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Abstract. Starting from the new flare models of Karlick~" (1990) and Karlick~ and H6noux ( 1991), we present 
here the first time-dependent numerical simulations of hydrogen plasma excitation and ionization on 
time scales of less than one second. These time scales are consistent with the spiky behaviour of the kinetic 
temperature produced by non-thermal collisional processes. Such temperature spikes represent a chromo- 
spheric response to a series of short-duration electron beam pulses which are supposed to heat the flare 
atmosphere. Self-consistent numerical solution of a simplified, time-dependent, non-LTE problem for a 
three-level hydrogen atom model with continuum allows us to predict theoretically a qualitative behaviour 
of the H~ line intensity variations on very short time intervals. Our H:~ temporal profiles, evaluated at the 
line center and for A2 = 1 .&, can be qualitatively compared with some recent flare observations obtained 
with high temporal resolution. 

1. Introduction 

The impulsive phase of the solar flares is manifested by a typically enhanced chromo- 
spheric radiation in the Ha line, temporally correlated with the hard X-ray (HXR) 
emission and microwaves. Recently, some authors have indicated that the correspond- 
ing time correlations seem to occur on very short time scales on the order of one second, 
which is at the resolution limit of the available Ha instruments (Kurokawa, 1986; 
Kitahara and Kurokawa, 1990; Graeter, 1990; see also references cited in these papers). 
However, higher temporal resolution, reaching 0.1 s, is now being achieved by a High- 
Speed Ha Camera operating within MAX'91 campaigns (Kiplinger et al., 1988). For 
example, Graeter (1990) presents the observed temporal variations of Ha line-center 
and _+ 1.75 A wing intensities for September 8, 1988 flare, with the resolution of 2.3 s. 
Like the corresponding HXRBS data, Ha exhibits a series of short-duration spikes. At 
this temporal resolution, a degree of correlation between individual Ha and HXR spikes 
seems to be rather good, although one can identify some 'inverse' spikes in Ha 
(decreasing intensity) at the time of rapid HXR increase. 

All these features seem to represent a response of the denser chromosphere to 
accelerated particle beams (electrons and/or protons), which are commonly supposed 
to heat the lower atmospheric layers (for reviews see, e.g., Kundu, Woodgate, and 
Schmahl, 1989). However, the existing theoretical models of a beam-heated chromos- 
phere are confined only to a stationary or quasi-stationary heating lasting several 
seconds or tens of seconds (Fischer, Canfield, and McClymont, 1985a-c; hereafter 
FCM; Mariska, Emslie, and Li, 1989). In these studies, the beam of energetic electrons 
is considered schematically as an extra heating term in the corresponding energy balance 
equation, neglecting both the finite travel time of electrons in the flare loops and the 
details of their interaction with particles of the chromospheric plasma. Only recently, 
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Karlick~ (1990) and Karlick) and H6noux (1991) have numerically simulated electron 
beams of very short duration (beam pulses lasting less than one second) and evaluated 
the chromospheric response to such a pulse (Karlick~, 1990) and to a series of identical 
pulses (Heinzel and Karlick~,, 1991). It is quite possible that a series of several beam 
pulses produces the impulsive phase of the chromospheric flare rather than a continuous, 
more or less stationary beam, as was previously expected (note that in some previous 
studies the authors considered beams lasting tens of seconds (Brown, 1973) or purely 
stationary situations (e.g., Ricchiazzi and Canfield, 1983). 

In order to simulate, at least qualitatively, the temporal behaviour of the He  emission 
in the presence of a series of short-duration beam pulses, we solve here a simplified 
time-dependent non-LTE problem for a three-level hydrogen atom with continuum. For 
one pulse lasting 5 s, a similar problem was recently treated by Canfield and Gayley 
(1987), who used the radiation-hydrodynamical simulations of FCM as the input model 
atmosphere. We discuss their computations in Section 6 and compare them with our 
simulations. However, our multi-spike non-LTE simulations are based on new models 
of Karlick~ (1990), which we briefly describe in the next Section 2. In Sections 3 and 
4 we summarize all computational aspects of our approach and Sections 5 and 6 contain 
several numerical results which we discuss in detail. The most important goal of the 
present paper is to study the behaviour of short-duration He spikes arising from the 
beam heated flare plasma with rather long relaxation times, so that a consistent time- 
dependent solution of hydrogen rate equations is required at least for three-level plus 
continuum model atom. 

2. Pulse Beam Heating Models 

As an input for our non-LTE modeling, we use the results of hydrodynamical simu- 
lations of Karlick) (1990) and Heinzel and Karlick) (1991). Starting with the quiet-Sun 
atmosphere models of Vernazza, Avrett, and Loeser (1981) (VAL3C-model), Karlick) 
(1990) has used a special particle code to generate accelerated electron beams with a 
given energy distribution which enter the chromosphere at the time t = 0. Then the quiet 
atmosphere is heated due to the electron-beam energy dissipation and further temporal 
development of the flaring hydrogen plasma is governed by a standard set of hydrody- 
namical and energy-balance equations. The energy equation contains the heating term 
computed - in contrast to previous work - from particle simulations (for details see 
Karlick), 1990). It is also shown that the radiation cooling dominates other cooling 
mechanisms (e.g., conduction). However, the proper evaluation of the radiative losses 
is closely linked with the temporal behaviour of the hydrogen excitation and ionization, 
so that the energy-balance equation must be solved simultaneously with time-dependent 
hydrogen rate equations. In tact, this was done for a two-level plus continuum hydrogen 
atom by FCM. From this viewpoint, Karlick)'s simulations are less consistent since he 
uses Brown's (1973) modified Saha ionization formula, which can be justified only at 
higher plasma densities. But on the other hand, new simulations of Karlick) (1990) are 
so complex that this approximation was necessary at first step (a modification of the 
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code towards more consistent solutions is now in progress). For these reasons, we do 
not use he(t) (electron density) computed by Karlick~, as the input for our set of rate 
equations (as was done for example by Canfield and Gayley (1987) using FCM's 
two-level atom simulations), but rather we start from his temporal profiles T(t) and solve 
consistently the time-dependent problem for a three-level atom with continuum. Of 
course, these temperature profiles will be quantitatively somewhat different if the 
ionization and excitation of hydrogen (and other important species) is computed 
consistently, but we use them only as a guide in order to have some more or less realistic 
input for our simulations. Therefore, for typical chromospheric layers we specify T(t) 
in an analytical form as one temperature pulse or a series of such identical pulses, 
starting from T o = 6500 K and reaching the maximum value T,, = 1 0  4 K. The heating 
and cooling times are also consistent with the results of Karlick~'s (1990) simulations 
and are specified in Section 5. 

Although the beam energy flux is comparable to that used by other authors (e.g., 
FCM), short-duration heating lasting around 0.1 s is barely able to deposit a sufficient 
amount of energy required to move the plasma. Therefore, for our numerical simulations 
we use a static model atmosphere with constant total hydrogen number density. The 
effects of plasma evaporation and stronger velocity fields can be produced by modifying 
the initial eneregy flux of the beam or by using a higher frequency of very short pulses. 
However, at high-energy fluxes the electron beams generate a return current which is 
difficult to account for. 

In our simplified non-LTE analysis, we replace net radiative brackets in the rate 
equations by the respective escape probability functions for Ha and Lyman continuum 
(Lc) transitions, while both Lyman lines are put into detailed radiative balance in the 
atmospheric region where the Ha line is formed. Subordinate continua are optically thin 
with their radiative rates fixed by the photospheric radiation temperatures. Time-depen- 
dent hydrogen rate equations are then solved only for two slabs which represent the H,:~ 
line core and •e-wing formation regions. All details of this approach are described in 
the following Sections 4 and 5. Typical hydrogen densities nil, temperature profiles T(t), 
and the rates of the electron-beam energy deposit dF/dz are consistent with Karlick~'s 
(1990) models, although we also add some other values to demonstrate a broader range 
of possible situations. 

3. Time-Dependent Rate Equations 

We consider a pure hydrogen plasma consisting of three-level neutral atoms, protons, 
and electrons. Denoting n k and n e as the proton (k is the continuum state) and electron 
density, respectively, we can write the charge conservation condition 

n~ -- n e . (3.1) 

Time-dependent rate equations used in our simulations have the general form (Mihalas, 
1978) 

OtTi/#t = 2 (tlJPji- IliPij) (i = i - 3 ) ,  (3.2) 
j r  
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where n; represents the number density of hydrogen atoms in a particular bound state 
i. P;i and Pj; are the total transition rates (both radiative R;j and collisional Cij ) from 
the level i and into it, respectively. In a steady state all level populations are time- 
independent, i.e., On JOt = 0 in Equations (3.2). As already mentioned in the previous 
section, we consider here a static atmosphere. In order to close the set of 
Equations (3.2), we use the hydrogen total number conservation condition 

3 
n i + n~ = nn ,  (3.3) 

i=1 

where the total hydrogen number density n n is kept constant in the present static case. 
Although non-LTE rate Equations (3.2) are purely local ones, they contain the 

radiative terms R a which, in turn, depend explicitely on the radiation field in a given 
transition i-~ j, and this radiation field has a non-local character. A solution of (3.2), 
which is nonlinearly coupled to the radiative transfer equations and other constraint 
equations, represents a difficult numerical task even in the steady-state case (Mihalas, 
1978; Heinzel, Gouttebroze, and Vial, 1987). For a two-level hydrogen atom with 
continuum, the time-dependent non-LTE problem, coupled to the other hydrodynamic 
and energy-balance equations, was solved by FCM, using the probabilistic transfer 
equation. These authors obtained several very important results for a steady-state 
heating situation. 

In order to study the temporal behaviour of hydrogen excitation and ionization, we 
use here the following approach to radiative transfer. Within the chromospheric layers 
we assume the detailed radiative balance n~R u = njRj~ in both Lyman lines, since these 
transitions are supposed to be optically thick in the flare layers where Ha is formed. On 
the other hand, for the Ha line and for Lyman continuum we can assume neither optical 
thinness, nor a detailed radiative balance (except in the deep chromospheric layers). In 
order to avoid complicated and time-consuming transfer solutions, we work here in 
terms of the escape probability for these transitions. Finally, both subordinate continua 
are optically thin. Using all these assumptions, we can write the time-dependent rate 
equations for our three-level atom in the form 

Onl/~3t = n2C21 + n3C31 + t lkCkl + n~Rklpkl - n l ( C l 2  + C13 + Clk )  - 

- n~(Cf~ + C~ + CI/~) =- f~ ,  (3.4a) 

On2/Ot = F/IC12 q- n3C32 + FlkCk2 "}- t l l C ~  -F nkRk2  + n3A32P32 - 

- n2(C2~ + C23 + C2k + Rz;~) =- f 2 ,  (3.4b) 

63n3/Ot = //1C13 h- ?12C23 ~- FIkCk3 4- /71Clr~ "]- nkRk3  -- /13A32P32 - 

- " ~ ( G ,  + c~2 + G ~  + R~k)=f~, (3.4c) 

where we have replaced Ptj by R U + C U and included the non-thermal collisional rates 
Ci~ t (see below). In a steady state we get f- = 0. Radiative rates for the Ha transition, 
appearing in Equations (3.4b) and (3.4c), are expressed through the net radiative bracket 
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/932 , i.e., 

tI3A32D32 = H3R32 - H2R23 = H3A32 + H3B32J23 - /72B23J23 , (3.5) 

where A3z, B32, and B23 are the Einstein coefficients and J23 = ~" q)(v)J(v) dv is the 
mean integrated intensity of the Ha radiation field. The mean intensity J(v), which is 
here weighted by the absorption profile q~(v), must generally be determined fi'om the 
solution of the transfer equation. However, as follows from the analysis of Canfield, 
Gunkler, and Ricchiazzi (1984), under flare conditions the Ha line source function is 
controlled rather by interlocking transitions than by the line radiation field in Ha itself 
and thus the accuracy of J23 is not so critical in our simulations. An approximate way 
of computing P32 is to apply the so-called first-order escape probability technique, in 
which P32 can be replaced by the escape-probability function Pe (see, e.g., Rybicki, 
1984): 

P32 ~/ '~  = K2(z)/2 �9 (3.6) 

The kernel function K2(z), depending on the line optical depth r, can be evaluated using 
the expansions of Hummer (1982) for both gaussian and Voigt line profiles. Since 

K2(z) ~ 0 for z--* or, we arrive at the condition/)32 ~ Pe---* 0 at great depths, i.e., the 
escape probability of an Hc~ photon during a single flight goes to zero and from (3.5) 
we get the condition of detailed radiative balance even for Ha. On the other hand, at 
the atmospheric levels where z(H~) ~ 0 (in the middle chromosphere), K2(z ) -~ 1 and 
thus/332 ~ Pe --~ 1. This can easily be understood since half of all photons escapes from 
the atmosphere and the second half of them goes down and are ultimately absorbed. 
In the present exploratory work we shall concentrate ourselves only on these two 
limiting cases which correspond to the situation in a deep layer and at the surface where 
Hc~ becomes optically thin (more detailed transfer computations will be reported in 
another paper). For this reason we use an approximate formula valid for a Voigt profile 
(Ivanov, 1973; Dumont and Collin-Souffrin, 1985): 

~J'l / Pe g[l+2zx/'~ln(z+l)]-I r < a  l = ' ' (3.7) 
l /F- 1/2 [5[a/'cx, re] , z >  a - l ,  

where a is the common damping parameter appearing in the Voigt function and z 
represents the line-center optical depth. However, as demonstrated by Dumont and 
Collin-Souffrin (1985), the Ha line core as formed in the quiet solar chromosphere is 

not well described when assuming P32 ~ e~ at z ~  0. In fact, 032 < /Oe in the region 
r <  2-10 and, therefore, Dumont and Collin-Souffrin (1985) have proposed an 
empirical modification to the above formula in order to fit the quiet-Sun Ha line core. 
Ha line source function is improved if one replaces z by r~ for r < z~, where z~ = 3. In 
our 3-level model atom simulations, we arrived at even larger 'critical' optical depth 
r~ = 5. Since L = 5 is typically less than a -  ~ for most conditions considered here, we 
set ~032 = Pe = 0.02 at the surface of Hct emitting layer (which is really much lower than 
�89 and P32 = 0 at large depths. 

Concerning the Lyman continuum (Lc), Brown (1973) has assumed that Lc is in 
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detailed radiative balance under flare conditions. Dumont and Collin-Souffrin (1986) 
also put Lc into detailed radiative balance in the case of the quiet solar chromosphere. 
In fact, the situation is as follows: we can see from VAL3C model ofVernazza, Avrett, 
and Loeser (1981) (see their Figure 30) that r(Lc) --- 10-100 in the region where He core 
is formed. On the other hand, as we shall see in Section 5, during the flare heating, the 
hydrogen ground level is depopulated and thus z(Lc) is lowered, while r(Ha) 
simultaneously increases - this is also evident from semi-empirical flare models of Avrett 
(1988). In fact, Ha is still optically thick in the flare regions where Lyman continuum 
becomes thin. Therefore, we can not assume detailed radiative balance in Lc at the 
surface where the Ha core is formed and we use an approach of Canfield and Puetter 
(1981) (see also Canfield and Ricchiazzi, 1980). These authors have proposed a simple 
approximation especially valid for Lc, namely that &-i ~ P~, where Pe ~ for the continuum 
transition can be evaluated according to formulae (23) or (24) in Canfield and Ricchiazzi 
(1980). However, the dependence of P~ on the Lc head opacity, as shown in Figure 1 
of these authors, indicates that P~(r) ~- �89 for z(Lc) < 0.1. Since the Ha line core is 
formed approximately in this region, we set Pkl = P2 = �89 For Ha wings, a good 
approximation is to set PkL = 0. Of course, both P32 as well as Pkl are generally time- 
dependent, but the above approximations seem to be adequate for our qualitative 
analysis. Now, we briefly describe the methods of computing the remaining rates 
appearing in Equations (3.4). Radiative rates for ionization and recombination in opti- 
cally-thin subordinate continua (Balmer and Paschen) are held fixed and are determined 
in a usual way by using the radiative temperature 7",. of the photospheric radiation field 
and the electron temperature T e. For the photoionization rates we then write (Mihalas, 
1 t)7,q) 

niRik=ni4rr f z%(v)J(v)/hvdv~-ni4rc f aik(V)WB~.(Tr)/hvdv, (3.8) 

where we have approximated the incident continuum intensity J(v) by the diluted 
photospheric radiation field WBv(T~) with the dilution factor W. According to Auer, 
Heasley, and Milkey (1972), we rewrite the integral in (3.8) to read 

,%r 

R,~ = (8rc/c2)Wa~k(,b)vg Z E~(nhvo/kT,.), (3.8a) 
t l=l 

where a(vo) is the head opacity of the ith continuum, ~b is the head frequency, and E z 
denotes the first exponential integral. For the radiative recombinations, including the 
Lyman continuum, we get (see also Mihalas, 1978) 

n k R k i  = nk(ni/nk)* 4re f (2hv3/c 2) e hWkTe aik(V) /hv  d v  .~ 

:b 

~- nk(n~/nk)* 4re f Cqk(V)B ~(Te)/hv dr, (3.9) 

vo 

N 

Rki = (n,/nk)* (Szt/c2)a;a.(Vo)Vo 3 ~ Ex(hvo/kTe). 
, ' / = 1  



CHROMOSPHERIC RESPONSE TO PULSE BEAM HEATING 71 

In Equation (3.9) we have neglected the stimulated recombination term. ] 'he ratio of  

LTE-level populations ( n j n y  (the asterisk denotes LTE) is expressed through the 

corresponding Bohzmann  factors 4~i(Te) (Mihalas, 1978) as 

(n,/n,0* = ne4~, (L) ,  (3. lO) 

~bi(Te) = 2.07078 x 10 - '6g s T e 3;2 e h,,,,k,•, (3.11) 

where n e = n k, & is the statistical weight of  the ith level (for hydrogenic levels g, = 2i 2) 

and v is the ionization frequency from the level i. The radiation temperatures T r have 

been taken from Heinzel, Gouttebroze, and Vial (1987). These temperatures do not 

include the dilution factor which appears explicitely in the above equations. We use 

Tr = 5480 K and T r = 5900 K for Balmer and Paschen continuum, respectively. At the 

middle chromosphere we set approximately W = 1. 

Collisional rates for hydrogen have the general form 

niCis = nflef2u(T~.), i < j ,  j = 2 - k ,  

n jCj ,  = nj(n,/nj)* C U = n j ( g j g j ) e  h~"areCo, i < j ,  j # k ,  (3.12) 

tlkCki = 17k?le~;(Te)Cik = lgkl12~i(Te)~;k(Te), i '~  k ;  

Ca.; is the rate of  three-body collisional recombinations. Temperature-dependent 

function Oo(T~) has been computed with the numerical routine taken from Auer, 

tleasley, and Milkey (1972). 

Non-thermal processes (hydrogen ionization and excitation) have also been taken 

into account  during the beam heating. According to Aboudarham and H6noux (1986), 

we consider here the non-thermal collisional excitation rates C['~, C~ ,  and the ionization 

rate C ~  which arise due to collisional interactions with an electron beam. The inverse 

non-thermal processes can be neglected (Feautrier and S ahal-Brdchot, 1991). Excitation 

rates are related to the ionization one as follows (see Aboudarham and H6noux, 1986): 

Clr'~ = 1.35C1~ and C13 = 0._90r"'~k - (3.13) 

Therefore, we need to evaluate only the ionization rate which can be expressed as 

(Ricchiazzi and Canfield, 1983) 

C ~  = (3.78 x 109A'/ttHy) dF/dz, (3.14) 

where dF/dz  represents the total energy deposit rate of  the beam electrons, n H is the 

hydrogen particle density (protons and neutrals), 7 = A x  + A'(1 - x) with the ionized 

fraction x = ne/n H. A and A'  are, respectively, the Coulomb logarithms for collisions 

with ambient electrons and neutral hydrogen atoms. According to Emslie (1978), we can 

write 

A = ln(v3/v"~)  - 29.146, A '  = ln(v 2) - 37.811 ; (3.15) 

v is the initial beam velocity, which we take here to be v = 10 m cm s - * for all our models 

(KarlickS', 1990). Note that the logarithmic dependence on v is rather weak in both these 
expressions. Energy deposit dF/dz  is not evaluated here and is taken as a free parameter, 
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just to demonstrate the importance of non-thermal processes. In the numerical simu- 
lations, we allow Clef ( j  -- 2, 3, k) to be non-zero during the heating process when the 
beam-pulse is switched-on. In fact, we use an exponential increase of non-thermal 
collisional rates, multiplying them by a factor [ l - exp( - 5(t - to)/Ath)], where to is the 
time when the pulse is switched-on and At h represents the heating time (0.1 s in most 
of our models). 

4. Numerical Solution 

In this section we shall discuss the numerical solution of Equations (3.3) and (3.4) which 
represent a set of nonlinear first-order differential equations. Their non-linearity is 
evident from Equations (3.9), (3.10), and (3.11), where the recombination rates, multi- 
plied by the density of kth state particles n k = n e lead to nonlinear terms proportional 

3 for collisional three-body recombination. to n 2 for radiative recombination and to n e 
Since we are primarily interested in the temporal behaviour of hydrogen ionization, i.e., 
in the temporal variations of the electron density he, we must solve the set (3.3) together 
with (3.4) consistently with respect to these nonlinear terms. 

As a basic time difference scheme for solving first-order differential Equations (3.4) 
we choose the single-step Crank-Nicholson finite-difference scheme: 

" l 
n ~  + - n~  _ A n ,  

- ( 1 - e ) f ! + e f )  +1, 0_<c~<1,  i = 1 - 3 .  (4.1) 
At At 

For e 4= 0 we have an implicit equations since f / +  1 depends in rather complicated 
manner on the unknown populations nl  +1. For the temporal variable we write 
tj+ 1 = tj + At and all variables and functions in Equations (4.1) are also indexed by j 
and j + 1 at the corresponding times tj and tj+ 1, respectively. The scheme (4.1) is 
discussed for example by McClymont and Canfield (1982) and was also used by Klein, 
Stein, and Kalkofen (1976) for time-dependent Lyman continuum ionization in radia- 
tive shock dynamics computations, f / +  1 in Equation (4.1) depend on the unknown 
populations n l  + 1 (l = 1 - k) and on the temperature-dependent functions ~/(Te) and 
Ou(T~) at time tj+ 1, which can easily be evaluated providing that we prescribe the 
temperature variations in the flaring plasma (Section 2). So the only nonlinear terms at 
the time tj + 1 are various powers of n v To line arize the right-hand side of Equation (4.1), 

we simply write 

n/+ l = n /  + An, l=  l - k ,  (4.2) 

and in f~  + 1 we neglect all higher-order terms in An which arise due to multiplication 

of various n v For example, 

(n~+ 1)3 = (n~ + Ank) 3 _~ (n~) 3 + 3(n~)ZAnk. (4.3) 

Equation (3.3) gives 

k k k 

n/+1 = ~ n / =  n~ = const. ,  2 An, = 0.  (4.4) 
/ = 1  i = 1  i = l  
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In this way we obtain a new system of  linear algebraic equations for An i (i = 1 - k) which 

has the general form 

~An = X,  (4.5) 

where the 4-dimensional matrix ~ and the vector X contain all the known functions of 

temperature and the level populations at the time tj. Equations (4.5) are then solved by 
usual matrix inversion technique. However, in order to get a numerically stable method, 
we must use some kind of  adaptive time mesh. In practice, at each time step we test the 

ratios Ani/n / for all i = 1 -  k and if the largest one is still higher as compared to a 
prescribed limit (say 10-2 or less), we divide the time step At by two and repeat the 
solution of Equations (4.5). Such a suitably selected limit justifies our neglect of higher- 

order terms in the linearization. Rather small time steps are needed when using 
Crank-Nicholson scheme, in order to minimize the dependence on e. An optimal time 
step for our models is At < 10- 2 s. 

We have tested the stability of our code against the variations of a - no differences 

in the respective solutions have been found for two values c~ = 0.4 and a = 0.8, except 

of unimportant small oscillations for c~ = 0.4, which do not affect the global behaviour 

of  the solution (i.e., the smoothed curve is identical with that for ~ = 0.8). The amplitude 
of such oscillations increases as c~ decreases and at small values of ~ a numerical 

instability can take place under certain conditions. All computations have been made 

with ct -- 0.8. 
An initial steady-state solution at t = 0 is obtained for each simulation (model) using 

the Equations (3.2) or (3.4) with ?ni/Ot = 0. Note that in (3.4) we start with C;j  = 0 at 
t = 0. These steady-state equations are linearized and solved iteratively by usual 
Newton-Raphson  technique. As a test, we have computed the electron density and level 

populations for one selected atmospheric layer of VAL3C quiet-Sun model, the layer 

where Hc~ line center is formed. With P32 = 0.02 and Pkl = 0 (quiet-Sun conditions), we 
have arrived at a reasonable agreement with the exact computations ofVernazza, Avrett, 
and Loeser (1981) for their three-level hydrogen atom. 

In order to check the consistency and accuracy of our time-dependent numerical 
solutions, we have rised the initial temperature T o = 6500 K to T,n = 10 4 K and allowed 

the level populations and the electron density to develop for sufficiently long time in 
order to reach a new stationary state at T m. Independently, we have obtained this 

steady-state solution at Tm by solving the stationary equations using the 
Newton-Raphson  iterations. Both the level populations as well as the electron density 
agreed quite well for these two solutions. Negligible differences were due to the fact that 
the stationary solution at T,,, can be reached only at t --, oc. 

5. Hydrogen Excitation and Ionization 

Using the approach described in previous sections, we have performed several numeri- 
cal simulations to demonstrate temporal characteristics of the chromospheric hydrogen 
excitation and ionization which is due to a short-duration beam pulse or a series of such 
pulses. Let us start our discussion with three examples of a single-pulse heating 



74 PETR HEINZEL 

(Figures l ( a - c ) ) ,  where At h = 0.1 s (heating time equal to the beam duration),  

At C = 0.9 s (cooling time necessary to reach the initial temperature) ,  an initial tempera-  

ture T o = 6500 K and the maximum temperature  T,, -- 1 0  4 K. In order  to est imate the 

relative impor tance  of  non- thermal  collisional excitation and ionizat ion of  hydrogen,  we 

plot in each figure the solution for which these non- thermal  rates have been ' switched-  

off'. Both the H e  source function S(He) ,  as well as the electron densi ty n e are generally 

lower in this case, except for higher densities nt-i and/or  lower dF/dt ,  where non- thermal  

rates are of  smaller importance.  Computa t ions  have been made with P32 and PkL equal 

tO zero. There are two impor tant  features which we can immediately draw from 

Figures l ( a - c ) .  First ,  it is clearly seen that for lower hydrogen densities, n H, the 

relaxation times necessary to reach the initial state of  p lasma  excitation and ionizat ion 

are very long, of  the order  of  tens of  seconds at n H -- 1012-1014 c m -  3. This clearly 

indicates the necessity of  using the t ime-dependent  rate equations for such a non- 

s tat ionary flare p lasma and its modeling. F o r  relatively short  s ta t ionary-heat ing pulse 

(durat ion 5 s), a consis tent  solution of  this kind was already obta ined  by F C M ,  but only 

for the case of  a two-level hydrogen a tom with cont inuum (i.e., not  for H e  line - see 

the discussion below). The second impor tant  feature, which was not  yet ment ioned in 

the literature, is an abrupt  decrease of S ( H e )  at the beginning of  the heating process  - 
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Fig. 1. Temporal variations of the kinetic temperature (TEMP), the electron density (NE - dashed lines), 
and an He soruce function (S - solid lines) for one beam pulse with Ath = 0.1 s, At~ = 0.9 s, T O = 6500 K, 
and Tm= 104 K. For NE and S, the lower curves correspond to the case when non-thermal collisional rates 
are ignored. Higher curves were obtained with dF/dt = 104 erg cm -~ s - t. Both NE and S are normalized 

to  the i r  in i t i a l  v a l u e s  at t = 0. (a) n H = 1013 c m -  3, (b)  nlf  = 1014 c m  3 (c) n H = 1015 c m -  3, 
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the rate of  subsequent increase of  S(He)  then depends on the plasma density n H and 

on the importance of  non-thermal collisions (compare Figures l (a-c)) .  

These newly discovered dips, which are present in all our simulations, deserve certain 

attention. It might seem at first sight that such an abrupt decrease of  S(He)  represents 

some kind of  a numerical instability. Therefore, we have made several tests to avoid this 

uncertainty and found that the dips are practically insensitive to our choice of  the 

parameter c~ in Equation (4.1) and to the time step A t  used. Moreover,  we have tried 

three different shapes of  the temperature profile on the interval At  h : a steep linear rise 

o f  T(t) ,  parabolic rise with zero derivative at t = 0, and the exponential increase o f  T(t) .  

All of  them have led to almost identical shapes of  dips. In Figure 2 we plot another 

example of  a single pulse which is much broader with At  h --- A t  c = 1 s (a similar pulse 

was also studied by Karlick2), 1990). In this figure we clearly see that the shape of  dips 

(for both thermal and non-thermal processes) are rather shallow with no indications of  

any numerical instability. Note that the width of  these dips and the time of  their 

maximum depth depend on the plasma density and on the beam energy deposit, which 

is proportional to the incident energy flux of  the beam. In order to see what  happens 

with individual hydrogen level populations, we plot their temporal variations in 

Figures 3(a, b) for thermal and thermal + non-thermal collisions, respectively. These 

figures are qualitatively similar, indicating a steep rise of  n 2 and n3, while n 1 is gradually 
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Fig. 2. Same as in Figure 1, but for a broader pulse with ,dg h = At~ = i s. Lower NE and a shallower dip 
in S correspond to the case when non-thermal collisional rates are ignored. Circles denote a test solution 
with C13 = C]2 and zero non-thermal rates (see the text). Higher curves were obtained with 

dF/dz = 104 erg cm -3 s -1. n H is equal to 1014 cm-3. 
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decreasing during the heating period. In the quiet-Sun chromosphere,  /72 and/73 are 

determined by photo-recombinations in Balmer and Paschen continua, respectively, 

while under the flare conditions, both the second and third levels are populated colli- 

sionally from the ground state - see discussion in Canfield, Gunkler, and Ricchiazzi 

(1984). But since c~/72/c~t > ~n3/~t at the beginning of  the pulse beam heating, S(He)  

decreases. We have found that this behaviour is a consequence of  higher collisional rate 

n~(C~2 + C[~) as compared to n l(C 13 + C[~). Later on, when the electron density is also 

increased, the recombination processes seem to play again a role and the situation 

is qualitatively reversed, which leads to an increase of  S(He) .  As a sensitivity test of  

the relative importance of  C~2 and Ct3, we have set artificially C13 = Ct2 and after 

recomputing the same models, we have found no dips in such a case (see circles in 

Figure 2). These dips are also absent at very high densities (starting roughly from 
/7~ = l0 ts c m -  3), which corresponds to the case of  LTE. Indeed, in LTE we get 

S ( H o 0  ~- /73//72 = (g3/g2) e-hV"k r (5.1) 

and thus S(Hc0 must follow the electron temperature variations. 

For  three identical pulses, the temporal behaviour of  hydrogen ionization is displayed 

in Figures 4(a-c) .  Temperature variations for these three pulses are shown in Figure 5 

above. This series of  pulses represents a schematic model of  real pulses as generated 

by Karlick~ (1990) and Heinzel and Karlick) (1991). In contrast to a single pulse 

discussed above (with T linearly dependent on time), the temperature in these pulses 
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Fig. 4. Electron density n e (cm 3) versus time for multi-pulse beam heating models. Each of three 
subsequent pulses has At h = 0.1 s and At c = 0.9 s, T O = 6000 K, and T,, = 104 K (see Figure 5). Solid curves 
correspond to a layer where the H:~ line center is formed, dashed ones are for deep layers where Hc~ wings 
originate. Higher curves correspond to higher values ofn H = 1012, 1013, 1014, and 1015 cm - s, respectively. 

The parameter DEP denotes the value of dF/dt (erg cm-3 s-~). (a) DEP = 0.0, (b)DEP = 102, 
(c) DEP = 103. 
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Fig. 4 (cont.) 

rises and falls exponentially with time. However, as we have already mentioned, this 

difference has only marginal effect on our results. From Figures 4(b) (dF/dz = 10 2) and 

4(c) (dF/dz = 10 3) we see how n~(t) varies with the hydrogen density n H. As in the case 

of  a single pulse, the relaxation to an initial state is rather long for nH < 1014  c m -  3. For 

hi_ { = 1 0 1 2  a n d  1013 cm - 3, the electron density is even continuously increasing with time 

and does not follow the temperature variations at all. At nn = 1014 cm - 3 the ionization 

peaks are somewhat lagged behind the temperature ones and n e still gradually increases. 
Only at high densities, he(t) follows more or less the temperature variations T(t), 
although this electron density does not fall to its initial stationary value. In order to 
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demonstrate the relative importance of non-thermal collisional rates, we have computed 

the ionization of the plasma taking into account only thermal rates. The results are 
shown in Figure 4(a), which is to be compared with Figures 4(b) and 4(c). When 
non-thermal collisional rates are included, n~ is generally higher. However, whenever the 
electron density has reached sufficiently high value, the non-thermal rates become less 
effective and the curves for both DEP = 0 and DEP :~ 0 differ only slightly. This takes 

place after a few pulses. 

6. Temporal Variations of Ha Line Intensity 

In order to obtain absolute Ha  line intensities, we used a simple approximate formula 
valid for a constant-property flaring layer, irradiated from below by the photospheric 
radiation (Svestka, 1976) 

I(AX) = r (A2 )e -  ~(Ja) + (S/Ioo,lt) [1 - e -  ,cA~)], (6.1) 

where I(A2) is the emergent intensity at the disk-center, normalized to the continuum 
intensity Icont = 4.077 X 10- 5 erg s - l c m -  2 s r -  1 Hz - 1, r(A2) is the residual Ha  line 

intensity taken from David (1961), S represents the time-dependent source function and 

z(A2) is the total optical thickness of the layer. All computations have been performed 
for A2 = 0 A (Ha line center) and for A2 = 1 A. We have assumed that the line center 

is formed under conditions with P32 = 0.02 and Pkl = 0.5 (see Section 3), while the wings 
at A2 = 1 A are formed much deeper in the flare atmosphere where both these radiative 
brackets tend to be zero. In the first case, a contribution to the line-center intensity from 

deeper layers is negligible, while for A). = 1 A a less important contribution comes from 
surface layers. Therefore, in the formula (6.1) we insert two different depth-independent 

source functions, depending on A2. In a constant-property slab, the optical thickness 

is defined as 

z(A~.) = (Tze2/mc)f23n2(f~2/c)cp(A2)D, (6.2) 

where f23 is the oscillator strength, n2(t) is the second level population and D represents 
the geometrical thickness of the flaring layer (we take D = 100, 500, 1000, and 1500 kin). 

~p(A2) is the line absorption profile and we approximate it by the Voigt function, 
according to the Stark-broadening theory of Stehl6 et al. (1983) who derived the Ha  

Stark width 

A)~s[~k ] = 1.073 • 10- ~4n~(19.33 + ln(2TZ/n~))/T ~.~2 . (6.3) 

No microturbulent broadening was assumed. 
In the following Figures 5-9, we present the results of our simulations for three 

identical pulses with At h = 0.1 and Atc = 0.9 s (variations of the electron densities for 
these models have been discussed in the preceding Section 5). In all these figures we 
again observe short-duration dips at both wavelengths. Their depths and widths are 
sensitive to n n and to the importance of non-thermal collisional rates which are 
proportional to dF/dz (denoted as DEP in these figures). Although temporal variations 
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Same as in Figure 5, but for the model parameters indicated. 

of  the H a  emission depend rather sensitively on the structure of  temperature pulses T ( t ) ,  

we use for this exploratory study only the range between To = 6000 K and T m = 104 K. 

Hydrogen densities, on the other hand, take all reasonable values which can be met 
under chromospheric flare conditions. Maximum energy deposit d F / d z  in Karl ick) 's  

(1990) models is of  the order of  102 erg c m -  3 s -  1 We include the case with D E P  = 0 
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Fig. 7. Same as in Figure 5, but for the model parameters indicated. 

just to demonstrate  the effect o f  non-thermal collisional rates on the resulting H e  
profiles. In these figures, the H e  line-center intensity is approximately equal to 0.15 at 
t = 0 s (i.e., the quiet-Sun value, see Figure 5) and then it rapidly decreases whenever 
the pulse is switched-on.  This is not  well resolved in some figures, especially for higher 
values o f  n H and DEP.  Note  also the different intensity scales in various parts o f  these 
figures. 
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Fig. 8. Same as in Figure 5, but for the model parameters indicated. 

The most  interesting feature is the presence of  dips, both in the line core as well as 

in the wings of  He. Under  certain conditions, these dips can be rather broad, com- 
parable to the duration of  one temperature pulse (see Figure 6). There are two time scales 
of  Hc~ intensity variations. First, the dips or peaks vary on the scales At h or Atc, and 

second, a g a d u a l  increase of  H e  can be observed during several pulses, e.g., 
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Fig. 9. Same as in Figure 5, but for the model parameters indicated. 

Figures 7(c), 8(a), or 9. Therefore, a series of  very short beam pulses can be generally 
responsible for a gradual rise of  Hc~ emission, while on the time scales less than one 
second various fine-structure features can be detected indicating the short-duration 

beana heating. 
Finally, in the last Figure 10 we try to compare our simulations with those of  Canfield 
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Fig. 10. The beam heating model similar to that of Canfield and Gayley (1987). At h = 0.1 s, then a 
stationary heating lasts for 5 s, and finally At~ = 0.3 s. T o = 6000 K, T m = 104 K. For such a box-like 
temperature pulse we display H:~ intensities at A2 = 0 ,/~ (solid line) and at A2 = 1 ~ (dashed lines corre- 
sponding to D = 100 km (lowest one), D = 500, 1000, and 1500 kin). n H = 1013 em -3, DEP = 102. Circles 

represent a line-center solution, but with P~t =- 0. 

and Gayley  (1987). For  the beam energy deposi t  rate comparab le  to that of  these authors 

and for an intermediate  densi ty n H = 10 ~3 cm - 3, we plot the temporal  behaviour  of  H e  

intensity at the line-center and at A2 = 1 A. This can be compared  with Figure 2 of  

Canfield and Gayley  (1987). Since we deal  with a static a tmosphere  and do not solve 

the transfer  problem explicitely, any detai led quanti tat ive compar i son  is not possible.  

However ,  the general qualitative behaviour  of  I( t)  is similar, except at the very beginning 

of  the pulse, where we have again obtained typical  dips which are a consequence of  

higher popula t ion  rate of  the second level as compared  to the third one. Although 

Canfield and Gayley  (1987) use a four-level hydrogen a tom with continuum, they 

start  with ne( t  ) taken from previous two-level plus cont inuum simulations of  F C M .  

Moreover ,  to solve the transfer problem at a given time, these authors  set 

~n2/~t  = ~n3/~t  = ~n4/c3.t = 0 in the rate equations,  which seems to be a reasonable  

approximat ion,  providing that % ( 0  is a lready known.  However ,  all these differences 

from our approach,  which is consistent  from the viewpoint  of  the solution of  time- 

dependent  rate equations for a three-level plus cont inuum model  atom, may lead to the 

absence of  dips in Figure 2 of  Canfield and Gayley  (1987). Another  reason could be the 

width Ath which we take here to be 0.1 s. For  even smaller Ath, the dips are very nar row 

and may not  be numerically resolved. 

7. Conclusions 

In this paper  we have presented the first numerical  simulations of  tempora l  variat ions 

of  hydrogen p la sma  excitation and ionizat ion on time intervals of  less than one second. 

These shor t -durat ion variat ions are due to fast spiky changes of  the kinetic temperature  

and non- thermal  collisional rates. Such temperature  spikes represent  a chromospher ic  

response to a series of  short -durat ion electron beam pulses which are assumed to heat  
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the flare plasma. A consistent numerical solution of time-dependent rate equations for 
a three-level hydrogen atom with continuum allowed us to predict theoretically a 
qualitative behaviour of the He line intensity variations on very short time scales. Our 
He line temporal profiles, evaluated at the line center and for A2 = 1 A, can be qualita- 
tively compared with some recent observations obtained with high temporal resolution. 

During several beam pulses, He intensity gradually increases on longer time scales 
of several seconds. With the resolution comparable to a temperature pulse duration 
(one second in our case), the He emission peaks seem - under favourable conditions 
- to correlate with the temperature pulses and thus also with HXR emission. However, 
these intensity maxima typically lag behind the temperature peaks, which is a conse- 
quence of the fine structure He  intensity dips formed at the beginning of each pulse. This 
effect is most pronounced at lower n H. Since these fine structure features are rather 
sensitive to the plasma density and various beam characteristics, they represent a 
potential diagnostics tool for studying the electron beam heating. It is worth noting that 
these sub-second variations exhibit a different behaviour in the line core and in the wings 
of He, which further supports their diagnostical importance. 

Concerning the electron densities, we have arrived at an increase ofn  e by 1-2 orders 
of magnitude during the pulse beam interaction with the ambient plasma. This is 
comparable to typically observed values. Again, both short-term (spiky) as well as 
gradual variations Ofne can be observed. Ionization changes do follow the structure of 
temperature pulses at rather high plasma densities (n H ~ 1015 cm-3) ,  while for lower 

n H the ionization peaks (i.e., the maxima Ofne(t)) are lagged behind the maxima of T(t). 
At low densities of the order of 10~2-1013 cm-3,  ne(t ) is continuously increasing and 
does not follow the temperature variations at all. This is the consequence of a relatively 
long relaxation time for hydrogen recombination. 
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