 
(a) original distance," (b) normalized distances. Subsample size M 
against observation number 
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large number of outliers for small m can be corrected by a 
simulation based normalization. 

To normalize the distances N stalactite analyses are per- 
formed, each on a different simulation of multivariate nor- 
mal data with dimensions p and n the same as those of the 
original data. Because the distances (1) are invariant to the 
population mean and variance, the simulated data can be 
merely pn independent standard normal random vari- 
ables. For each value of m from p + 2 to n the squared dis- 
tances are summed and then averaged over the N 
simulations, yielding a series of averaged totals 7"(m). The 
normalized squared distances are then 

cl~(m) = p(n - 1) d~(m)/f~(m) (9) 

We have found that taking N = 100 gives stable estimates 
of the normalized distances. Smaller values also appear 
acceptable but, for problems the size of those in this paper, 
the computations are not so extensive that we have felt it 
necessary to investigate this point. 

The results of the normalization are astounding. Fig. 1 (b) 
is the normalized version of the stalactite plot of Fig. 1 (a) 
for the brain and body weight data. For all m from 4 to 
26 the three dinosaurs are revealed as outlying. Over 
much of this range observations 14 and 17 are also identi- 
fied by the plot, which only once identifies any other obser- 
vation as outlying. 

The results are equally incisive for the data of Hawkins 
et al. Fig. 4(b) shows observations 1-14 as outlying for 
m =: 5 to 64. Only briefly are a few other observations 
shown on the plot, and none for m > 23. If the procedure 
is started with only outliers in the initial subset, the plot 
of  Fig. 5 shows how the search recovers, without indicating 
any other outliers on the way. 

In order to reduce the size of  the stalactite plots of Figs 4 
and 5, alternative lines have been omitted for low values of 
m. For large n, when the structure changes slowly, only one 
in every k lines need be plotted, even if the increment s in 
the calculations equals 1. The examples in this section 
show that the structure does indeed change slowly for the 
normalized plot, with many observations never figuring as 
outliers. If it is required to compress the stalactite plot 
further, these columns could be entirely omitted. 

The only difference between the normalized and unnor- 
malized stalactite plots is that the distances have been 
reduced by the use of (9). An alternative way of describing 
this is that the critical point for appearing on the stalactite 
plot (7) has been multiplied by 7 " ( m ) / { p ( n -  1)}. In this 
framework the normalized stalactite plot is a visualization 
of a Monte-Carlo testing procedure, the value of T(m) 
being obtained by a simulation experiment. 

6. Repeated sampling 

In Example 2 forward calculation of  the Mahalanobis dis- 

M 1 2 3 4 5 6 ? 
1234S678901234567890123456789012345678901234567890123456789012345678901~ 345 

15 
17 
19 
21 
23 
25 
27 
29 
30 

31 
32 
33 

34 
35 
36 
37 

38 
39 
40 
41 
42 

43 
44 
45 
46 
47 

50 **'''***''''** 
51 * ...... ***'**" 

52 * ....... **''** 
53 ...... *''~ 
54 "*'*'''*''**** 
55 "*'*''''*'**** 
56 ** ...... **''*" 
57 "*'''*'''~ 

58 " ..... ***''*'* 
59 * .... *''**'*'* 
6O *" .... *'**''** 

61 ** ..... ****"'* 
62 ........ *''*** 
63 t ............ * 

64 .............. 
65 ...... *'" 

66 ***" 
67 

6S "'* 
69 *** 
70 "" 
71 
72 "" 
73 
74 
75 * 

l[]45678901234567890123456789,'t1234567890i~345678901234S67s 
1 2 3 4 5 6 7 

Fig. 5. Example 2: synthetic data of Hawkins et al. Stalaetite plot of 
normalized distances with initial subset containing only outliers. 
Subsample size M plotted against observation number 

tances was able to recover from an initial subset which con- 
tained all the outliers. But the method cannot always do 
this, particularly when there are many outliers or the data 
are sparse. One measure of sparseness is the ratio nip 
which is respectively 14 and 25 for Examples 1 and 2. How- 
ever, in the next example this ratio is 4 and the pattern of 
apparent outliers does indeed depend on the starting point 
of the algorithm. This dependence is removed by multiple 
repetition of our forward selection method combined with 
investigation of the normalized stalactite plots yielding 
the largest maximum distances. The result is again an 
unambiguous identification of the outliers. 

Example 3. Modified wood gravity data 

Cook and Hawkins illustrate their claim that Rousseeuw 
and van Zomeren's procedure can produce 'outliers every- 
where' by an analysis of the wood gravity data (Draper 
and Smith, 1966, p. 227) modified by Rousseeuw and Leroy 
(1987, p. 259). This is again the set of explanatory variables 
from a multiple regression problem, but now p -- 5 and 
n = 20. The data are thus in a higher-dimensional space 
than are the previous examples (p = 2 and 3) and are also 
fewer, so problems due to sparseness may be anticipated. 

Cook and Hawkins find a wide variety of 'outliers' 
depending upon the number of observations used to calcu- 



Detection of muhivariate outliers 33 

7 

8 
9 

i0 

ii 

12 

13 
14 

15 

16 

17 

18 

19 

20 

M 1 2 
12345678901234567890 

* ****** * * ** * 

* ****** * * ** * 

* ****** * ** * 

****** * ** * 

** *** * * * 

** *** * * * 

* *** * * * 

* * * * * 

(a)  
12345678901234567890 

1 2 

M 1 2 
12345678901234567890 

7 
8 * * * 

9 * * * * 

1 0  * * * * 
1 1  * * * * 
12 * * * * 

13 * * * * * 

14 * * * * 
15 * * * * 

16 * * * * 

17 

18 

19 

2O 

12345678901234567890 
(b) 1 2 

F i g .  6 .  Example 3: modified wood gravi O" data. Stalactite plot show- 
ing observations 4, 6, 8 and 19 as outliers: (a) original distances," 
(b) normalized distances. Subsample size M plotted against obser- 
vation number 

late the robust estimates of means and covariances. We were 
more fortunate. The stalactite plots of  Fig. 6 from our first 
analysis of  the data, in particular the normalized stalactite 
plot of Fig. 6(b), clearly show observations 4, 6, 8 and 19 
as outliers, which are the four observations modified by 
Rousseeuw and Leroy. This result is confirmed by the prob- 
ability plot of  Fig. 7(a) for m = 16, that is 80% ofn .  

That this result was obtained from our first analysis 
was something of a fluke. Table 1 summarizes the results 
of 100 repetitions of the stalactite analysis at the point 
when m = 16. The stalactites are ordered by the maxi- 
mum value of  d~(16), which is 115.0 for the most 
extreme solution, yielding the plots of Fig. 6 and Fig. 
7(a), for which the outliers are observations 4, 6, 8 and 
19. This solution was obtained 15 times. For the next 
most extreme solution the maximum squared distance is 
61.0 and the normalized distances indicate that obser- 
vations 7 and 9 are outlying, a conclusion supported by 
the probability plot of  Fig. 7(b). This solution occurred 
only once, although 24 other stalactites also indicate the 
same pair of outliers: the differences in values of  maxi- 
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F i g .  7 .  Example 3." modified wood gravity data. Chi-squared prob- 
ability plot of  squared Mahalanobis distances for m = 16." (a) out- 
liers.~'om Fig. 6," (b) second most extreme solution in Table 1 

mum d~(16) are caused by varying choices of the two 
observations, other than 7 and 9, which are excluded 
from the fit. 

The presence of several possible sets of outliers seems an 
inescapable feature of the analysis of sparse data. Viewed as 
an optimization, maximization of the maximum squared 
distance for a specified n7 is a problem with several local 
maxima. As is standard in optimization practice, multiple 
random starts have been employed, leading to the results 
summarized in Table 1. In the analysis of data, rather 
than the analysis of outlier detection techniques, one occur- 
rence of an extreme solution is sufficient to indicate the 
presence of masked outliers. 

7. Discussion 

Forward calculation of Mahalanobis distances by the 
resampling method of this paper provides an alternative 
to the methods of Rousseeuw and van Zomeren for the 
identification of multivariate outliers. The stalactite plot, 
especially in its standardized form, together with its associ- 
ated index and probability plots, has been shown to provide 
clear conclusions for two examples in which the observa- 
tional points are not too sparse. For both these examples 
100 replicates of the stalactite analysis all led to the identi- 
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Table 1. Modified wood gravity data. Results of 100 stalactites analysed when 16 observations are fitted. Outlying normalized distances 

Observation Number 
Maximum Squared 0 1 2 Number of 
Distance 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 Outliers Occurrences 

115.0 # # # # 4 15 
61.0 # # 2 1 
50.7 # # 2 2 
49.7 # # 2 2 
49.2 # # 2 9 
46.9 # # # 3 8 
42.8 # # 2 2 
40.2 # 1 1 
37.8 # 1 6 
37.1 # # 2 11 
36.1 # 1 1 
35.5 # 1 1 
35.2 # 1 3 
32.2 # 1 16 
29.3 # 1 1 
29.0 # 1 1 
28.6 # 1 1 
26.2 # 1 3 
25.5 0 l 
25,4 0 1 
24,9 0 3 
24.2 0 1 
23.7 0 2 
22.7 0 1 
22.4 0 1 
21.3 0 1 
20.2 0 3 
19.1 0 1 

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 
0 1 2 

fication of  outliers given in Sections 4 and 5. Calculation of  
the index and probability plots at several subsample sizes 
provides a method of investigating the sensitivity of  infer- 
ences to the assumed outlier level. This is analogous to 
the coverage parameter  of  Rousseeuw and van Zomeren, 
investigated by Cook and Hawkins, and to the assumed 
level of  contamination in the derivation of an optimal 
M-estimate for location. 

The computat ional  requirements of  our method are 
modest when compared with the effort needed to find the 
minimum-volume ellipsoid. An extensive comparison of 
algorithms for this problem is made by Woodruff  and 
Rocke (1992), who show that the random search algorithm 
cannot be efficient. The increased precision yielded by the 
normalized plot of  Section 5 requires increased computa-  
ton which is however still small compared with that of  
methods for finding the minimum volume ellipsoid. What-  
ever method is used for the detection of multivariate out- 
liers, sparseness is potentially a problem. The repeated 
sampling procedure of  Section 6 requires a similar amount  

of  computing to that needed for the normalized stalactite 
plot. We have shown it provides a reliable method of detect- 
ing multivariate outliers where methods described in the 
references have failed. 

Note 

Identification of the most extreme sets of  outliers yielded 
by the repeated sampling method of Section 6 is aided by 
calculation for each run of the volume of the smallest 
ellipsoid containing half the data. Small values of  this 
volume result from outlier free estimates of  the para- 
meters and yield extreme distances. A simple ordering 
of the searches is thus possible. This idea is explored in 
Atkinson (1993). 
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