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Abstract 

A personal view of  the history of  progress in photosynthesis research beginning in the seventeenth cen- 
tury and ending in 1992 is presented in a chart form. The 350-year time span is divided arbitrarily into 
seven periods by the "development junctures," which are likened to bamboo joints. The tempo of  prog- 
ress is reflected in the duration of  the periods, starting from over 200 years for Period I, which progres- 
sively shortens in subsequent periods. This brief introduction highlights some of  the events to show the 
dynamic nature of  the progress in photosynthesis research. 

1. The development junctures in the history 
of photosynthesis research 

The history of  photosynthesis research, as in 
other fields, has made many periodic, spectacu- 
lar leaps - what we call "development junctu- 
res." Over the years, the progress of  research 
seems to be gradual, but actually it is not as 
gradual as it seems. In the course of  research, at 
some point or another, one often faces a "wall," 
beyond which nothing can be seen. At that 
point, transcending all the accepted ideas, some 
extraordinarily talented scholars begin to devel- 
op new experimental materials, procedures, and 
analytical methods, by which they break through 
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the wall which had blocked further progress of  
research at the time. This leads to a "break 
through" by the efforts of  the leading scholars 
who follow, and great progress is then made pos- 
sible. As time goes by, another wall appears, and 
another group of  talented scholars lead to another 
development. Thus, current understanding of  
photosynthesis has passed through many devel- 
opment junctures (which may be likened to the 
joints in bamboo). 

To some of  us, it may seem rather difficult or 
even impossible to divide the progress of  photo- 
synthesis research into several well-defined 
stages, considering its rapid developments in re- 
cent times encompassing many diverse areas. 
However, in order to fully understand the present 
stage of  photosynthesis research, we need to 
comprehend what really led to certain discover- 
ies; how much effort was behind a certain idea at 
the time it was presented; how subsequent re- 
search on that topic followed. Furthermore, it is 
very important to judge the impact of  certain er- 
roneous ideas; how they confused subsequent 
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research for a while; and delayed the progress of 
the field. 

With the above in mind, we present here 
several outstanding development junctures dur- 
ing the history of  photosynthesis research and 
attempt to view the history of photosynthesis by 
dividing it, perhaps somewhat arbitrarily, into 
seven broad periods as the chart that follows this 
brief introduction shows. 

2. P r o g r e s s  o f  p h o t o s y n t h e s i s  r e s e a r c h  

2.1. Period I (From the beginning of  the recogni- 
tion of  photosynthesis to ca.  1880) 

This is the period when each element of 
photosynthesis, i.e. the nature of the components 
that are used as well as produced in the process, 
became established either by observations or by 
simple experiments. Thus the pioneering works 
during this period led to the generally accepted 
outline of photosynthesis. This period was cul- 
minated by the publication by the German scien- 
tist J. Sachs (1859-1862; 1.18 [see ref. list]) of a 
treatise "Pflanzenphysiologie," that included 
discussions on the physiological aspects of pho- 
tosynthesis. His work was followed up by his 
pupil W. Pfeffer (1874-1892; 1.19), who also 
coined the term "photosynthetic assimilation." 

2.2. Period II (ca.  1880 - ca.  1910) 

The central figure in the research of this pe- 
riod was the English physiologist F. F. Black- 
man, who analyzed the relative rates of 
photosynthesis as affected by the various fac- 
tors, and the interrelationships between them. 
He investigated in detail the relationship of the 
rate of  photosynthesis and CO 2 concentration, 
light intensity, and temperature. As a result, he 
initiated the concept of  a "limiting factor" 
(1905; II.2), which advocates that photosynthe- 
sis is not a simple photochemical reaction, but 
includes a reaction stage which does not require 
light. Later, this idea was tested by many re- 
searchers, the results were mixed, but in the end 
this theory was accepted. 

Another trend during this period was the re- 
search on chlorophyll itself. Although it was re- 
cognized early (Dutrochet 1837; I. 10) that chlo- 
rophyll was an important factor in photosynthe- 
sis, it was Willstfitter and Stoll who attempted 
to explain the mechanism of photosynthesis 
through the various chemical characteristics of 
chlorophyll. Willst~itter and Stoll published 
" Untersuchungen iiber Chlorophyll" (1913; II.3) 
and "Untersuchungen iiber die Assimilation der 
Kohlensdure" (1918; II.8), providing enormous 
amounts of information (both chemical and opti- 
cal) on chlorophyll extracted from green leaves. 
However, in order to explain definitively and 
substantively the central role chlorophyll plays in 
photosynthesis, it is necessary to have knowl- 
edge on photosynthesis in other areas. This 
knowledge was lacking in those days. Thus, it 
was premature to study photosynthesis from the 
angle of chlorophyll chemistry alone. 

Engelmann (1883; II.4) and Winogradsky 
(1887-1888; II.5) discovered photosynthetic 
bacteria, which have turned out to be important 
materials for current research in photosynthesis. 
During this period, we find an example of a mis- 
leading and erroneous hypothesis that was in- 
spired by von Baeyer's research on formaldehyde 
(1864; II.9); many fruitless experiments were 
done in order to prove that formaldehyde was the 
initial carboxylation product formed in photosyn- 
thesis. This was a futile attempt and his hypoth- 
esis was later rejected by the experiment using 
carbon isotope 14C. 

2.3. Period III (ca. 1910 - ca.  1938) 

Otto Warburg (October 8, 1883 - August 1, 
1970) was the center of research activities during 
this period. Until his research, knowledge con- 
cerning the photosynthetic process was frag- 
mented and mostly qualitative. Warburg perfect- 
ed the manometer to enable the measurement of 
gas exchange accurately (1919-1920; III.2), and 
introduced the unicellular green alga, Chlorella, 
as a new experimental material. This alga is not 
only easy to cultivate but also easy to handle in 
large quantities. Moreover, unlike higher-plant 



leaves used in the past, there was no need to 
worry about the problem of opening and closing 
of the stomata or gas diffusion; it became an ex- 
cellent and popular experimental material for 
photosynthesis research. Warburg also studied 
systematically and quantitatively the inhibition 
of photosynthesis by using various toxic chemi- 
cals, thus opening a way to analyze photosyn- 
thesis through its inhibition by known chemi- 
cals. However, because of  his arrogance, he ig- 
nored some of  the new information obtained by 
others. Sometimes, by presenting an erroneous 
theory, such as the unreasonably high quantum 
yield of  photosynthesis, he disturbed the scien- 
tific world of  his days, and even delayed the 
progress of the field. Nevertheless, in our opin- 
ion, he was a giant in photosynthesis research 
and made numerous contributions. 

Warburg, using the new experimental mate- 
rial (Chlorella) and the new measuring method 
(manometry), pursued his research vigorously 
and confirmed the mechanism that photosynthe- 
sis consists of  (1) a light reaction in which light 
participates directly, and (2) a dark reaction 
where light does not participate directly (1919- 
1920; III.2). 

Influenced by his father, Emil Warburg, a 
scholar in optics, Otto Warburg was familiar 
with optical instruments, which he introduced 
effectively into the research of  photosynthesis. 
He set up new measuring equipment and mea- 
sured, for the first time, the maximum quantum 
yield of  photosynthesis (1922-1923; III.3) and 
conducted flashing-light experiments (1919- 
1920; III.2). Later, many scholars worked in the 
areas pioneered by Warburg and established an 
important main stream of contemporary photo- 
synthesis research. However, Warburg's ex- 
tremely high quantum yield of photosynthesis 
were subsequently challenged by his own stu- 
dent Robert Emerson: the value is now settled as 
0.12 in favor of Emerson (IV.5). 

Another main stream of  this period was the 
general formulation of photosynthesis advocated 
by van Niel (1929; 111.9). He made good use of a 
suggestion by Thunberg (1923; III.10) that pho- 
synthesis is a redox system involving CO 2 re- 
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duction and H20 oxidation, and came up with the 
general equation for photosynthesis. In other 
words, the main function of photosynthesis is 
CO 2 reduction by hydrogen donors. The hydro- 
gen donor may be different depending on the 
organism which performs the photosynthesis, but 
the process of CO 2 reduction is the same in all 
photosynthetic organisms: 

In the case of plants and cyanobacteria (oxygenic): 

CO 2 + 2 H20 + hv -~ [CH20 ] + O~ + H~O 

In the case of photosynthetic bacteria (anoxygenic): 

CO 2 + 2 H2S + hv --~ [CH20 ] + 2 S + H20 

or CO 2 + 2 H 2 + hv --~ [CH20 ] + H20 

General equation for photosynthesis is then: 

CO 2 + 2 H2A + hv --~ [CH20 ] + 2 A + H20 

Although the concept of  redox reactions was also 
provided by Wurmser (1925-1930; III.8), van 
Niel's work is clearly responsible for research on 
photosynthetic bacteria that followed this period 
(however, see Gest [1993] under 111.9). The idea 
of van Niel was singularly responsible for the 
modern thinking on the mechanism of photosyn- 
thesis. Soon after the establishment of  this uni- 
tary concept of photosynthesis by van Niel, the 
very important new concept of the "chlorophyll- 
containing photosynthetic unit" was advanced by 
Emerson and Arnold in 1932 (III.4). This con- 
cept continued to gain strength (Arnold and 
Kohn [1934; IV.7]; Gaffron and Wohl [1937; 
IV.8]; and Wohl [1937-1941; IV.8]). 

2.4. Period IV (ca.  1938 - ca.  1954) 

During this period many new streams sprang 
up in the history of photosynthesis research. One 
of them was the discovery of what we call the 
"Hill reaction" by Robin Hill (1937-1939;IV.24). 
Oxygenic photosynthesis takes place in chloro- 
plasts of plant cells. However, in the suspensions 
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of extracted (non-intact) chloroplasts obtained 
by grinding plant leaves, the ability to perform 
normal photosynthesis is lost although Jensen 
and Bassham later (1966; IV.33) succeeded in 
preparing active intact chloroplasts which can 
perform CO 2 fixation. Under the usual circum- 
stances, the decomposition and complete recon- 
struction, which were very effective means for 
studying fermentation and respiration, could not 
be easily applied to photosynthesis research. 
However, Hill, by adding an oxidizing agent to 
the chloroplast preparation extracted from green 
leaves, found the photochemical oxygen-evo- 
lution reaction (1937-1939; IV.24) and thus a 
way into research in the biochemistry of chloro- 
plast components and reactions. Later, many 
scholars pursued research in this direction by 
expanding the work on the Hill reaction. 

Another major breakthrough was the intro- 
duction of the radio-isotope 14C and much prog- 
ress was made in the analysis of carbon assimi- 
lation in photosynthesis. Sam Ruben and co- 
workers had pioneered research in this direction 
(1939-1940; IV.30). They added CO 2 labeled 
with carbon isotope 1~C (half-life: 20.38 min.) to 
barley and found that plants have the ability to 
perform CO 2 fixation without light. After Ru- 
ben, Martin Kamen and others utillized the car- 
bon isotope ~4C which has a long half-life 
(ca. 5730 years), remarkable progress was made 
in the analysis of the path of carbon in photo- 
synthesis. The two major research groups in this 
field were the Berkeley group (Melvin Calvin, 
Andy Benson, James Bassham, and others; see 
IV.31) and the Chicago group (Hans Gaffron, A1 
Fager, and others; see IV.32). 

During this period, the research areas open- 
ed up by Warburg became increasingly active. 
Robert Emerson and his group determined the 
relationship between the quantum yield of pho- 
tosynthesis and the wavelength of light used 
(1943; IV.6); they discovered the "red drop" in 
photosynthesis: far red light, by itself, was inef- 
fective in photosynthesis. This discovery was 
followed by Emerson's discovery, in Period V, 
of the "Enhancement effect" that led to the con- 
cept of two-light reactions in photosynthesis. 

2.5.  P e r i o d  V (ca. 1954  - ca. 1968)  

From about 1950, photosynthesis research 
methods became increasingly precise, and colla- 
boration by plant physiologists and physicists 
with chemists became a commonplace. Biophy- 
sics and biochemistry led to an analysis of the 
mechanism of photosynthesis at the molecular 
level. This was a golden period for photosyn- 
thesis research. 

A major achievement concerned the area of 
biophysics: the use of rapid light-induced differ- 
ence absorption spectroscopy, i.e. through the 
introduction of improved experimental instru- 
ments utilizing the concepts of flash photolysis 
pioneered by Porter and Norris (Witt and co- 
workers [1955; V.31]; Kok and coworkers [1959; 
V.32]) and those dealing with steady-state light 
(Duysens 1952; IV.10). With these techniques, it 
became possible to trace small absorption 
changes of reacting species and to explore prima- 
ry changes in reaction-center chlorophylls or 
bacteriochlorophylls (the discovery of P870 by 
Duysens [1952; IV.10] and Clayton [1963; 
VI.19]; and that of P700 by Kok and coworkers 
[ 1956;V.33]). Essentially, all intermediates (e.g., 
cytochromes, quinones, etc.) could be finger- 
printed by this difference absorption method. 

Another major achievement concerned with 
biophysics was the introduction of the electron- 
paramagnetic-resonance technique which enables 
the detection of unpaired electrons produced by 
light excitation (Commoner and coworkers 
[1956; V.34]; Calvin and coworkers [1957-1962; 
V.20]). This technique, like absorption spectro- 
photometry, has many advantages: it is a non- 
invasive technique; it is possible to analyze orga- 
nelles in vivo, without destructive effects. It dem- 
onstrated an absolute advantage in exploring a 
majority of intermediates (e.g., reaction-center 
chlorophylls, semiquinones, iron-sulfur centers, 
etc.). 

On the other hand, classical methods (e.g., 
manometry) led to the discovery of the Emerson 
enhancement effect by Emerson and his group 
(1957; V.7). Hill and Bendall proposed the mo- 
mentous Z-scheme of photosynthesis. The c o n -  
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cept of the two photochemical systems was 
born, and the two-photosystem concept was im- 
mediately confirmed experimentally by several 
groups (Kok and Hoch [1959-1961; V.14]; 
Duysensetal .  [1961; V.15]; and Witt etal. 
[ 1961; V. 16]). Subsequently other explorations 
of the two photosystems, both by biochemical 
and biophysical methods, expanded photosyn- 
thesis research tremendously. Many important 
papers were published one after another: discov- 
ery ofplastocyanin (Katoh, 1960; V.48); pho- 
tosynthetic NADP ÷ reduction (Arnon and co- 
workers (1951; IV.29); study of the r61e of cy- 
tochrome in photosynthesis (Duysens, [1955; 
V.49]; Chance and Nishimura [1960; V.50]); 
and the discovery of electron ttmneling in bacte- 
rial cytochrome oxidation (DeVault and Chance, 
1966; V.51). 

Another pioneering contribution during this 
period was that by A1 Frenkel (1954; V.44) and 
by Dan Arnon and coworkers (1954; V45), who 
independently discovered photophosphorylation. 
These findings were pivotal in the later studies 
on the mechanism of energy conversion in pho- 
tosynthesis. A few years later, Mitchell pro- 
posed the "chemiosmotic hypothesis" (1961; 
V.46) to explain ATP formation in mitochondria 
and chloroplasts. 

The field of fluorescence of chlorophyll 
prospered during this period. Following the dis- 
covery of quenching of photosystem-II fluores- 
cence by photosystem-I light (Govindjee et 
al., 1960; V.42), Duysens and Sweers (1963; 
V.43) proposed that electron acceptor Q, lo- 
cated between the two photosystems, was a 
quencher in its oxidized state, but not in its re- 
duced state. The non-Q related chlorophyll-a 
fluorescence change was discovered in several 
laboratories during this period. Furthermore, the 
temperature dependence of emission spectra 
down to 4 ° K, analyzed by Cho and Govindjee 
(1966-1970; V.30), revealed the validity of 
Frrster's theory (1948; IV.15) on resonance 
excitation energy transfer in photosynthesis. 

Much progress was also made in the analy- 
sis of the carbon cycle, and, around 1954 Calvin 
and Benson established a general principle of 

the cycle (V.57). There followed the discovery of 
a new carbon pathway in C4 plants by Kortschak 
and coworkers (1965; V.60) and by Hatch, Slack, 
and Johnson (1967; V.61), and research in this 
area made excellent progress. 

Although research using electron microscopy 
began in the early 1940's, continued refinements 
(Steinmann, [1952; IV.3], Frey-Wyssling [1953; 
IV.4], and Menke [1962, 1965; V.6]) and devel- 
opment of new techniques such as negative 
staining (Brenner and Home, 1959; V.4), and the 
freeze-etch technique (Moor, Miihlethaler, Wal- 
dner and Frey-Wyssling (1961; V.5) provided a 
detailed and beautiful picture of what we know 
today about the structure of thylakoids from 
higher plants, cyanobacteria and photosynthetic 
bacteria. 

2.6. Period VI (ca. 1968 - ca. 1980) 

After going over the various periods, we no- 
tice a rather interesting point. As the years pass, 
the intervals of the development junctures span- 
ning the periods in this history chart that follows 
become increasingly shorter. This means the 
progress of learning has become faster and at the 
same time it suggests that the events marking the 
development junctures are inevitable. Viewed 
from the juncture around 1968, it is also clear 
that photosynthesis research has stepped into the 
molecular domain. 

An example of the effect of the development 
of the techniques of flash-kinetic spectrophoto- 
metry and the EPR spectroscopy is the remark- 
able results produced in this period. This started 
with the discovery of P680 [1969; VI.28] and 
X320 (QA) [1968; VI.29] by Witt and coworkers, 
followed by the discovery of P430 (Hiyama and 
Ke [ 1971; VI.35]), the discovery of photosystem- 
I iron-sulfur centers (Malkin and Bearden [ 1971; 
VI.36]); and the discovery of electron acceptor 
A 2 (FeS-X) by Mclntosh et al. (1975; VI.37). 
Thus the molecular species involved in the pho- 
tochemical reactions in photosynthesis became 
clear. 

As mentioned earlier, the discovery of the 
Emerson enhancement effect led to the idea of 
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the existence of two photochemical systems in 
photosynthesis. Combining this idea with the 
concept of the "photosynthetic unit," another ma 
jor progress was seen in the substantive analysis 
of the relationship between the structure and 
function in photosynthetic systems. The "photo- 
synthetic unit," a rather statistical and vague con 
cept, could now be looked upon as real pigment- 
protein complexes. The research in this direction 
includes: the attempt to separate subchloroplast 
particles representing the two photosystems 
(Wessels [1962; V. 10]; Boardman and Anderson 
[1964; V. 11]; and Vernon and coworkers [1965; 
V.12]); the electrophoretic separation of the 
pigment-protein complexes by Ogawa, Obata 
and Shibata (1966; V.17) and by Thornber and 
coworkers (1966; V.18); separation and recon- 
stitution of photosystem-I and -II particles 
(Huzisige and coworkers [1969; VI.8]; Briantais 
[1969; VI.9]; and later by Ke and Shaw [1972]; 
and by Lam and Malkin [1982] (see under VI.9). 

The pioneering work on the isolation and 
characterization of the bacterial reaction center 
by Reed and Clayton [1969; VI.19] ushered in a 
new period of new and exciting developments. 

In the field of analysis of photosynthetic 
oxygen evolution, which had been lagging in 
progress, new advances also began to appear. 
The important achievements were the discovery 
of a period-of-four change in oxygen evolution, 
in a series of light flashes, and the advocacy of 
the linear four-step mechanism for photosynthe- 
tic oxygen evolution (Joliot and coworkers 
[1968-1969; VI.40]; Kok and coworkers [1970; 
VIA1]). It became clear that four oxidizing 
equivalents accumulate on a charge accumulator 
before water is oxidized to 02 and protons. Lat- 
er, this accumulator was shown to be in a man- 
ganese complex. 

The mechanism of energy transformation 
was analyzed in depth during this period and 
spectacular results were obtained: manifestation 
of membrane potential as electrochromic band 
shifts (Junge and Witt [1968; VI.50]; Jackson 
and Crofts [1969; V.51]); the role ofubiquinone 
in cyclic photophosphorylation in photosynthet- 
ic bacteria was observed (Horio and coworkers 

[1968; VI.49]). Another important development 
was the discovery of the two-electron gate at the 
quinone site, first in photosystem II (Bouges- 
Bocquet [1973; VI.44]; Velthuys and Amesz 
[1974 VI.45]) and then in photosynthetic bacteria 
(Vermeglio and Clayton [1977; VI.46] and 
Wraight [1977; VI.47]). 

On another front, there was much progress 
in the direction of genetic analysis of photosyn- 
thetic systems: namely, the identification of the 
nuclear gene for LHCII (Kung, Thornber and 
Wildman [1972]; VI.1); isolation and sequenc- 
ing, respectively, of the psbA gene for the QB 
(D1) protein by Bedbrook et al. (1978; VI.2) and 
Zurawski et al. (1982; VI.3), and sequencing of 
the RuBPCase gene by McIntosh et al. (1980; 
VI.4). 

2.7.  P e r i o d  VII  (ca.  1980  - present )  

In 1985, Fish, Kfick and Bogorad found two 
genes (psaA and psaB) which encode the high- 
molecular-weight polypeptides in the P700-con- 
taining heterodimer of photosystem I (VII.l). 
Similar discoveries soon followed for a number 
of higher plants, eukaryotic algae and cyanobac- 
teria (VII.2). The knowledge thus derived on the 
amino acid sequences of the psaA and psaB gene 
products had a tremendous impact on the studies 
of structure and function of the P700 complex. 
The recent avalanche of works on the structure 
and function of various systems (e.g., see 
VII.25-28) through site-directed mutagenesis 
have added truly exciting new areas of research 
in photosynthesis. 

Another trigger for explosive advances was a 
major breakthrough in the structure of the reac- 
tion center by X-ray crystallography, using crys- 
tals obtained from the purple non-sulfur bacter- 
ium Rhodopseudomonas viridis, by Deisenhofer, 
Michel, Huber and coworkers [1983; VII.13]; 
and subsequently by Norris, Schiffer and co- 
workers [1986]; and by Feher and coworkers 
[1986] for Rhodobacter sphaeroides (see under 
VII. 13). Stimulated by this work, active research 
on similar structural analysis followed with other 
photosynthetic complexes: Kfihlbrandt and Wang 
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(1991; VII. 12) on the electron crystallographic 
analysis o f  the light-harvesting Chl a/b protein; 
and Witt and coworkers (1987; VII.14) and 
Ford and coworkers (1987; VII.15) and more 
recently by Almog et al. (1991; see under 
VII.15) on the photosystem-I reaction-center 
complex. Exciting new results on the crystal 
structure of  photosystem-II reaction-center com- 
plexes have already begun to appear (VII.43). It 
is apparent that results from crystal-structure 
analysis and molecular biology have a huge syn- 
ergistic impact on our understanding of  the 
structure-function relationship in the photosyn- 
thetic apparatus. 

Another development is the progress in the 
analysis of  photosystem II: the field was re- 
newed by the isolation of  the oxygen-evolving 
photosystem-II subchloroplast particles by Bert- 
hold, Babcock and Yocum in 1981 [VII.5], fol- 
lowed by the isolation of  the photosystem-II 
core complex (Tang and Ki. Satoh [1985;VII.6]; 
Ka. Satoh, Ohno and Katoh [1985; VII.7], and 
finally the isolation of  the photosystem-II reac- 
tion-center complex D1-D2-cyt-b559 (Nanba 
and Satoh [1987; VII.8]), and the demonstration 
of  a similarity as well as differences in structure 
between photosystem-II and purple photosyn- 
thetic bacteria. An extension of  this work will 
greatly advance our understanding of  the mecha- 
nism of  photosynthesis. 

The analysis of  the charge accumulator in 
oxygen evolution, mentioned above, also has 
made progress: EPR signal of  the S2-state 
(Dismukes and Siderer [1980; VII.23] and oth- 
ers [see under VII.23]) and the S3-state (Boussac 
and coworkers [1989; VII.24]); absorbance 
changes associated with the S-state changes 
(Brettel, Schlodder, Witt and coworkers [1984; 
VII.29]; Dekker, van Gorkom and coworkers 
[1984; VII.30]); involvement of  amino acids in 
the oxygen evolution enzyme (Barry, Babcock 
et al. [1987; VII.25]; Debus and coworkers 
[VII.26]; Boussac, Rutherford and coworkers 
[1989; VII.24]). 

At the present moment, the following seven 
areas form the goal of  future photosynthesis 
research: 

(1) Genetic information and its relevance to the 
biosynthesis, structure, and function of  the 
photosynthetic apparatus; 

(2) Structure and function of  the reaction 
centers; 

(3) Regulation and mechanism of  energy 
transfer; 

(4) Regulation and mechanism of  electron 
transfer; 

(5) Regulation and mechanism of  oxygen 
evolution; 

(6) Mechanism ofphotophosphorylation; and 
(7) Regulation and mechanism of  carbon 

dioxide assimilation. 

Towards these goals, various research work- 
ers, trained in diverse areas, are collaborating 
with each other and proceeding to form a huge 
network world wide, aiming at the final target o f  
integrating information so that the mechanism of  
photosynthesis may be understood at the mole- 
cular as well as organismic levels. 
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PERIOD I [ - c a .  1880]  

• Rejection of the Aristotelian dogma that plants derive 
nourishment from the soil - van Helmont (1648) [1] 

• Recognition that plants obtain nourishment from the 
atmosphere through the leaves - 
Mariotte (1679) [2]; Hales (1727) [3] 

• Observation of the emission of gas bubbles by a 
submerged illuminated leaf - Bonnet (1754) [4] 

• Discovery of the evolution of oxygen by plants - 
Priestley (1772) [5] 

• Discovery of the r61e of light and green color in plant 
photosynthesis - Ingenhousz (1779) [6] 

• "Fixed air" (CO2) is involved in photosynthesis - 
Ingenhousz (1798) [7]; Senebier (1782) [8] 

• Naming the green-plant pigment "chlorophyll" - 
Pelletier-Caventou (1818) [9] 

• Recognition of the need for chlorophyll in plant 
photosynthesis - Dutrochet (1837) [10] 

• Discovery of chloroplasts in plant cells -von Mohl (1844) [11] 

• Proposal that plants convert light energy into chemical 
energy- Mayer (1845) [12] 

• Rejection of the idea that plants are nourished by 
absorbing humus and water from the soil - 
De Saussure (1804) [13]; Liebig (1840) [14] 

• Development of methods for growing plants in sand with 
nutrient solutions - Sachs (1853) [15]; Knop (1860-1865) [16] 

• Measurement of the "photosynthetic quotient" - 
Boussingault (1864) [17] 

• Conclusion on the basic factors in 
photosynthesis; 

• Recognition of the essential function 
of chlorophyll; 

• Verification that starch is a product 
formed by photosynthesis; 

• Sachs (1859-1862) [18]; 
Pfeffer (1874-1892) [19] 

• Proposed the use of the term 
"photosynthesis" - 
Barnes (1893) [20] 



P E R I O D  II [ 1 8 8 0 - 1 9 1 0  ] 

_ Observation of the chloroplast 
grana- Meyer (1882) [1] 

Recognition of the interrelation- 
m ship between various parameters; 

Concept of limiting factors - 
Blackman (1905) [2] 

P E R I O D  III [ ca.  1 9 1 0  - ca.  1 9 3 8  ] 

• Quantitative manometry; 
• Utilization of new experimental 

material ( Chlore/la); 
• Use of inhibitors; 
• Confirmation of light and dark 

reactions; 
• Utilization of photochemical 

Isolation of chloroplasts - 
Granick (1938) [1] 

First determination of the quantum 
yield of photosynthesis - 
Warburg-Negelein (1922-1923) [3] 

Concept of 

Structure of chlorophyll and 
identity of chlorophyll from 
different species - 
Willst~itter-Stoll 
(1906-1926) [3] 

Discovery of 
photosyn~etic ba~er ia -  
Engelmann (1883)[4]; 
Winogradsky(1887)[5] 

Recognition that photosynthesis 
occurs inside the chloroplasts; 
confirmation of the 
effectiveness of light 
absorbed by chlorophyll - 
Engelmann (1881-1882) [6] 

Molisch reaction - 
Molisch (1896) [7] 

apparatus - First flash experiments - _ photosynthetic 
- Warburg (1919-1920) [2] unit - Warburg (1911-1920) [2] 

First attempt on 
chlorophyll synthesis - 
Fischer (1926-1945) [5] 

Interpretation of the primary 
photochemistry of photo- 
synthesis as a light-induced 
oxido-reduction process - 
Wurmser (1925, 1930) [8]; 
van Niel (1929) [9] 

Emerson- 
Arnold 
(1932) [4] 

Concept of a chlorophyll-protein complex - 
"Chloroplastinsymplex - Stoll (1936) [6] 

Parallel measurement of 
fluorescence and carbon 
dioxide assimilation- 
KautskyetaL(1931)[7] 

Cornel is  Berna rdus  van  Niel 

1897-1985 



P E R I O D  IV [ ca.  1 9 3 8  - ca.  1 9 5 4  ] 

Early electron-microscope 
study of chloroplasts - 
Kausche-Ruska (1940) [1]; 
Granick-Porter (1947) [2] 

The quantum-yield controversy - 
Warburg-Emerson 
(1939-1951 ) [5] 

Electron microscopy of 
chloroplast structure - 
Steinmann (1952) [3]; 
Frey-Wyssling - Steinmann (1953) [4] 

Dependence of quantum yield on | 
wavelength; discovery of "red drop" - J . ~  
Emerson-Lewis (1943) [6] 

Chlorophyll-containing photosynthetic unit - 
Arnold-Kohn (1934) [7]; 
Gaffron-Wohl (1936-1941 ) [8] 

Evidence that chlorophyll 
was bound to proteins - 
Smith (1938)[11] 

Parallel measurement of 
fluorescence and 
photosynthesis ° 
McAlister°Myers (1940) [14] 

Crystallization 
of chlorophyll 
lipoprotein - 
Takashima (1952) [12] 

Energy transfer 
between pigment 
molecules - 
F6rster (1948) [15]; 
Dutton etaL (1943)[16]; 
Duysens (1952) [10]; 
French-Young (1952) [17] 

Size limit for active chloroplasts - 
Thomas-Blaauw- Duysens 
(1953) [9] 

Discovery of P870 - i Duysens (1952) [10] I" 

Crystallization of 
chlorophylls - 
Jacobs et aL 
(1953) [13] 

Discovery of 
delayed 
light emission - 
Strehler-Amold 
(1951) [18] 

Introduced 
difference 
spectrophotometry - 
Duysens (1952) [10] 

R61e of Mn in 
photosynthesis - 
Pirson (1937) [19] 

Hydrogen adaptation 
in photosynthesis - 
Gaffron (1940) [20] 

Concept of the high-energy 
phosphate bond - 
Lipmann (1941) [22] 

• ) Discovery of the 
Hill reaction - 
Hill (1937-1939) [24] 

f Tracing the path of carbon in "1 
photosynthesis using radio carbon 
Ruben-Kamen-Hassid-DeVault 
(1939-1940) [30] 

Oxygen in photosynthesis 
originates in water - 
Ruben etal .  (1941) [21] 

First idea of a 
proton gradient - 
Lundeg&rdh 

Discovery of cytochrome f- 
Hill et al. (1951-1952) [25] 

Discovery of the Mehler 
reaction - Mehler (1951) [26] 

Photochemical reaction of NADP +- 
Vishniac-Ochoa; Tolmach; 
Amon et al. (1951) [27,28,29] 

The path of carbon 
in photosynthesis - 
Calvin-Benson et al. 
(1945-1954) [31]; 
Gaf f ron  et al. ( t 9 4 5 - 1 9 5 1 )  [32] 

(1946) [23] 



P E R I O D  V [ ca.  1 9 5 4  - ca.  1 9 6 8  ] 

Discovery of chloroplast DNA - 
Ris-PIout (1962) [1]; Chun et al. 
(1963) [2]; Sager-lshida (1963)[3] Development of the freeze-etch Chloroplast 

Development of negative staining - technique - Moor-M0hlethaler- structure - 
m Brenner-Home (1959) [4] Waldner- Frey-Wyssling Menke et al. 

(1961) [5] (1962) [6] 

Discovery of the Emerson • Separation of photosystem-I Isolation of P700-Chl a 
enhancement effect - Proposal of the Z scheme - ~ >  and -II particles - Wessels (1962) [10]; protein complex - 
Emerson and coworkers m HilI-Bendall (1960) [9] Boardman-Anderson (1964) [11]; Thornber eta/. (1969) [13] 
(1956-1960) [7] ' , Vernon and coworkers (1965) [12] 

• ~ ~ ]  ~ Crystallization of a 
Evidence for two-Ught reactions - Electrophoretic separation of BChl a-protein - 

Discovery of the "chromatic ¢~>  Kok-Hoch (1959-1961) [14]; ~ >  the pigment-protein complexes - Olson etal. (1969) [19] 
t r a n s i e n t "  - Blinks (1957) [8] Duysens (1961) [15]; Ogawa-Obata-Shibata (1966) [17]; 

Witt-M011er-Rumberg (1961) [16] Thornber-Smith-Bailey (1966) [18] 
Reversible bleaching of P870 at 1" K - 
Arnold-Clayton (1960) [21 ] 

EPR signal of oxidized P870 
Sogo, Calvin et aL 
(1957-1959) [20] 

Synthesis of chlorophyll a - 
Woodward and coworkers 
(1956-1960) [22] 

Photochemical reactions of 
_ _  chlorophyll and pheophytin - 

Krasnovsky-Voynovskaya (1951 ) [24]; 
Evstigneev-Gavrilova (1954) [25] 

Preparation of a water-soluble chlorophyll-protein - 
Yakushiji eta/. (1963) [23] 

Different 'forms" of chlorophyll - Relationship between 
Atbers-Knorr (1937) [26]; fluorescence and 
French et al. (1957) [27]; ~ energy transfer- 
Litvin-Krasnovsky (1957) [28] Murata-Nishimura- 

Takamiya (1966) [29] 
Bessel  K o k  

Temperature dependence 
of energy transfer - 
Cho-Govindjee 
(1966-1970) [30] 

Development of 
flash kinetic 
spectrophotometry - 
Witt (1955) [31]; 
Kok (1959) [32] 

Discovery of P700 - . 
Kok (1956) [33] 

Application of the EPR technique to photosynthesis studies - 
Commoner et al. (1956) [34] 

1918-1979  Mn f u n c t i o n s  in 

Analysis of oxygen evolution using flash illumination - 
Allen-Franck (1955) [35]; Whittingham-Brown (1958) [36] 

Discovery of ubiquinone - 
Morton (1956) [39]; 
Green et aL (1956) [40] 

• Discovery of photo- 
phosphorylation in 
chromatophores - 
Frenkel (1954) [44] 

Photophosphorylation 
in chloroplasts - 
Amon et aL 
(1954) [45] 

photosystem II - 
Kessler et a~ 

Discovery that Hill reaction is influenced by CO 2 - (1957) [37] 
Warburg-Krippahl (t958, 1960) [38] 

Quenching of photosystem-II Proposal that Q is the photosystem-II 
Discovery of plastoquinone - -- fluorescence by photosystem-I primary electron acceptor - 
Crane (1959) [41] light - Govindjee eta/. (1960) [42] Duysens-Sweers (1963) [43] ! 

• Peter  Denis  Mitchel l  

rChemiosmotic ' pH-gradient-induced 
theory - ATP synthesis - 

Jagendorf-Uribe 
• . Mitchell (1961) [46] (1966) [47] 

Discovery of plastocyanin - .7-- Duysens (1955) [49]; 
Katoh (1960) [48] / Chance-Nishimura (1960) [50] 

1920- ! 992 

Analysis of cytochrome photooxidation - Discovery of electron tunneling 

Discovery of the Discovery of PPNR - 
methemoglobin reducing factor - 
Davenport et aL (1952) [52] San Pietro-Lang (1956) [ 5 3 ]  

in bacterial cytochrome oxidation - 
DeVault-Chance (1966) [51] 

Discovery of ferredoxin - Study of ferredoxin-NADP +- 
Mortenson et al. (1962) [54]; m reductase - 
Tagawa-Amon (1962) [55] Shin-Tagawa-Amon (1963) [56] 

. •  Calvin-Benson-Bassham cycle " L  
Calvin-Bassham (1954) [57] J 

I 
Discovery of photorespiration - 
Decker (1955) [59] 

I 

Photoactivation 
of RuBPCase- 
Bassham and coworkers (1966) [58] 

Discovery of the Kortschak-Hatch-Slack 
pathway- Kortschak et al. (1965) [60]; 
Hatch-Slack-Johnson (1966) [61] 



P E R I O D  VI  [ ca.  1 9 6 8  - ca.  1 9 8 0  ] 

Nuclear gene for LHCII identified - ~ psbA gene for QB protein (D1) ~ RuBPCase gene sequenced - 
Kung-Thomber-Wildman (1972) [1] isolated - Bedbrook et al. (1978) [2]; Mclntosh et aL (1980) [4] 

• . sequenced - Zurawski et aL (1982) [3] 
Model for the pnotosynthetic mem~)rane - Lateral asymmetry in thylakoid membrane - 
Miller et al. ; Staehelin et al. (1976-77)[5,6] Andersson-Anderson (1980)[7] 

Separation and reconstitution of Separation and analysis of Isolation of the oxygen-evolving photosystem-II Photosystem II 
photosystem-I and -II particles ~ photosystem-II subchloroplast 
Huzisiga et aL (1969) [8]; particles - Huzisige (1972) 
Bdantais (1969) [9] [10]; Satoh-Butler (1978) [11] 

Isolation of the light- 
harvesting Chl a/b protein - 
Thornber etal. (1971) [16] 

Discovery of 
phycobilisomes - 
Gantt (1969) [15] 

f Isolation and ~ Subunit structure 
analysis of the of the bacterial 
bacterial reaction center - • 
reaction center Okamura-Steiner- 
Reed-Clayton Feher (1974) [20] 
(1969) [19] 

I 
Discovery of P680 and X320 - 
DSring, Witt and coworkers l 
(1969) [28]; / 
Stiehl-Witt (1968) [29] ,} 

particles from thermophilic cyanobacteria - _ _  heterogeneity - 
m Stewart-Bendall (1979) [12]; and from red Melis-Homann 

alga - Gantt- Clement-Montral (1983) [13] (1975-1976) [14] 

X-ray crystallography Discovery of 
of a BChl a-protein - ~ chlorosomes - 
Fenna-Mathews (1976) [17] Staehelin et al. 

(1978) [18] 

Discovery of BPheo as the intermediary 
electron acceptor in photosynthetic bacteria - 
Dutton etal. (1975) [21]; Fajer etaL (1975) [22]; 
Parson and coworkers (1975) [23]; 
Shuvalov-Klimov (1976) [24]; 
van Grondelle et aL (1976) [25] I ~  

Discovery of the photosystem-II 
primary electron a c c e p t o r -  
pheophytin - Klimov et aL 
(1970) [32] 

Discovery that P680 
is a quencher of Chl a 
fluorescence - 
Butler (1972) [30]; 
Mauzerall (1972) [31 ] 

Pdmary electron donor Discovery of P430 (FeB-A/B) - 
t---" P700 is a "special pair" - ..... 

~ J  Norris-Katz and ,,,,, Hiyama-Ke (1971) [35] 
coworkers (1971-79) [34] 

Discovery of photosystem-I Discovery of the electron acceptor FeS-X - 
iron-sulfur centers FeS-A/B - Mclntosh-Chu-Bolton (1975) [37] 
Malkin-Bearden (1971) [36] 

Loss of oxygen-evolution rThe linear four-step mechanism for~ 
activity correlated with loss ]photosynthetic oxygen evolution - 
of Mn - Cheniae-Martin I Joliot etal. (1968-1969) [40]; l 
(1966) [39] ~Kok et al. (1970)[41] ) 

Split EPR signal of 
BPheo.Fe2÷Q A- 
Leigh-Dutton (1972) [26]; 
Feher et aL (1974) [27] 

\ 
Split EPR signal of 
Pheo.Fe2+Q A- 
Klimov et aL 
(1980) [33] 

EPR signal Ilvf attributed 
to electron donor to P680 + 
Blankenship-Babcock-Warden- 
Sauer (1975-1976) [38] 

Relation of thermoluminescence 
to the "oxygen clock" - 
Inoue et al. (1976) [42] 

Tris inactivation of photosystem II 
and its reactivation - 
Yamashita-Butler (1968) [43] 

Two-electron gate on the acceptor 
side of photosystem II - 
Bouges-Bocquet (1973) [44]; 
Velthuys-Amesz (1974) [45] 

RSle of ubiquinone in cyclic 
photophosphorylation in 
photosynthetic bacteria - 
Horio et aL (1968) [49] 

Photooxidation of 
cytochrome b 5 5 9 - ~  
Knaff-Arnon 
(1969) [52] 

Two-electron gate in photosynthetic 
bacteria - Vermeglio (1977) [46]; 
Wraight (1977) [47] 

Membrane potential and the 
electrochromic band shift - 
Junge-Witt (1968) [50]; 
Jackson-Crofts (1969) [51 ] 

Superoxide formation and 
dismutation- 
Asada-Kiso (1973) [59] 

RuBPCase subunit structure and Regulation of carbon 
biosynthesis - Kawashima-Wildman metabolsim - 
(1968) [62] Miyachi and coworkers 

(1970) [63] 
Regulation mechanism of the Carbon isotope discrimination 
Kortschak-Hatch-Slack cycle - m in photosynthesis - 
Hatch-Slack (1969 review) [65] Smith-Epstein (1971 ) [66] 

CO2-effect of Warburg is located 
at the two-electron gate of 
photosystem II - 
Govindjee and coworkers 
(1975, 1976)[48] 

Rieske Fe2S 2 in 
photosynthetic Q-cycle - 
bacteria and Mitchell 
chloroplasts - (1976) [57] 
Prince et al. (1975) [55]; 

Isolation of cytochrome b6f complex - 
Nelson-Neumann (1972) [53]; 
Hurt-Hauska (1981 ) [54] 

Crystal structure of plastocyanin - ---1 Malkin-Aparicio (1975) [56] 
Colman et aL (1978) [58] l 

u 

RSle of thioredoxin (Td) and m u m  Crystal structure of 
Fd-Td-reductase - Buchanan thioredoxin - 
et al. (1967-1976) [60] Holmgren et aL (1975) [61] 

Carboxylase/oxidase 
functions of Rubisco - 
Bowes-Ogren-Hageman 
(1971 ) [64] 

Discovery of the peroxisomes - Tolbert et al. (1968) [67] 



P E R I O D  V I I  [ c a .  1 9 8 0  - ] 

psaA/psaB genes for P700-protein (maize) characterized - 
~F ish-K0ck-Bogorad (1985) [1]; and others [2] 

Leucine-zipper motif in the psaA/psaB heterodimer - 
Webber-Malkin (1990) [3]; K6ssel et al. (1990) [4] 

I Isolation of the  
Isolation of oxygen-evolving Isolation of the oxygen-evolving | D 1-D2-Cyt-b559 

-- photosystem-II particles from photosystem-II core complex - m |  complex ~- 
spinach - Berthold-Babcock- Tang-Satoh (1985) [6]; | Nanba-Satoh 
Yocum (1981) [5] Satoh-Ohno-Katoh (1985) [7] [ (1987) [8] 

Reversible phosphorylatJon of LHC and ~ Electron crystaflographic anaIysls 
regulation of excitation-energy distribution - of the light-harvesting Chl a/b-protein 
Bennett-Arntzen-Steinback-Allen et aL complex- K0hlbrandt-Wang (1991) [12] 
(1977-1981) [11] 

r X-ray structural analysis of ~ Crystallization of the photosystem-I 
~ l  the bacterial reaction center "1 reaction-center complex - 

| Deisenhofer-MicheI-Huber Witt et al. (1987-1993) [14]; 
L (1982) [13] Ford et al. (1987) [15] 

PSI/PSll stoichiometry - 
Me l i s  eta/. ( 1 9 8 8 )  [9]; 
Graan-Ort-Whitmarsh 
(1986-1990) [10]  

Picosecond measurement of charge separation in photosystem II - 
Wasielewski and coworkers (1989) [16] 

P700 chlorophyll 
may be chlorophyll a' (?)- 
Watanabe 
and coworkers 
(1985) [17] 

_ EPR signal of the S2-state - 
Dismukes-Siderer (1980) [23] 

Absorbance changes associated 
with S-state changes - 
Brettel-Schlodder-Witt (1984) [29]; 
Dekker-van Gorkom et aL (1984) [30] 

Herbicide inhibits photosystem 
by displacing Q B  " 

Velthuys (1981) [33]; 
Wraight (1981) [34] 

Identification of the 

electron acceptor A 1 - Resolution and reconstitution 
Brettel etal. (1986) [18]; 
Mansfield-Evans (1986) [19]; of PSI protein subunits - 
Ikegami and coworkers (1987) [20]; Golbeck-Bryant and 

coworkers (1990-1992) [22] Biggins-Mathis (1988) [21]; 
EPR of the S 3- Tyrosine is the Tyr-161 (-160) is Z (D) 
state - ~ electron donor Z - m (electron donor) to P680 + 
Bousaac et aL Barry-Babcock Debus et al. (1988) [26]; 
(1989) [24] (1987) [25] Metz et al. (1989)[27]; 

Vermaas et aL (1988) [28] Manganese involvement in Interpretation 
photosynthetic oxygen of thermo- 
evolution measured by luminescence - 
EXAFS - Klein, Sauer and DeVault et aL (1989) [32] 
coworkers (1984) [31] 

Isolation of Cyt-bcl 
complex - 
Gabellini et aL 
( 1 9 8 2 )  [35]  

Isolation of genes of the 
Cyt-bc I and Cyt-bef complexes - 
Daldal et aL (1987) [36]; 
Hauska et al. (1988) [37] 

Preparation and characterization 
of site-directed mutants of the 
Cyt-bc~ complex - 
Daldal and coworkers (1992) [38] 

Crystal structure of Fd-NADP+-reductase - 
Karplus et al. (1988) [39] 

Discovery of 
act|vase - 
Salvucci et aL 
(1985) [40] 

3-dimensional structure of Rubisco 
from Rsp rubrum - Schneider- 
Lindqvist-Br&nd6n-Lorimer (1986) [41 ] 

Carbon isotope discrimination 
correlates with water-use efficiency - 
Farquhar-Richards (1984) [42] 
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