
T H E  P H A S E  V A R I A T I O N S  OF T H E  S O L A R  CYCLE 

R. H. D I C K E  

Joseph Henry Laboratories, Physics Department, Princeton University, Princeton, NJ 08540, U.S.A. 

(Received 10 July, in revised form 27 September, 1987) 

Abstract. It has previously been shown that the statistics of the phase fluctuation of the sunspot cycle are 
compatible with the assumption that the solar magnetic field is generated deep in the Sun by a frequency 
stable oscillator and that the observed substantial phase fluctuation in the sunspot cycle is due to variation 
in the time required for the magnetic field to move to the solar surface (Dicke, 1978, 1979). It was shown 
that the observed phase shifts are strongly correlated with the amplitude of the solar cycle. It is shown here 
that of two empirical models for the transport of magnetic flux to the surface, the best fit to the data is 
obtained with a model for which the magnetic flux is carried to the surface by convection with the convection 
velocity proportional to a function of the solar cycle amplitude. The best fit of this model to the data is 
obtained for a 12-yr transit time. The period obtained for the solar cycle is T = 22.219 _+ 0.032 yr. It is shown 
that the great solar anomaly of 1760-1800 is most likely real and not due to poor data. 

1. Introduction 

The solar cycle is quite irregular with the period between sunspot maxima varying from 
7 to 17 years. But statistically the distribution of periods favors the existence of a stable 
oscillator, with a variable but limited phase shift in the output signal (Dicke, 1978, 1979; 
Gough, 1980; Newkirk, 1984; Bracewell, 1985). The source of the solar magnetic field 
may be a high Q magnetofluid dynamic oscillator, deep in the Sun, and the variable 
phase shift may be due to variations in the time required for the generated magnetic flux 
to move to the solar surface. 

The random walk in phase expected from a relaxation oscillator, an oscillator without 
a resonator, is not observed (Dicke, 1978). With such an oscillator, phase errors should 
be propagated indefinitely into the future. 

A crude measure of the time required for the magnetic flux to move to the solar surface 
is obtained from the largest phase shift observed. This occurred about 1788 when the 
sunspot maximum arrived 6 years too early. If the above model is correct, substantially 
more than 6 years is required for the magnetic flux to move to the surface from the deep 
solar interior. 

It has been shown that the phase shift in the output signal of the hypothetical solar 
cycle oscillator is not completely random but is strongly correlated with the variable 
amplitude of the 22 yr (Hale) sunspot cycle (Dicke, 1978, 1979). The sign of the 
correlation is consistent with the assumption that the magnetic flux moves to the surface 
most rapidly when the amplitude of the sunspot cycle is greatest. It was previously 
assumed that the phase shift is proportional to the amplitude of the solar cycle (Dicke, 
1979). 

In the absence of a working dynamic theory of the solar cycle, it is too much to expect 
a convincing quantitatively correct physical explanation of the observed statistical 
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correlation. But general characteristics of acceptable transport mechanisms might be 
stated. 

Transport mechanisms appear to fall in two broad classes: (1) where the flux is in 
isolated tubes which, by magnetic buoyancy, float upward through the fluid to the 
surface and (2) where the flux is carried upward in moving fluid, convected toward the 
surface. 

Parameterized empirical models could be introduced to represent each of these 
general mechanisms and the parameters could be adjusted by least squares to give the 
best fit to the data. Also, these empirical models could be intercompared to see which 
gives the best fit to the data. 

It must be emphasized that the existence of a satisfactory empirical model does not 
necessarily imply that an analogous physical model must exist. The first mechanism to 
be discussed is the 'magnetic buoyancy model'. The magnetic buoyancy of thin toroidal 
flux rings could cause them to float to the surface (Parker, 1955). Then the mean transit 
velocity would be expected to be a function of the magnetic pressure. 

It might reasonably be assumed that the mean magnetic pressure is a monotonically 
increasing function of the amplitude of the solar oscillation at the time the flux is 
generated. This solar cycle amplitude is not observed at the solar surface until the flux 
arrives there. Thus the deviation of the flux transit time and the change in the solar cycle 
amplitude should occur synchronously. This could account for the correlation of phase 
shift with amplitude and it would give the correct sign for the correlation. But it is not 
obvious that there should be the previously assumed linear relationship between the 
phase shift and amplitude. 

A more general assumption, that the mean transit velocity is proportional to a power 
of the amplitude of the solar cycle, A - s includes the linear relation as a special case. 
The transit time, or phase shift, should then vary as A s. The solar cycle amplitude, A, 
should be evaluated at the time of arrival of the flux tube at the surface. (For a discussion 
of the calculation of A, see below.) 

An alternative mechanism for transporting magnetic flux to the surface is provided 
by the 'convective model'. The flux might be transported upward convectively, such as 
by the large azimuthal convective rolls recently recognized in the solar velocity field 
(Snodgrass, 1987; LaBonte and Howard, 1980). It is assumed that the magnetic field 
strength of the flux carried convectively is relatively weak and that magnetic buoyancy 
becomes important only near the the solar surface, where the flux becomes concentrated 
in tubes and the field strength is large. 

If the velocities of the convective rolls are affected by magnetic stresses at the solar 
surface the mean transit velocity might be a function of the solar activity, again measured 
by the amplitude of the solar cycle. 

The dependence of the phase of the solar cycle on the amplitude of the cycle could 
provide useful information about the magnetic flux transport mechanism. Any satisfac- 
tory physical mechanism should give a relation between phase and amplitude compatible 
with the observations. Obviously this must also be true of a parameterized empirical 
model if it is to correspond to a believable physical model. But, as noted above, the fact 
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that an empirical model works provides no guarantee that a satisfactory physical model 
of this type can be found. 

In the discussion below the convection hypothesis and the buoyancy hypothesis are 
designated hypotheses H I and H 2, respectively. 

2. The Sunspot Data 

Eddy (1976) has emphasized that the annual mean sunspot numbers for the years prior 
to the discovery of the solar cycle may be questionable for they were constructed years 
later from the published literature and from archival maps. He has characterized the 
data for 1818-1847 as 'good' and for 1749-1817 and 1700-1748 as 'questionable' and 
'poor', respectively. 

One particularly worrisome point is that in part of this 'questionable' period the phase 
deviation is found to be remarkably large. Sonett (1983) has characterized this large 
irregularity of the solar cycles of 1760-1800 as the great solar anomaly. He has noted 
that in addition to the anomalously large phase shift during this period (Dicke, 1970) 
there is a large amplitude change. 

The cause of the 18th century anomaly is not known. There are at least two possible 
explanations. The anomaly may be a real but not presently understood physical 
phenomenon or it may be due to poor data (Sonett, 1983). But whatever the cause, the 
anomalous data should be omitted before attempting to examine the relationship 
between the phase and the amplitude of the solar cycle. 

If because of inadequate data the validity of the sunspot data of the late 18th century 
is questioned, then the data of the early 18th century must be especially questioned. 

To avoid the questionable data the sunspot numbers prior to 1817 are ignored in 
making a least-square fit of a sunspot function to the data. The resulting fitted function 
can then be extrapolated backward to test the goodness of this fit to the data in the range 
1700-1816. 

Fig. 1. 
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The annual mean Hale sunspot numbers plotted as points and the computed amplitude of the solar 
cycle, A(t ) ,  plotted as a curve. 



174 R.H. DICKE 

Fig. 2. 
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The solar cycle function, F(t), computed under hypothesis H 1 together with the Hale annual sunspot 
numbers. 

To our great surprise it is found that the data of the first 6 decades of the 18th century 
are accounted for as well by this extrapolated fitted function as the 19th and 20th century 
data used to obtain the function. This suggests that the early data may be better than 
is sometimes thought and that the 'great anomaly' may be physically meaningful and 
not due to poor data. 

The basic adopted data are the magnetic (Hale) annual sunspot numbers, R(t), for 
which the signs of the sunspot numbers for successive (11 yr) half-cycles are changed 
(Braceweil, 1953). The years of sunspot minima yield the dividing points for sign change. 

The procedure breaks down for the annual mean sunspot minima themselves. Here 
roughly equal contributions come from the new and old half-cycles and the separate 
contributions, which should be of opposite sign, are unknown. To avoid this difficulty 
the minimum sunspot numbers are redefined as the linearily interpolated values obtained 
from the preceeding year and the following year's numbers (of opposite sign). 

For the years 1700-1960 the annual mean sunspot numbers are obtained from 
Waldmeir (1961) with the first 15 years corrected as suggested by Eddy (1976). For the 
years 1961-1986 a NOAA (1986) report is the source of the data and the 1986 value 
is an extrapolation. The sunspot numbers R(t) are plotted as points in Figures 1 and 
2. The 22 yr Hale sunspot cycle is evident. 



THE PHASE VARIATIONS OF THE SOLAR CYCLE 175 

3. The Fitted Sunspot Function 

The form adopted for the calculated sunspot function, F(t), includes both first and third 
harmonics of the frequency v - (1/22) yr -  i. This provides a better fit to the data, R(t), 
than the simple sinusoidal fit previously used (Dicke, 1979). 

The solar cycle amplitude, A(t), is first calculated from R(t) as a(t), a moving 23 year 
r.m.s, estimate of the ampfitude: 

a(t) = x / f ( R 2 ( t -  11) + R Z ( t -  10) + . . .  + R2(t  + 11))/11.5]. (1) 

A(t) is obtained from a(t) by filtering with a zero-phase shift low-pass filter, passing 
the frequency band 0 < v < 0.043 yr -  1. Neglecting the small plus/minus asymmetry of 
the solar cycle, only odd harmonics of v - 1/23 yr -  1 would be expected in R(t). But then 
the expected value of A2(t)  is the sum of the squares of the amplitudes of these 
harmonics. This sum is predominantly the contribution from the first harmonic with 
only a small contribution from the third harmonic. The amplitude function A(t) is plotted 
as a curve in Figure 1. 

The computed sunspot function, F(t), is given by the least-squares fit ofF(t)  to R(t), 
where F(t)  is given by: 

F(t) = A(t ){C o + C 1 cos[2rcv(t - 1899) + ~(W( t ,  s, ~) - W)] + 

+ s~ sin[...] + C3 cos3[...] + $3 sin3[...]}. (2) 

The phase term, ~(W( t ,  s, ~) - W), in the arguments of the trigonometric functions, 
is discussed below. 

In the analysis it is assumed that in the period 1817-1986 the errors in R(t) are 
normally distributed and that the variance, 0 -2, is independent of t. 

As noted above, the least squares fit of F(t)  to R(t) is limited to the time period 
1817-1986. To improve the convergence of the nonlinear fit of the frequency, v, 1899 
is chosen as the time zero in the arguments of the trigonometric functions. 

Under hypothesis HI, that the magnetic flux is conveyed to the surface in convective 
rolls, the convective motion might reasonably be assumed to be a function of the solar 
cycle amplitude, A(t). 

This function is assumed to be a constant plus a power, s, of A(t). It will be assumed 
that the radial component of the fluid velocity is 

dr/dt = f (r ,  O) [A(t) ~ + C] . (3) 

Integrating (3) along a trajectory of the convective motion from the source of the 
magnetic field to the solar surface yields 

"c'[{A(t) s} + C] = dr / f  (r, O(r)) , (4) 

where z' is the transit time and {A(t) s } is the mean ofA(t) ~ over the transit interval, z'. 
A(t) is defined only for integral values of t and the above mean value is approximated 
as the average of the current value ofA(t) ~ with the previous z values. Here z is the integer 
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closest to the average of z' over the period 1817-1986. In this period the phase 
fluctuation is observed to be of the order of 1-2 years, relatively small compared with 
the decade or more expected for the transit time (see above). 

From Equation (4) the change in transit time, ~z, due to 'switching off' the solar 
activity, i.e., setting {A s} = 0, is 

~ = ~ ' { ~ s } / c .  (5) 

Assuming that bz ,~ z', bz is proportional to W = {AS}. 

The phase shift term appearing in the brackets of Equation (2) is assumed to be 
~ ( W ( t ,  s, z) - W), where the mean, W, evaluated for the range 1817-1986 is included 
to improve the convergence in fitting for ~. To find the optimum choice of the parameters 

�9 , s, and z, they are adjusted by least squares along with the other parameters Co, C1, 
C 3, S 1 , $3, and v. In the fit, zis limited to positive integral values. The results for these 
least square fitted parameters are given in the first 2 lines of Table I, H = 1. The resulting 

function F(t)  is plotted as a curve in Figure 2 along with the sunspot numbers R(t) ,  

plotted as points. 

T A B L E  I 

Leas t - squares  fits a 

H C 0 C 1 C 3 S 1 S 3 1~ i~ �9 T 

(cycle y r -  1 ) (year) 

1 0.051 0.051 - 0 . 9 6 2  0.101 0.187 0.04501 0.0670 0.710 12 

+ 0.012 + 0.019 + 0.017 + 0.018 + 0.017 + 0.00007 + 0.0042 

2 0.056 0.062 - 0.956 0.097 0.177 0.04521 - 14.4 - 0.350 (0) 

+ 0.014 + 0.022 + 0.019 + 0.020 + 0.020 + 0.00007 + 1.2 

3 0.059 - 0.046 - 0.942 0.128 0.096 0.04571 (0) 

+ 0.018 + 0.027 + 0.026 + 0.026 + 0.026 + 0.00008 

See Equa t ion  (2). 

The other hypothesis, H a , that magnetic flux rings float buoyantly to the surface was 
discussed in the Introduction. The mean transit velocity, and reciprocal transit time, 
adopted there is proportional to A -s, where A is to be evaluated at the time of arrival 
of the magnetic flux at the solar surface. 

The above assumption, that under hypothesis H 2 the phase varies as A s, does not 
require any change in the functional form of Equation (2), providing that the constraint 
z = 0 be imposed. It should be emphasized that the constraint z = 0 is imposed only 
to obtain the correct functional form for the phase term, ~ ( W ( t ,  s, "c) - W) and does 
not imply that the average transit time is zero under hypothesis H 2. The parameters of 
the function F, fitted to R(t)  under/ /2  are given in the third and fourth lines of Table I, 
H = 2 .  
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Expressing the phase shift in time units, the transit time under H2 is 

�9 ' = - ~ A S / 2 ~ v .  (6) 

For the typical values A = 50, 100, and 150, ~' = 13.0, 10.2, and 8.8, respectively. 
It is of interest to compare the above two least-square fits with the fit made without 

the phase term present, hypothesis H 3. This least-squares fit is made with the constraint 
~b = 0. The results of this fit are given in the fifth and sixth lines of Table I, H -- 3. 

The errors given in Table I are only formal, treating A(t)  as an externally determined 
variable. Allowing for the degrees of freedom required to define A(t),  the above standard 
error estimates should be increased by ~ 2 %. 

Under the hypothesis H 1 the term ~ ( W ( t ,  s, ~) - W) seems adequately to describe the 
phase variation in the period 1817-1986. There is no indication of a random walk in 
phase, for the small phase deviations which appear are of short duration and are not 
propagated into the future. Also the large phase error found in the 'great solar anomaly' 
disappears abruptly. 

4. Likelihood Ratios 

We would like to have many sets of data which could be used to test an hypothesis. 
Instead we have only one set of solar data against which alternative hypotheses can be 
tested. The likelihood ratio of 2 alternative hypotheses is a convenient statistic which 
can be used to decide whether or not there is a statistically significant difference in the 
quality of the two fits. 

The likelihood, L, of a fit of a function F (0  to a data set R(t)  is conveniently defined 
through its logarithm 

- 2 In(L) = N l n ( 2 n a  2) + Z 2 . (7) 

Here N = 170 is the number of data points, and Z 2 and a have their usual meanings. 
A maximum likelihood fit of F(t) to R(t)  is obtained by varying the parameters Co, Ca, 
C 3, S 1, S 3, v, ~, s, z to minimize (7). Also a is included as a parameter to be varied. 
The results obtained for the first 9 parameters are the same as those obtained from the 
least-square fit and the value obtained for o-is the r.m.s, residual of the fit. This implies 

that Z 2 = N. The 3 values of a obtained for the hypotheses H1, H2, and //3, are, 
respectively, a = 14.324, 16.313, and 21.964. The corresponding maximum likelihood 
value of L is given by the expression 

L = ( 2 7 ~ a 2 e )  - N / 2  . (8) 

The ratio of likelihoods for two different hypotheses, e.g., H 1 and H3, is 

L 1 / L 3  = (0"1/O"3) - N "  (9)  

From Equation (9) it is evident that the fits H = 1 and 2 are much better than H = 3 
and that hypothesis H~ is better than H 2. 

An important question is whether or not there is a statistically significant difference 
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between the fits under H 1 and H 2. This can be answered using Wilks theorem (Wilks, 
1938). With the constraint z -- 0, H 2 can be interpreted as the null hypothesis with H 1 
as the alternative hypothesis. 

The Wilks statistic is 

W *  = - 2  ln (L2 /L1)  = 2 N l n ( a 2 / a l )  = 44.21. (10) 

If the null hypothesis H 2 is true and the sample is large, W* has a chi-squared distribu- 
tion with 1 deg of freedom. A Z 2 as large as 44 is highly improbable and it is likely that 

H 2 can be rejected. 
The residuals obtained under H 1 are found to be normally distributed. Using a 

chi-squared test, the distribution of residuals is divided into 17 blocks of equal expec- 
tation and a Z 2 = 12 is obtained with 16 deg of freedom. Thus the hypothesis that the 
distribution is non-normal can be rejected. 

5. The Great Solar Anomaly 

The curve F(t) plotted in Figure 2 shows that, under hypothesis H1, the extrapolation 
of this fitted function backward 170 years to the first 6 decades of the 18th century yields 
a fit to R(t )  comparable with that obtained for the modem data. This is surprising in 

view of the characterization of these early data as 'poor'. 
Subjective bias can probably be ruled out as the source of the agreement ofF(t)  with 

R( t )  for these early data. The frequency, v, of the underlying solar oscillator and the 

phase amplitude relation were unknown when the data were compiled. As an aid in 
comparing the early and late data the squares of the residuals, (R(t)  - F(t)) 2, are plotted 
as a curve in Figure 3. To show the increase in variance under hypotheses H 2 and/ /3 ,  
the squared residuals for the second and third fits of Table I are plotted in Figures 4 

and 5. 
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Fig. 3. The square of the residuals obtained from Figure 2. The 'great solar anomaly' toward the end 
of the 18th century is obvious. Surprisingly the fit prior to the anomaly is as good as that for the 

modern data. 
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Fig. 4. The same as Figure 3 but computed under H 2. 
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Fig. 5. The same as Figure 3 but computed under H a. Under H 3 the amplitude correlated phase correction 
is omitted. Comparing Figures 3 and 4 with Figure 5 shows the large increase in the residual variance 

obtained when the phase correction is omitted from F(t). 

It should be noted that, for all 3 sets of residuals the quality of the fits for 1700-1760 
is approximately the same as for 1817-1986. This implies that these early data have 
essentially the same phase-amplitude relation as that found for the modem data. 

The large phase anomaly of the sunspot cycle during the last 4 decades of the 18th 
century, and its quick disappearance at the beginning of the 19th century have been 
discussed above. If this is the result of using 'questionable' data one might expect the 
larger phase errors to be found in the period 1798-1822 when the solar cycle was 
anomalously weak and errors relatively more important. Instead the largest phase errors 
occurred when the amplitude was anomalously large. This tends to support the sug- 
gestion that the phase anomaly is real and not due to poor data. 

The values of the mean square residuals for H1, HE, and H 3 in the interval 1700-1760 
are respectively 158,253, and 599. For the interval 1760-1800 the corresponding values 
are 3390, 4340, and 7010. For the interval 1800-1986 the values are respectively 214, 
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338, and 461. Note that the second set of variances is an order of magnitude greater 
than the third, but that the 3 ratios of the 2 sets are respectively 15.9, 12.8, and 15.2. 

The approximate constancy of this ratio shows two things: (1) that the relation 
between phase shift and amplitude seen in the 19th and 20th centuries is also present 
during the solar anomaly and (2) that the variance of the residuals is proportional to 
the variance of the signal due to phase error. This latter could be true if the noise 
component of the residual variance was negligible in comparison with an unmodeled 
part of the signal and this could be true if the phase error was imperfectly modeled in 

Equation (2). Much of the variance of the residuals may be unmodeled signal, rather 

than noise. 

6. Summary and Conclusions 

It is clear from Figure 3 that the fit of the function F(t) to the data in the first 6 decades 
of the 18th century is as good as the fit for the period 1817-1986 used to obtain the 
function. This is evidence that the large phase anomaly occurring in the interval 
1765-1800 was not primarily due to poor data but rather represents some presently 

unknown physical phenomenon. 
The hypothesis H i ,  that the mean transit velocity of magnetic flux to the solar surface 

is proportional to the sum of a constant and a power, s, of  the amplitude of the solar 
cycle averaged over the transit interval yields the best fit to the sunspot numbers for an 
average transit interval (integer) of z = 12 years and an amplitude power ofs = 0.71. The 
resulting fit to the data is substantially better than the fit under hypothesis//2, for which 
the transit velocity is proportional to a power, - s, of the amplitude evaluated at the time 
of arrival of the flux at the surface. The best fit under 1-12 is obtained for the power 
s = - 0.35. This fit implies that under H 2 the transit time is about a decade, 10.2 years 

for A = 100. 
In the original analysis (Dicke, 1979), it was assumed that the phase shift was 

proportional to the amplitude, i.e., s = 1. This yields tr = 16.784. This is only slightly 
larger than the value a = 16.313 obtained under H 2. 

It is evident from Figures 2 and 3 that, except for the great solar anomaly, the fit to 
the sunspot data is remarkably good under hypothesis H 1 and this fit yields T = 22.219 
+ 0.032 years as the period of the solar cycle. It must be emphasized, however, that this 
satisfactory fit does not necessarily imply the correctness of the underlying physical 
model which originally suggested the hypothesis H 1 . Under this model the magnetic flux 
is transported to the surface convectively, but the assumption that the convective 
velocity is proportional to a constant plus a power of the solar cycle amplitude averaged 
over the past z years is quite arbitrary. Also there could be other mechanisms for which 
the phase shift is proportional to a power of the amplitude averaged over the transit 
interval in the past. 
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