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Abstract. A method is prescribed for generating exact solutions of magnetostatic equilibrium describing a 
cylindrically symmetric magnetic flux tube oriented vertically in a stratified medium. Given the geometric 
shape of the field lines, compact formulae are presented for the direct calculation of all the possible 
distributions of pressure, density, temperature and magnetic field strength compatible with these field 
lines under the condition of static equlibrium. The plasma satisfies the ideal gas law and gravity is uniform 
in space. A particular solution is obtained by this method for a medium sized sunspot whose magnetic field 
obeys the similarity law of Schliiter and Temesvfiry (1958). With this solution, it is possible for the first 
time to illustrate explicitly the confinement of the magnetic field of the cool sunspot by the hotter external 
plasma in an exact relationship involving both magnetic pressure and field tension as well as the support of 
the weight of the plasma by pressure gradients. It is found that the cool region of the sunspot is not likely to 
extend much more than a few density scale heights below the photosphere. The sunspot field approaches 
being potential in the neighbourhood of the photosphere so that the Lorentz force exerting on the 
photosphere is less than what the magnetic pressure would suggest. This accounts for how the sunspot field 
can be confined in the photosphere where its magnetic pressure is often observed to even exceed the 
normal photospheric pressure. The energy mechanism operating in the sunspot and the question of 
mechanical stability are not treated in this paper. 

1. Introduction 

T h e  phys ica l  p r o b l e m  p o s e d  by  the  sunspo t  and  o t h e r  r e l a t e d  s t ruc tures  is a classical  

one  ( T a n d b e r g - H a n s s e n ,  1967;  Z w a a n ,  1968). In t e re s t  in this p r o b l e m  was r e n e w e d  

r ecen t ly  by  the  efforts  to  u n d e r s t a n d  the  r e m a r k a b l e  obse rva t i on  tha t  the  gene ra l  

p h o t o s p h e r i c  m a g n e t i c  field res ides  in i so la ted  na r row  flux tubes  of 1500 to 2000 G 

(see e. g. H a r v e y ,  1977). T h e  r e a d e r  is r e f e r r ed  to  a r ecen t  ar t ic le  of P a r k e r  (1977a)  

for  a d e t a i l e d  rev iew of the  t heo re t i ca l  ques t ions  and  some  of  the i r  poss ib le  answers .  

T h e r e  is still  much  physics  at the  f u n d a m e n t a l  level  tha t  is no t  unde r s tood .  The  bas ic  

effects a re  non l inea r  pos ing  no m e a n  obs tac le  to quan t i t a t ive  analysis  and  theore t i ca l  

d e v e l o p m e n t  mus t  p r o c e e d  in smal l  steps.  In  this p a p e r ,  we go back  to l ook  at  the  

o ld  p r o b l e m  of  cons t ruc t ing  m a g n e t o s t a t i c  m o d e l s  of the  sunspot .  A survey  of 

p rev ious  w o r k  ( T a n d b e r g - H a n s s e n ,  1967) shows tha t  ava i l ab le  mode l s  e i the r  a re  

p h e n o m e n o l o g i c a l  in na tu r e  or  a re  based  on ingenious  theore t i ca l  cons t ruc t ions  to 

c i rcumscr ibe  the  d i rec t  so lu t ion  of  the  non l inea r  equa t ions  of magne tos ta t i c s .  

A l t h o u g h  these  m o d e l s  have  p r o v i d e d  va luab le  insights  in to  the  difficult p r o b l e m ,  the  

n e e d  r ema ins  to  ob t a in  exact  m a g n e t o s t a t i c  so lu t ions  to i l lus t ra te  bas ic  phys ica l  
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properties with confidence. This paper is aimed at meeting this need. We first adapt a 
method developed elsewhere (Low, 1980a) to construct exact solutions for a 
cylindrically symmetric flux tube penetrating vertically through a stratified atmos- 
phere in static equilibrium. Using this method, we present a series of solutions in this 
paper and another to follow (Low, 1980b). At thi~stage of development, we will not 
attempt at building complete models. The complex phenomenon of sunspot-like 
structures is the result of force balance and energy transport. Our interest here is to 
look at the simplest analytic particular solutions to learn something of the largely 
unexplored static interaction between gravity, magnetic field and plasma. Apart 
from selecting for presentation only those solutions having qualitatively reasonable 
temperature distributions, we will not treat the question of energy transport. 

Let us review briefly the method of constructing exact solutions presented recently 
(Low, 1980a). We showed that given a magnetic field depending on only two 
Cartesian coordinates, a simple transformation of functions can be exploited to 
calculate in closed forms the distributions of pressure, density and temperature 
required for static equilibrium. The embedding plasma was assumed to satisfy the 
ideal gas law and gravity was taken uniform in space. Solutions can thus be generated 
from variously prescribed magnetic fields. For the general magnetic field depending 
on all three coordinates, essentially the same procedure for generating solutions is 
possible except that not every magnetic field can be a candidate for equilibrium. 
Here, we encountered a theorem due to Parker (1972, 1977a, 1979) that a magnetic 
field in static_equilibrium must possess suitable symmetries. We derive the equation 
stipulating these symmetries in terms of a pair of Euler potentials defining the 
magnetic field. Starting with a magnetic field that satisfies Parker's theorem, equili- 
brium is possible and the endowed symmetry of the field makes the construction of 
the magnetostatic equilibrium a two dimensional problem parallel to the special case 
of dependence on two Cartesian coordinates where the field symmetry is the 
invariance in the direction of the third coordinate. Another special case amendable 
to an analytic treatment is the cylindrically symmetric field which is the subject of the 

present paper. 
The equations of equilibrium are: 

(V x B ) x B - •p - pg2 = O, (1) 
4~r 

V . B  = 0 ,  (2) 

p = p k T / m ,  (3) 

where B is the magnetic field, p the pressure, p the density, and T the temperature. 
The unit vector 2 points vertically upwards and g is a uniform gravitational 
acceleration. The ideal gas law (3) is for a fully ionised hydrogen plasma with m as the 
proton mass and k the Boltzman constant. Equations (1)-(3) make up five equations 
for the six unknowns p, p, T and the three components of B. Taking one of the six 
unknowns as given, the five equations express the other five unknowns in terms of it. 
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If the unknown to be given is chosen correctly, the other five unknowns can be 
integrated for in closed forms for the cylindrically symmetric field. This is demon- 
strated in Section 2. We point out that we do not consider the energy equation 
directly. Otherwise, the energy equation together with Equations (1)-(3) form a 
complete set and all six unknowns have to be solved for together consistently. This 
formidable task should be postponed until we have explored magnetostatic equili- 
brium on the limited basis pursued here. Section 3 is devoted to presenting an exact 
solution for a solar magnetic field concentrated into an isolated flux rope. The 
starting point is the sunspot model of Schliiter and Temesvfiry (1958). This model is 
based on a prescribed similarity law for the distribution of the sunspot field such that 
the field is uniquely determined by the difference in pressures at the sunspot axis and 
at infinity at the same height. At the time when it was not feasible to solve the 
equilibrium equations completely, this model provided a valuable basis for theoreti- 
cal discussion. Using the method of Section 2, we can now obtain the full dis- 
tributions of pressure, density and temperature in space. A number of interesting 
results are obtained based on the particular solution of Section 3. Section 4 presents a 

discussion. 

2. Cylindrically Symmetric Fields 

Express the cylindrically symmetric field B in terms of two scalar functions H and K :  

( 1 OH 1 10~r  ) 
B = B o  " hr Ohz ' h rK '  hr ' (4) 

where Bo is a constant field strength and h -1 is a suitable scale length. We use 
cylindrical coordinates r, 0, and z and under the assumed symmetry, H and K are 
independent of 0. In this representation, Equation (2) is automatically satisfied. 
From the equation for the field lines, 

dr/Br = r dO/Bo = dz/Bz,  (5) 

it is simple to show that H is constant along individual field lines. In particular, the 
projection of the field lines on the 0 = constant plane are contours of constant H.  For 
a given H, an arbitrary function 45 (r, z) may be defined in terms of its values obtained 
on the contours of constant H at height z, 

45(r, z) -- 45[H, z ] ,  (6) 

where we denote with bold face brackets this type of transformation. The reader 
should bear in mind that there is no loss of generality through this transformation 
except that 4)[H, z] may be multi-valued. Using this transformation, we showed 
previously (Low, 1975) that Equations (1)-(3) reduce to: 

Z 

o [/4, z ' ] / '  (7) 
0 
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Z 

I Z' 
0 

T = ToO[H, Z ] ,  (9) 

( 1OH 1 K [ H ]  1 ~___R/~ 
B = B o  R OZ'R , ~  , (10) 

where the functions Po, O, H, and K are related by the equation 

O2H O / 1 OH\ + K O  K[H]+ 

Z 

d Z '  .~] 
+ f l R 2 ~ [ P o [ H l e x p ( -  f O[H,Z , I ] j=O.  (11) 

0 

The partial differentiation with respect to H in Equation (11) is to be performed with 
Z held constant. We have inserted the constants Po, Po, To and defined the following 
to put Equation (11) in the dimensionless form: 

h = mg/kTo, (12) 

R = hr, Z = hz, (13) 

fl = 4~rpo/ B2o , (14) 

Po = pokTo/m. (15) 

The above reduction of equations separates force equilibrium into components 
parallel and perpendicular to the local magnetic field. Equation (7) shows that 
pressure ~s scale heighted by graivity along individual field lines as though the latter 
are rigid tubes. This is force balance along the field lines. Equation (11) gives force 
balance in the direction perpendicular to the field and lying in the 0 = constant plane. 
Force balance in the second independent perpendicular direction, namely, the one 
pointing out of the 0 = constant plane is automatic because of cylindrical symmetry. 
The problem is similar to the one where the system depends on only two Cartesian 
coordinates treated in Low (1980a). The reader is assumed to be familiar with the 
mathematical steps of this paper and we will be brief in the following description of a 
similar procedure to construct solution for the cylindrically symmetric field. 

Of the functions H, K, Po, and O, we may freely specify one of them. To generate 
solutions, H is specified and in terms of it, we evaluate, 

oZH 0 / 1 OH 
S(R, Z ) :  - ~ +  R - ~  I F  - ~ )  " (16) 

Transform S into its dependence on H and Z by Equation (6). Invert the function 
H(R, Z) to give 

R 2 = R2[H, Z] .  (17) 
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B = Bo[ 

Note that 

Equation (11) becomes, 

0 
S[H, Z] + K [ H ]  ~ K[H] + 

Z 

dZ' .~] 

0 

It is evident that for any given pair of K[H] and Po[HI, Equation (18) gives O by 
direct integration with respect to H. From the explicit forms of H, K, Po, and O 
obtained this way, Equations (7)-(10) give the pressure, density, temperature and 
the magnetic field in terms of their variation in space. 

To be more sophisticated, let 

H(R, Z) =/~r(4'), (19) 

where/-) is an arbitrary function of one variable and 4' is a given function of R and Z. 
Equation (19) contains the set of all functions H having the same contours 
4' = constant on each of which H has a constant value. The magnetic field Equation 
(10) becomes 

d/-I 1 04'] d H  1 O4' 1 K[/-)(4')], (20) 
d4' R OZ 'R  d4' R ~ " 

2 B2/d/-~r~2 1 [[04"~2+{04'~ 2] 
B, +Bz 2 = o ~ - ]  ~-~ L\0-Z] \ ~ - ]  . (21) 

We are therefore looking at the set of all fields having the same field line projection 
on the 0 = constant plane but having different distributions of transverse field 
strength (B 2 +B~) 1/2 on the projected field lines. For a given 4', evaluate, 

MI=O2~+R 0 (1  04') 
OZ ~ ~ -~ ~ , (22) 

V2=( 04' 2+( 04'  2 
\OZ] \ORJ ' 

(23) 

and use an obvious modification of Equation (6) to transform these quantities into 
dependence on 4' and Z. Invert 4'(R, Z)  to obtain R 2 in terms of 4' and Z. For H 
given by Equation (19), Equation (11) now becomes 

~-~MI[~, d2/~ d Z]  + ~--5 M214', Z l  + K [/-)l ~ K [/-~r] + 

Z 

d.z, ° [,o,O, exp(- I (24, 
0 
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Multiply across by d/~r/d¢ converts Equation (24) into a partial differential equation 
with ¢ and Z as the independent variables, 

M1[¢, Z ]  q de  ~-5  M216, ZI  K[/-)(¢)] + 

Z 

0 

Compare Equation (25) to the more restricted case of Equation (18). In addition to 
the free functions K and P0, we also have the free function/~r(¢) corresponding to a 
freedom to change the loading of the transverse field strength on the field lines. For 
each choice of these arbitrary functions, it is straight forward to integrate Equation 
(25) with respect to ¢ to obtain O. Substituting ¢,/-I, K, P0, and O into Equations 
(7)-(9) and (20) then gives the pressure, density, temperature and magnetic field in 
terms of their spatial variations. It is convenient to define the dimensionless pressure, 

P = P/Po. (26) 

Inspection of Equation (7) shows that Equation (25) can be rewritten, 

d/~r~ 2 d/-~r d 2/-~r ~ K[/q(¢)]  
~ - ]  M I [ ¢ , Z ] +  de  -~M2[&,Z]+K[I- : I (¢)]  + 

+/3R2[¢, Z ]  O~ P[/-)(¢), Z ]  = 0. (27) 

It becomes apparent that integration with respect to & gives the relation between 
pressure and magnetic field across field lines. 

3. The Schliiter-Temesvfiry Sunspot 

In the Schliiter and Temesvfiry (1958) model of the sunspot, the ansatz is made that 
the vertical component of the cylindrically symmetric field obeys the similarity law, 

Bz(r, z)= Bz(0, z )D[ hr~(hz )l/ V(O) , (28) 

where D and ( are functions of one variable. We have inserted the constant h for 
later convenience. In other words, the ratio of the vertical component Bz (r, z) to its 
central intensity Bz (0, z) at the same depth depends on z only by a scale factor ~'. The 
field is untwisted and the azimuthal component Bo is zero. The field lines in the 
0 = constant plane are given by 

hr~(hz) = constant (29) 

while 1 / (  describes the dependence of the diameter of the flux tube on z. The 
particular case of 

Bz(O, z) = Bo¢2(hz)D(O) (30) 
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was considered. Integrate the r component of Equation (1), 

B (OBr OB~.)_4~.OP=o 
~\ 3z Or ] Or ' 

(31) 

with respect to r over the range from 0 to co. Impose the boundary condition that B 
vanishes at infinity to obtain 

co 

d2( f D2(a)~ dcr-½D2(0)( 4= 4¢r -B-~[p(oo, z)-p(0, z)]. 
0 

(32) 

The run of pressure with height at the sunspot axis and at infinity therefore 
determines ~ which in turn completely determine Bz through Equations (28) and 
(30). In this model, then, the sunspot field may be studied theoretically without 
having to obtain the full distributions of pressure, density and temperature. 

Let us relate the above model to the analysis of Section 2. Identify the contours of 
constant O with the contours defined by Equation (29), that is, set O to be a function 
of hr((hz). For the sake of neatness of mathematical expressions in the equations we 
will derive, let 

where 

O = R2F(Z) ,  (33) 

F ( Z )  = ( 2 ( h z ) .  (34) 

In terms of the function H defined in Equation (4), it follows from Equations (28) 
and (30) that 

1 OH 
R OR - ~ , ,~ ,  ,-.r.~<,-~,~ ~ 2 t . , ) S J L J X g  ~ L ) I  ' (35) 

which upon integration, becomes Equation (19) with 

4) 

/-t=½ f D(O 1/2) dO. 

0 

(36) 

Direct computation of M[¢,  Z],  M2[0 ,  Z ]  and R 2 [ 0 ,  Z ]  puts Equation (27) in the 
form 

d/-]r] d2F d / - I d 2 / ~ [ l { d F ~  2 
+4F2] + 

d ¢ ]  d-Z-~+d¢ d¢ 2 I F  ~dZ] ¢ 

1 OK OP 
+~g~-~-  F + fl~-~ = 0. (37) 
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Integration with respect to ~b gives 
,/, 

r 4 
d(~i L2FkdZI J \dZI  J t ~ - )  d~b[~-~ 2F + 

0 

4~ 

+ I ° ,  
0 

where Q(Z) is an arbitrary function. This integral defines P in terms of the free 
functions F, K, Q, and/~ (or D in Equation (35)). Going back to Equations (7) and 
(26), the temperature O is determined in terms of another free function Po. In the 
final step, Equations (7)-(9) and (20) give the explicit variation of the plasma and 
magnetic field in space. 

Since Bo = 0 in the Schliiter-Temesv~iry model, set K = 0 in Equations (20) and 
(38), 

d/-I( dF F) B=B0~-~- -R~-~,0,2 , (39) 

~ - /  L2FtdZ/ 4~ 

+ I'd/~'2 r d2F 1 (dV~2] /-gg) d~[fi-Z 2 F ~ J  j+ne=O. (4O) 
0 

A little algebra transforms Equation (40) into the form 
q~ 

dF 2 np+½(B/Bo)2+ f ldI:I\ 2 Fd2F 1 ( ~ _ ) ] = O  (40') t~) d'~L~ 2F 
0 

which exhibits the balance of pressure against both magnetic pressure and field 
tension. The last term on the left side is the field tension. The Schli~ter-Temesv6ry 
Equation (32) is contained in Equation (40). For an isolated flux tube, B vanishes at 
R = co. Setting R = 0 and oo successively in Equation (40) and taking the difference, 

oO 

" 2 2 dF 2 d/1 

It-a;) ~'L~ 2F -(~)<,=o 
0 

= - f l iP(w,  Z ) - P ( 0 ,  Z) I .  (41) 

Then use Equations (34) and (36) to express d/-I/d~b and F in terms of D and ~" and 
Equation (32) is reproduced. In fact, Equation (40) contains the complete informa- 
tion on all possible equilibria having the field geometry (33). 
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We look at the full solution of the following field geometry first considered by 

Schliiter and Temesvgry  (1958): 

1 
F = a 2 + Z - - - - - ~ ,  (42) 

where a is a constant parameter .  The field lines R2F = constant are sketched in 

Figure 1. We have a bundle of lines extending to infinity in both directions and 

r ,q  

1 m 

0 - -  

= ~-~1 

7-½) 

Fig. 1. 

1 2 

R / a d  ½ 

Field geometry of the Schliiter-Temesv~ry sunspot. 
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constricted into a narrow waist at Z = 0. At infinity, the lines are straight as though 
radiating from a monopole at the origin. The field lines are perfectly symmetrical 
about the plane Z = 0 as evident from Equation (42). 

Put Equation (42) into Equation (40), 

/ d H ]  2 [ 2Z20 2 
tiP = Q-\-d--c~] [ ( a 2 ~ )  3 + (a2 +ZZ) 2] + 

4~ 

f (d_d__7/-~ } 2 F 6Z 2 2 
+ J \ O t p /  d 0 [ ( a Z + - z 2 ) 3  (a2+-Z2)2] • (43) 

o 

Impose the normalisations, 
oO 

(d/-I'~ 2 1 
f \ ~ - - /  dO = ~--~, (44) 
o 

where 7/ is a constant. Schliiter and Temesv~ry set r /= 1 to obtain the simple 
expression for the pressure difference, 

3 
/3 [p(oo, Z)  - P(O, Z) ]  = (a 2 + Z~)3 • (46) 

For the present we leave r/unspecified. The function 

d_O 
d0 exp (-r /0)  (47) 

satisfies the above normalisations. Substitute it into Equation (39), 

/ \ R 2 RZ 1 
B = 2Bo exp ~ - r / ~ )  [(a2--~2)2, O, a2 +Z2 ] , (48) 

which is a magnetic field whose vertical component at a fixed height has a gaussian 
decline over a radial distance proportional to r/-1/2. This is an attractive feature 
consistent with observation (Bumba, 1960). Using Equation (47) and redefining the 
function Q(Z), Equation (43) becomes 

1-20 + 2 -  (2/r/) a2[(3/r/)-  20]] (49) /3P(R,Z)=/3p(oo, Z ) -exp ( -Z r /O) [ . - ( -~ -+ -~  ~ (a2+Z2)3 j .  

The pressure is composed of a component equal to the external pressure and another 
arising from its interaction with the magnetic field. 

Magnetic fields in the photosphere clump into concentrated fluxes of kilogauss 
fields. The flux diameters range from a few hundred kilometers for the narrow tubes 
making up the general photospheric field to two orders of magnitude larger for the 
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sunspots. It had been suggested that the field concentration is localised in a thin layer 
below the photosphere (e.g. Schliiter and Temesvfiry, 1958; Parker, 1977a). The 
situation is as shown in Figure 1 where the narrow waist is located near the 
photospheric level and the constriction is the result of local cooling and compression 
by the normal photospheric pressure outside. We now generate a solution for a 
moderate sized sunspot. With P given by Equation (49), Equations (7)-(9) and (26) 
give 

r214 + 1- ( i / r / ) ]  a2[(3/r/)-2&]] p=po{P(oo, Z)-~-lexp(-2rlqb)t ~2-_t_-- ~ q ~ j } ,  (50)  

OP(c~ ,Z)  /3_iexp(_2r/~b) x 
P = Po OZ 

[8Z[~b + 1 - (1/~/)] + 6 a 2 Z [ ( 3 / ~ 7 ) -  2q5]] 

T = To(P /po) / (p /po ) .  

(51) 

(52) 

The external pressure P(oG Z) is in pure hydrostatic equilibrium with gravity and 
decreases with height. Its derivative is negative and the first term on the right side of 
Equation (51) is therefore positive and in fact is the external density. The choice of 
p(eo, Z)  is limited to functions such that p and P, and hence T, do not take negative 
values in the domain & -> 0 and -oo < Z < oo. This requirement sets lower bounds on 
both the external pressure and its gradient at each height Z. The bound on the 
pressure is the minimum required for field confinement while the bound on its 
gradient ensures that it is sufficient to support the weight of plasma along field lines. 
Notice that all terms in Equations (50)-(52) which depend on the magnetic field 
through & are of bounded variation in the domain 4~ _> 0 and -co < Z < oo. Many 
choices of p(oo, Z)  are available such that p and p are positive in the domain of 
interest. Moreover, these magnetic field dependent terms vanish for large Z showing 
that the magnetic field exerts negligible force on the plasma outside the region of the 
narrow waist. The field is largely potential in the far away region. 

Before proceeding further, let us give meaning to the parameters 7/ and a. 
Equation (48) shows that the magnetic field strength is proportional to exp (-r/q~) 
and the field line r/~b -- 1 may be taken to be the flux tube boundary, which is the 
curve, 

R = r/-1/2 (a 2 + Z 2 )  1/2 , (53) 

shown in heavy line in Figure 1. At large Z, this curve makes an angle of tan -1 r/-1/2 
with the vertical. The width of the flux tube at its waist is rl-1/2a and it follows that the 
smaller a is the narrower is the waist for the same inclination angle. Observation 
suggests that the inclination angle at the edge of the sunspot umbra is about 30 ° 
(Treanor, 1960; Nishi, 1962; Adam, 1963; see also Henoux, 1963). We shall follow 
Schliiter and Temesvfiry (1958) in setting r/= 1 corresponding to an inclination angle 
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of 45 ° . This choice of parametric value simplifies the expressions in Equations 
(50)-(52). 

Let us take the external pressure in the neighbourhood of the waist of the field to 
be due to a plasma of 5000 K and identify the reference pressure P0 to be the external 
pressure at Z = 0. We recall from Equations (12) and (13) that the physical length 
scale of the system is h-1 which is determined by the reference temperature To. Set 
To = 5000 K and the external pressure is given by 

p(oo, Z)  = exp ( - Z ) .  (55) 

Equations (50)-(52) with 7/= 1 become 

2& a2(3-2&)]  
p=po{exp(-Z)-/3-texp(-26)[(a2--+--Z2)2 + (a2+Z2)3 j} ,  (56) 

• [ 8 Z ~ b  6aZ Z (3 -  2~b) ] / 
P=Po" exp ( -Z ) - / 3 -1exp ( -2qS)_ (ae+z2 )  3q" (--"~TZ--~ J J '  (57) 

24, . a2(3-2qU] ] 
exp ( -Z) - /3 -1exp ( -2~b)  (a2+Z2)2t-(-~-+--Z~J l 

T =  To [ 8 Z ~ b  6a2Z(a_2~b)] [ .  (58) 
exp ( - Z ) - / 3  -1 exp (-2~b) (a2---~2)3 + ( - - - ~ ~  -jj 

Let us discuss the qualitative properties of this solution. Take the density along the 
flux axis, 

Pe ,=o=Po[exp(-Z)- /3  -x 18a2Z ] (59) (a2 +Z2)4j • k 

Compared to the normal photosphere at the same height, density at the flux axis is 
depleted for Z > 0. The surface of constant density therefore has a depression in the 
flux and this in the Wilson effect (Tandberg-Hanssen, 1967). Surfaces of constant 
density are defined by p[d~(R, Z), Z ]  = constant. If we set Z = a in Equation (57), it 
is easy to show that as ~b decreases from infinity to zero, density decreases mono- 
tonically from its external value. The surfaces of constant density in the neighbour- 
hood of Z = a each has a simple depression at the flux center. Of the two ~b 
dependent terms in Equation (57), the term in (a 2 + zz)  -3 dominates for sufficiently 
large Z and the minimum density at a given height is no longer located at the flux 
center but has shifted to a ring around the flux center. The central depression of the 
surfaces of constant density at these heights contains a local maximum which by 
virtue of Equation (59) does not rise above the surface at infinity. 

The Wilson effect is caused by the temperature being lower in the flux tube where 
the density scale height is accordingly smaller. Temperature varies as follows on the 
level Z = 0, 

Tz=o = To[1-/3 -1 3 exp (-2~b)/a4]. (60) 
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As the flux axis is approached from infinity, temperature drops from To = 5000 K to 

T~= 0 = To(1 _ _ / 3 - 1  3/a4). (61) 
Z = 0  

The magnetic field is concentrated by the larger pressure of the hotter exterior. To 
illustrate this basic effect, we note from Equation (48) that the total flux through the 
level Z = 0 is just Bo apart from numerical factors since the radius of the flux at  this 
level is a. Fix the total flux as well at the external pressure po. The parameter/3 
defined in Equation (14) is also fixed. Then reducing the central temperature Te~= o 

Z = 0  

corresponds to reducing the radius of the flux tube, and the mean field B~=o of 
Z = 0  

Equation (48) is enhanced according to direct compression. This compression effect 
is reflected by the pressure distribution at the level Z = 0, 

Pz =o = po[1 - / 3 - i  3 exp ( - 2 4 ) / a  4]. (62) 

It has the same dependence on ~b as Tz=o since pz=o on this level is independent of ~b. 
The photosphere is to be taken at Z ----Z0 where Zo is a positive constant to be 

constructed as follows. As noted earlier the 4~ dependent terms in Equations 
(50)-(52) are bounded in the domain ~b -> 0 and -oo < Z < oo. For a large enough/3 
with p0 fixed, p and O can be made positive everywhere below a given height because 
of the rapid rise of e-Z for negative Z. In the lower depths, the constituents of the flux 
tube do not differ from the external plasma, a point noted by Schliiter and 
Temesvfiry. The cool region of the flux therefore does not extend more that a depth 
equal to the product of a with the density scale height h-I .  Above the given height, p 
and p rapidly become negative because of the same mathematical property of e - z  
This only means that the external pressure must be continued smoothly in this region 
into another function of Z that decreases suitably less rapidly with height than e - z  
This corresponds to requiring the external temperature to rise from 5000 K, in the 
upper part of the atmosphere, which is a well known feature of the solar atmosphere. 
Assume that this construction has been done for the level Z = Zo, the pressure at the 
flux axis is 

p¢=o=Po[exp ( - Z ) - / 3  -1 3a2 ] (a 2 + Z2)3 j • (63) 

Using Equations (14), (15), and (48), it can be written as 

poP(oo, Z )  = poP(O, Z)  + 3 a 2 " B  2"  . 

Look at the pressure balance at Z = 0 first, 

+ 3 ( B 2 )  (65) 
poP(oG 0) =poP(0, 0) 2 \8~r/~=o 

Notice the factor 23- indicating the pressure difference for confinement must exceed 
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the magnetic pressure Ba/8~ -. This is due to the fact that external pressure has to 
counteract field tension. Observation of the sunspot shows that at the photosphere,  
the field strength is about 1000 to 3000 G with a magnetic pressure comparable to or 
exceeding the normal photospheric pressure. It is clear from Equation (64) that the 
pressure difference decreases with height from the Z = 0 level and can fall below the 
magnetic pressure at the same height. It is therefore natural to set the photosphere 
Z = Z0 to be the level where the external pressure is comparable to the magnetic 
pressure at the flux axis. What was baffling previously how the sunspot field strength 

is greater than could be accounted for by p + B 2 / 8 ~ - = c o n s t a n t  has a simple 
explanation. At the photosphere,  the field approaches being potential and the 
moderate fanning out of the field lines gives a Lorentz force less than the magnetic 

pressure. 

1.0 

0.8 I-- \ \ \ ' - - -  z = zor 
\ \ z = 6.50 

r / x  \ \ ',.----Z = 6.00 
0.6 r - / \  4.00 

r \ 2.00 
0'4 I ~ . ~ ~  Bz(R,Z)/Bz(R,O) - 

0 I 
0 1 2 3 

Fig. 2. Profiles of pressure and the vertical magnetic field component. 

We carried out the above construction for a = 5 and the results are displayed in 
Figures 2, 3, and 4. We take the photospheric density to be 1.5 x 1017 particles cm -3 

at the temperature of 5000 K. The pressure external to the flux tube at the 
photosphere is therefore 105 dynes cm -2. The magnetic field strength at the centre of 
the flux tube is set at 1500 G. With these numerical values, the photospheric level is 
located at Z0 = 7.07 in the above solution. The flux tube then has a diameter of 
2600 km at the photosphere,  about the size of a medium sunspot. 

A few remarks about the manner in which the figures have been plotted. In 
Equation (33) where F is defined by Equation (42), 4) = constant traces individual 
field lines. At  any given level, F is fixed and 4) measures the square of the distance 
from the flux axis modulated by the fixed value ofF.  In Figures 2, 3, and 4, the profiles 
of pressure, density and temperature are plotted against ~b for different levels. When 
any one of these thermodynamic variables is read against a fixed value of ~b, we will be 
following the particular variable along a field line through different levels. At a fixed 
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Profiles of temperature. 

level, the profiles in Figures 2, 3, and 4 give the variation against the square of the 
distance from the flux axis. Since F decreases with positive Z, the same value of 
corresponds to larger radii as we move to higher levels. For  conversion to physical 
lengths, the unit length is the scale height h -1 = 150 km for To = 5000 K. 

The exponential curve in Figure 2 gives the vertical magnetic field component  
normalised to its value at the flux axis at the same level. The same profile obtains at all 
levels. Note that & - R 2 so that the profile is gaussian in R. The set of curves tending 
to the value 1 for large & give the pressure p(R, Z) normalised to the external 
pressure p(oo, Z )  at the same level. The pressure ratio at the flux axis is least at the 
photospheric level with the pressure in the sunspot centre being half the value of the 
external pressure. As we go deep below the photosphere,  the pressure ratio increases 
monotonically to unity. Five scale heights down, some 750 km to the level Z = 2, the 
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pressure at the sunspot centre is about 98% of the external pressure. The compres- 
sion of the magnetic field increases with depth as we approach Z = 0 from above as 
can be seen in Figure 1. The field strength increases with depth like F as follows from 
Equations (33) and (42). It is easy to see that the magnetic pressure increases with 
depth less rapidly than the exponential external pressure. Because of this, the 
differential between the pressure at the sunspot centre and the external pressure 
decreases as we go below the photosphere inspite of the enhancement of 
the magnetic field compression. Extrapolating from the external photospheric 
pressure of 105 dynes cm -2 downward, we obtain 108 dynes cm -2 for the pressure 
at Z = 0 whereas the magnetic field increases from its photospheric value of 
1500 G (equivalent to about 105 dynes cm -2) to 4400 G (equivalent to about 
106 dynes cm -2) at Z = 0. Figure 3 gives the density p(R, Z) normalised to the 
external density p(oo, Z)  at the same level. On any level Z > 0, the density decreases 
as we approach the sunspot centre from the ouside. It is the depletion of the density in 
the sunspot that gives rise to the Wilson effect. The Wilson effect is small in this 
solution; a depression of less than a scale height in the photosphere in the sunspot is 
obtained if we were to look at the contour surfaces of constant density. Figure 3 also 
shows that the density ratio increases to unity as we go deep below the photosphere 
along the sunspot axis. The density in the sunspot is barely different from the external 
density some five scale heights down. In Figure 4, the temperature profile at different 
levels are presented normalised to the external temperature. Whereas both the 
external pressure and density increase exponentially with depth, the external 
temperature is constant at 5000 K. Figure 4 shows that the temperature differential is 
maximal at the photosphere Z = Zo = 7.07 with 3500 K at the sunspot centre. As we 
go down the sunspot axis, the temperature rises to 4500 K two scale heights (300 km) 
below and is practically 5000 K five scale heights (750 km) further down to Z = 0 
where the flux tube is most compressed. In these depths, the density is so large that 
only a slight local cooling is sufficient to generate the necessary pressure differential 
to confine the magnetic field. 

We have also analysed the case of a = 1 to find that the waist at Z = 0 is narrower 
and the photospheric level is located at Zo = 10. Since the waist is situated deeper 
below the photosphere, the fanning out of the field lines gives a moderately larger 
diameter for the flux tube at the photosphere, about 3000 km. The other features of 
the solution are qualitatively similar to the a = 5 solution. 

For completeness, we consider the solution for Z > Zo where the isothermal 
external temperature (55) has been continued smoothly into another function which 
declines suitably less rapidly than e-Z such as 

PI P2 
p(oo, Z) = (aZ+Z2)2 ~- (aZ+Z2)3 , (66) 

where P1 and P2 are positive constants. Equations (50)-(52) become 

[Pi-2/3-1~b exp (-24,) . P2-a2/3-i(3-2~b) exp (-2~b).] 
P --t,o[" (-'-~-~'~--~2" • ( a 2 ~  ~ j , (67) 
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[4Z[PI-2/3-1~b exp (-2,;b)] 6Z[P2-a2~-1(3-2~b exp (-2~b)].} (68) 
p = ,00] ( a ~ ~  + (a 2 --}- Z2) 4 ' 

T, I" [ P t - 2 / 3 - i #  ~ exp (-2da)](a2+Z2)+p2-a2fl-~(3-2,;b) exp (-2~b) "1 
T = o / 4 [ P , _ 2 , 8 _ i  b exp (-2qb)](a2+Z2)+6[P2-a2~-t(3-2~b) exp (-2&)J" x 

x(a2+Z2] 
(69) 

The temperature along any field line ~b = constant for Z -  0 is infinite at Z = 0, 
decreases to a minimum and then increases without bound as Z goes to infinity. The 
singularity at Z = 0 is irrelevant since the solution does not apply there and is taken 
over by the solution for the isothermal external pressure (55). Moreover, setting & 
equal to zero and infinity successively, we see that the flux centre is hotter than the 
exterior which is consistent with observation (e.g. Vaiana, 1976). The temperature 
tends to the same value everywhere as Z increases. If Pt and P2 satisfy 

Pl -> e-1 , (70) 

P2---3, (71) 

p and p are positive everywhere in the region Z -> Zo. The following point should be 
noted. In Equation (49), the pressure is made up of a magnetic field dependent 
component superposed on the external pressure p(o% Z). The external pressure (66) 
declines with height at the same rate as the magnetic field dependent component of 
the total pressure. At each height, then, pressure and magnetic forces are compar- 
able in magnitude. If an even less rapidly decreasing function of Z is employed in 
place of (66), the magnetic field dependent component becomes negligible compared 
to the total pressure at some height beyond which the pressure is practically in pure 
hydrostatic equilibrium with gravity. 

4. Discussion 

We formulated the technique of generating exact magnetostatic solution (Low, 
1980a) for the situation of a cylindrically symmetric flux tube oriented vertically in a 
stratified atmosphere. The method consists of prescribing the field geometry for the 
flux followed by analytic construction of the distributions of field strength, pressure, 
density and temperature required for static equilibrium. The simplest type of field 
geometry to prescribe is one which satisfies the similarity law put forth by Schl~ter 
and Temesvfiry (1958) for their sunspot model. Wilson (1977) recently obtained an 
approximate solution by calculating the pressure, density and temperature from a 
prescribed cylindrically symmetric field using an expansion procedure. Wilson's 
solution can be obtained in closed form exactly as we show in the Appendix. 

As an application of the formulation, a particular Schlfiter-Temesvfiry field was 
treated in detail. From the distributions in space of the magnetic field and the plasma, 
many interesting properties of the sunspot can be illustrated explicitly as we did in 
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Section 3. The sunspot field is concentrated below the photosphere. The pressure is 
constrained not only by the requirement to confine the magnetic field but also by the 
requirement on its vertical gradient to support the weight of matter. Pressure grows 
exponentially with depth and in a few scale heights below the photosphere, it exceeds 
the magnetic pressure by orders of magnitude so that the pressure difference needed 
to confine the magnetic field can be created with an almost negliglible temperature 
variation. It is therefore unlikely that the cool region of the sunspot extends much 
more than a few density scale heights below the photosphere. The concentrated field 
fans out as it rises to the photosphere in consequence of the scale height effect of 
gravity on the pressure difference confining it. At the photosphere, the field 
approaches being potential. Taking into account the full relation between plasma 
pressure, magnetic pressure and field tension, the actual Lorentz force bearing on the 
photosphere is less than the force due to the magnetic pressure alone. It is well known 
that the sunspot fields have magnetic pressures comparable or even exceeding the 
normal photospheric pressure. The particular solution presented serves its purpose 
of illustrating basic properties. More realistic models of the sunspots can be 
developed through experimenting with other field line geometries than the one 
prescribed by Equation (33). 

The exact solution confirms Parker's conclusion from his analysis of slender flux 
ropes that moderate cooling over a few scale heights can effectively concentrate the 
field (Parker, 1976). As to what causes cooling our solution provides no definite 
answer since the energy equation is not treated. Parker (1974, 1975, 1976) and 
Roberts (1976) suggest that the cooling is the result of refrigeration by Alfv6n waves 
propagating out of the flux tube rather than the suppression of convective transport 
of heat (Biermann, 1941). Until it was questioned recently, the latter has been a 
popular idea for the cooling of the sunspot. The question of what cooling mechanism 
applies is being debated (e.g. Beckers, 1976; Beckers and Schneeberger, 1977; 
Boruta, 1977; Cowling, 1976; Giovanelli et al., 1978; Parker, 1977b, 1978; Roberts 
and Webb, 1978; Spruit, 1977; Webb and Roberts, 1978). It is worthwhile to 
familiarise ourselves with what possibilities there are for magnetostatic configura- 
tions to make way for a clearer discussion of both the questions of energy transport 
and mechanical stability. The fact that no exact magnetostatic solution of the sunspot 
has been available until now reflects the difficulty of the quantitative problem. For 
those static solutions that can be written in explicit forms such as the Schlfiter- 
Temesv~ry sunspot solution presented here, it will be interesting to go on to consider 
the question of stability using perturbation methods to expand the dynamical 
equations about a given static equilibrium configuration. 

We emphasise that Equation (41) contains all the possible magnetostatic equilibria 
having the field geometry (33). Through this equation and Equations (7)-(9), the 
temperature has a fixed dependence on the free functions F(Z) ,  I-7I(~), O(Z)  and 
their derivatives. We may think of p, O, and B being related by the force equilibrium 
while p and p determine T through the ideal gas law. Only within the freedom of 
arbitrarily specifying the above free functions can the temperature be varied. In 
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general, it may not be possible to adjust the temperature to satisfy a further equation 
for energy transport. This point raises the question of consistency when an energy 
equation is imposed on this type of system (e.g. Deinzer, 1965). This limitation arises 
from the similarity ansatz (28). The freedom of adjusting the temperature is less 
limited if this ansatz is given up and Equation (33) is replaced by a broader class of 
field geometries. See the Appendix for an example. In the most general case, ~b is 
completely free and any energy equation can be imposed. The advantage of the 
Schliiter-Temesvfiry similarity law is of course the simplification of the problem to 
the point where analytical methods can be used. We shall take further advantage of 
this in a paper to follow (Low, 1980b) to isolate and illustrate basic properties. In 
particular we will investigate the complication arising from field lines that are twisted 
and that do not extend vertically to infinity. It should be pointed out that the 
similarity law probably is unlikely to obtain in thick flux tubes such as a large sunspot. 
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Appendix 

We derive the integral for force balance across field lines for a slightly more general 
field geometry than the one treated in Section 3. The exact solution which Wilson 
(1977) approximated will be seen as a particular solution of this type of geometry. 
Define, 

4' = RzF(Z)  ' (A1) 

H = KR 2 + W(4'), (A2) 

where K is a constant and W is a function of one variable. The field lines projected on 
the 0 = constant plane are contours of constant H and depend on the functional form 
of W. Following the mathematical steps of Section 2, Equation (11) is transformed 
into a partial differential equation with 4' and Z as the two independent variables, 

d W \ 2 d 2 F  / d W \  d2WrL(dF~2 +4FZ ] 
K F  +-d-~- ) -~-5+~KF +--~)  - - ~  L F k d Z  ] 4' + 

+ 1 K OK+ OP 
-~- /3 ~-~ : 0, (A3) 

where P is defined in Equation (26). Notice that setting K = 0 reduces the contours 
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of constant H to the contours of constant 0. In this case, identify 
6 -= 4) and W(O) -= H(d~). We then have the case treated in Section 3 and Equation 
(A3) is just Equation (38). The case of a non-zero K can also be readily integrated to 
generate solutions. Take the example where 

F ~ exp ( - Z ) ,  (A4) 

W(O) = a6 + b6 2 , (A5) 

where a and b are constants. Equation (A3) becomes 

[K exp ( - Z )  + a + 2b6] 2 exp ( - Z )  +. 

+ 2b [K exp ( - Z ) +  a + 2bO] [exp ( -Z)O + 4 exp ( -2Z) ]  q- 

+ l K O K e x p  ( - Z )  + / 3 ~ =  0.  (A6) 
6 06 

It is a straightforward integration with respect to 6 to obtain P in terms of K. Going 
back to Equations (7)-(10), we can obtain the distributions in space for the plasma 
and magnetic field. This particular solution is the exact version of Wilson's solution 
(1977). 
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