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Abstract. The behavior of the anisotropy during solar cosmic-ray events is discussed in terms of a 
simple model in which cosmic-ray particles propagate along the mean interplanetary magnetic field, 
undergoing pitch-angle scattering. It is shown, that a generalized form of the telegraph equation 
should bc used when the anisotropy is large (i.e. greater than 30%), but that the usual diffusion 
equation is adequate otherwise. The behavior of the anisotropy during the decay phase of solar 
cosmic-ray events is then considered, and several effects which can. give rise to a small persisting 
anisotropy are described. Finally, observations of solar cosmic-ray anisotropies following flares are 
reviewed and it is concluded that the simplified mathematical treatment presented here adequately 
describes some of the general features of the behavior of the anisotropy, but does not provide a 
detailed quantitative description of the particle behavior, especially during the highly anisotropic 
phase of an event. 

1. Introduct ion  

Pronounced  anisotropies of  the directional intensity are a characteristic feature of  

solar cosmic-ray events. The observed directions of  the anisotropics have been uscd 
as evidence support ing models for cosmic-ray propagat ion involving diffusion which 

is primarily along, and not  across, the magnetic-lield lines. However,  there has been 
very little discussion of  the expected temporal  variation of  the anisotropy other than 
to note that it should decay inversely with time for certain simple models of  solar 

cosmic-ray events (DORMAN, 1962; AXI,'ORD, 1965). Indeed, there is evidently some 
misapprehension concerning the status o f  anisotropies (i.e. streaming) in diffusion 

theory,  since a number  o f  authors are apparently under the impression that  the 

presence o f  anisotropies invalidates the diffusion concept entirely. 
In this paper  we discuss the behavior of  the anisotropy during model solar cosmic- 

ray evcnts in which the cosmic-ray particles propagate  along the mean interplanetary 
magnetic tield, undergoing pitch-angle scattering. Enlarging slightly upon the treat- 
ment of  AXFORO (I965) and SHlSHOV (1966), wc show that  a generalized form of  the 

telegraph equation should be used when the anisotropy is large (i.e. greater than 
30~0), but that  the usual diffusion equation is adequate otherwise. The behavior of  
the anisotropy during the decay phase of  solar cosmic-ray events is then considered ; 
in particular, the influence o f  convection by the solar wind, non-impulsive source 
functions, and non-uniform diffusion coelficients is discussed. Finally, we review 
observations of  solar cosmic-ray anisotropies following flares, and conclude that the 

simplified mathematical  treatment presented here is an adequate description of  some 
of  the general features of  the behavior o f  the anisotropy but fails to describe the 
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particle behavior in quantitative detail, particularly during the highly anisotropic 
phase of an event. 

2. Equations of Motion and Some Representative Solutions 

Consider the model for the propagation of solar cosmic rays described by AXFORD 
(1965) in which the guiding centers of the particles are assumed to move along the 
quasi-radial, average interplanetary magnetic field, with pitch-angle scattering result- 
ing from the irregular component of the field. It is assumed that the energy of the 
particles remains constant, and (as a first approximation) that the average field 
diverges spherically. 

The behavior of the particles can be described by a distribution function f (r, O, t), 
which represents the num bet of particles at time t in (r, r +  dr), where r is the distance 
from the sun, measured along the average magnetic-lield line, with pitch angle in 
(0, 0+d0)  and with velocity in (v, v+dv). We suppose that the distribution function 
satislies the Boltzmann equation: 

OJ" . . . . . . . . . .  gf vsinO~?f = 2m,\rvfsinO,a(O,O,){f(r,O,,t  ) - f ( r ,O , t ) }dO' ,  (1) Ot + v cos 0 ~,r r t?0 
0 

where v is the constant particle velocity, N =  N(r) the numbcr density of 'scattering 
centers', and a(0, 0') the differential cross-section for scattering from pitch angle 
0 to 0'. 

The anisotropy of the particle flux is defined to be: 

(r, t) = {f(r ,  0, 0 - f ( r ,  n, t)}/{f(r,  O, t) + f ( r ,  ~r, 0}. (2) 

Clearly, for the case of solar cosmic rays, ./'(r, O, t) and f ( r ,  n, t) are proportional 
to the instantancous directional intensities measured by detectors looking into and 
away from the direction of maximum flux, respectively. 

A. THE CASE OF BI -DIRECTIONAI .  SCATTERING 

It is instructive to consider tirst the simple case in which the pitch-angle distribution 
is constrained to be bi.-directional; that is, 0=0 ,  ~ only, with equal probabilities that 
a particle has either of these directions following a collision. Equation (1) can then 
be replaced by the two equations: 

af§ af+ f _  - f_,_ 
- + v = - ,  (3) 

at &" 2z 

~J2 c'.'f_ f.,. - .f_ 
v - (4) 

0t ~?r 2z 

where f+ =f(r ,  O, t) and .[L = f ( r ,  : ,  t); 4 : ( f+  +.[2) dr is the number of particles 
with velocity v in (r, r+d r ) ,  and ~= l/(Nav) is the mean collision time. Adding and 
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subtracting (3) and (4), we obtain: 

8n I O 
+ / ( , ' 0 )  = O, (5) 

at 

8J J v 2 8 (rZn) (6) 
<,~ + 7 = - ,-~ b;: ' 

where n = ( f+  +f_)/r  2 is the number density, and J =  v(f+ - . f_)ir  z is the radial current 
density. On eliminating J between (5) and (6) we obtain a telegraph equation for rZn: 

8 8 z ) 
v2 ,  2~ (r2n) = 0. (7) 

t0 ,12  -I- "C c"t - -  <;r J 

The solution of Equation (7) for the case in which 4~q particles are released at 
r = 0  at time t = 0  and z is a constant is (AxFoRO, 1965): 

n(r,  t) = r/ e x p ( - r / 2 r v ) b ( t -  r/v) 
L~1-2 

(8) !i, 
+ 2rvr zq-- e x p ( -  t/2r) I o (,p) + 2v,p J H (t - r/v), 

where qJ=(tZ-rZ/v2)l/2/2~, lu((p) is the modified Bessel function of the tirst kind 
and order tt, and H ( t - r / v )  is the Heaviside unit function. The anisotropy is: 

(r, t) = ainv = l ,  t = ,.Iv } 
= rI~ ((p)i{2vzq)I o ((p) + vtl, (go)}., t > "1 v. . (9) 

Note that the number density contains a pulse (i.e. the delta-function component), 
propagating at the particle speed v, and decaying with distance. The pulse comprises 
those particles which at time t have survived scattering following their initial release 
at the origin; the scattered particles make up the remainder of the number density 
(i.e. the unit-function component). The anisotropy reaches a maximum value of unity 
in the pulse, but immediately drops to a smaller value behind the pulse and thereafter 
decays asymptotically to zero. 

For large t (i.e. t>>z and t>>r/v), these solutions have the asymptotic forms: 

n (r, t) ,-~ '7 exp ( -  r2/4,ct) (10) 
2 /-- - "- "" " 

r ,d  ( ~ K 0  

?~ (r, t) ~ r/2vt, (11) 

where we detine t ,=v2r  as the diffusion coefficient. This asymptotic forna for n is 
also a solution of the diffusion equation: 

e(,2n) ,~2(,.,~n) 
................ ~: (12) 

~?t g r  2 ' 

which can be obtained from (7) by suppressing the term 8Z(ren)/St 2. The most ob- 
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vious difference between the solut ion o f  the diffusion equat ion  and the solut ion of  

the te legraph equat ion is that  the former  implies p rompt  arr ival  o f  the part icles at all 

r with infinite an i so t ropy  init ially,  whereas the  la t ter  indicates that  the par t ic les  do  

not  appea r  before t=r/v and that  the an i so t ropy  is init ially unity.  Clearly the diffusion 

solut ion is invalid for small t, but as is shown in Figure l ,  it merges rap id ly  with the 

lOC 

A 8C [ 

! ' 

2oI-I 
. . . .  

0 2 4 6 8 I0 12 14 
TIME ( hours} 

Fig. la. A comparison of the anisotropics predicted by the telegraph equation and the diffusion 
equation in the bi-directional scattering model. The solid line reprcsents the telegraph solution 
(Equation (9)) and the dashed line, the diffusion solution (Equation (ll)). It is assumed that the 

energy of the particles is I0 M eV, rv=0.1 AU, and r - -  1 AU. 
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Fig. 1 b. A comparison of the number densities predicted by the telegraph equation and the diffusion 
equation in the bi-directional scattering model. The solid line represents the telegraph solution 
(Equation (8)), and the dashed line, the diffusion solution (Equation (10)). It is assumed that the 

energy of the particles is 10 MeV, rv -~ 0. l AU, and # .... t AU. 
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telegraph solution and the two are scarcely distinguishable when the anisotropy is 
less than about 30,%. 

B. T H E  C A S E  O F  I S O T R O P I C  S C A T T E R I N G  

Consider the more realistic case in which the particles can have any pitch angle and 
the scattering is isotropic, so that Equation (1) becomes: 

. . . . . . . .  ~]f l_l.)cosO~f vshlOGf = ];-I"f t ] 
gt gr r gO 2 f ( r , O , t )  s i n O ' d O ' - f  , (13) 

o 

where z =  l/(4nvNtr). On taking the zeroth and first moments of this equation with 
respect to v cos0, we obtain: 

(Sn 1 ( r2 j )  = 0 (1.4) 
a t  + s 

8J J 1 o 2 q .n  t? , (15) Ot + -- ,.2 - -  (rgq~ n) + -- (q~n) + (02 -- 2q~) n 
z & r & r 

where q~l and q2 are the mean square particle-velocity components, parallel and 
perpendicular to the radial vector, respectively. In the absence of any further relation- 
ship between ql! or qs and n and J, it is not possible to solve Equations (14) and (15). 
However, appropriate solutions can be obtained in the two limiting cases, namely 
q2~q~-~t'2, and ( q . 2  2q~)<{v 2, which correspond to extreme anisotropy and near 
isotropy of the flux, respectively. 

Following an impulsive release of particles at r=r0 ,  t=0 ,  the first particles to 
arrive at any point r>>r o are those which have undergone no scattering and thus 
have essentially zero pitch angle. The group of unscattered particles takes a finite 
time to pass a given point, since their initial pitch-angle distribution might for example 
be isotropic. For r>> ro, however, the spherical divergence of the rnagnetic field causes 
all pitch angles to become small irrespective of their initial values; hence, the un- 
scattered particles pass within a time interval which is short compared with r/v, and 
elfectively appear as a pulse. This pulse corresponds to the delta-function component 
of the solution (8), which is appropriate in these circumstances since with q~.".v 2 
and q2~q~ Equation (15) approximates to Equation (6). 

When the initial pulse of unscattered particles has passed the point of observation, 
the particles arriving are those which have undergone some scattering. While q2 
remains small in comparison with q~, one can expect the solutions (8), (9) to provide 
a reasonably accurate description of the temporal behavior of n, J, and 4. Eventually, 
however, the terms of Equation (15) involving q2 become important and these ap- 
proximate solutions are no longer valid. 

For a nearly isotropic distribution we can neglect the last term on the right of 
Equation (15) (since 2 2 (q.L-2qll)~v2),  and put q~=v2/3 in the first term. In this case 
the solution oF Equations (14) and (15) for an impulsiverelease of particles at r--0,  
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t = 0  (r  is a constant )  is, for t>r/v: 

n,(,',t) q e x p ( - t /  11(s -.-lo((p)- ll(~o ) I t ( t - f l y ' )  (16) 
8~'3/3 '3 q~ 2zq~ z(p 2 ' 

where v ' =  v/x/3 and (p=(t2-r2/v'Z)l/Z/2r (Sl-nSHOV, 1966). The del ta-funct ion com- 

ponent  o f  this expression for n has been ignored since it is associated with a large 

aniso t ropy.  To determine  the an i so t ropy  we note tha t :  

= ~J/nv, (17) 

whcre l ~<:~<3. When  the an iso t ropy  is large (as in the first app rox ima t ion )  we put  

~.= l and thus obtain ~ in the form given in Equat ion (9). When the an i so t ropy  is 

small  (as in the second approx imat ion)  we put  7 = 3 (cf. GLEESON and AXl~'OI~D, 1967). 

Accordingly ,  for  t>r/v' the an i so t ropy  cor responding  to the solut ion (16) is: 

3,.[ 1 
" ' 2my  ~pl I ( ~ 9 ) +  (tl~)lo ( ( p ) 2 -  ( t !~<p)  f< (,p) " 

We would expect  to obtain a reasonably  accurate  descr ipt ion o f  the ac tual  behavior  

of  n, J, and  r by combin ing  these solutions,  as in Figure 2. As in the  bi-direct ional  

case the solut ions merge with those o f  appropr i a t e  diffusion equat ions  when t>>z, 

r/v and the an iso t ropy  is sufficiently small (i.e. ~<30%).  
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Fig. 2. A plot of the two approximations to the number density predicted in the isotropic scattering 
model. The curve rnarked (I) represents thc highly anisotropic solution for the number density 
(Equation (8)) and the curve marked (2), the nearly isotropic solution (Equation (16)). It is assumed 
that the encrgy of the particles is 10 MeV, r t ; -  0.1 AU, and r = 1 AU. The dashed line is a suitable 
interpolation between the two solutions. The curve marked (3) represents the anisotropy corre- 
sponding to the nearly isotropic solution. Note that for these low-energy particles the anisotropy 

decays as t --1 but even after 30 hours is 5 ~i. 
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C. THE CASE OF S M A L L - A N G L E  SCATTERING 

For small-angle rather than isotropic scattering, Equations (14) and (15) remain valid 
provided we define z as (SALVETER and TREIMAg, 1964): 

{ f z = 2 nN ~/J2a(O) sin0 d , (19) 

0 

where the differential scattering cross-section a(qJ) is assumed to be strongly peaked 
around qJ=0. This form for r requires that the distribution function ( f ( r ,  0, t)) is 
not strongly peaked, and hence we should not expect the equations to describe the 
initial particle behavior (t<<.r/v+ 3) accurately in this case. 

3. The Decay of the Anisotropy 

It is evident from the results obtained above that the diffusion equations describe 
the particle behavior reasonably well, provided t ~  z, r/v and ~ is sufficiently small 
(e.g. ~ 3 0 ~ ) .  Thus, we can expect to be able to examine the influence of(a)  convec- 
tion, (b) a source with an extended time structure, and (c) a diffusion coefficient 
which depends on r, using the appropriate diffusion equations, with the simple proviso 
that the anisotropy should be small. In particular, we should be able to determine 
the relative importance of these effects in producing a small persisting anisotropy. 

A. THE I N F L U E N C E  OF C O N V E C T I O N  

In the diffusion approximation, the effect of moving scatterers is to add an extra 
'convection' term to the Equations for i1 and J (or ~.). Th us, in the case of bi-directional 
scattering: 

5 0.2.) + v a (rb,) . . . .  (20) 
at ~r Or z 

and 
vr P, V 

. . . . . . . . . .  + , ( 2 1 )  
r2n Or v 

where V is the radial speed of the scatterers (i.e. the solar-wind speed), and K=v23 
(in the bi-directional case u -  I). If ~c is a constant, then following the impulsive release 
of particles at r = 0, t = 0, 

~ ( V  + r/t)/2v for t >> z, r/v. (22) 

Thus, the effect of convection is to produce a persisting anisotropy equal to V/2v 
when t--+ oo. Note that the ultimate streaming speed of the particles is less than the 
speed of the scatterers (V). This result holds generally; indeed, in one case FIsK and 
AXFORD (1968) have shown that ~ 0  as t--+oc, when the effects of energy changes 
are taken into account. 
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B. THE EFFECT OF A SOURCE W I T H  AN EXTENDED TIME STRUCTURE 

For the case of isolropic scattering, without convection, the diffusion equation is: 

~n 1 c? ( )?.n 
i?t = }7~- i}," m'2 &2 ' (23) 

where x =  v2z/3. The solution of this equation when x is constant and the source at 
r = 0  has an extended time structure h(t), rather than being a delta-function, is: 

1 ~ h ( t -  u) e x p ( - r 2 / 4 m 0 d u  
n (,', t) j . . . . . . . . . .  (24)  

= _ _  : 0 . , ) 3 / ~  2 \ / n  
0 

The asymptotic behavior of n(r, t) for large t depends critically on the asymptotic 
form ofh(t) .  Thus ifh(t)~t-:- with ~ > 3  the main contribution to the integral (which 
comes from values of u near t) is virtually independent of r, implying that ~ = - (v r /n )  
c3n/&~O as t ~ .  However, if ~< 3, the main contribution to the integral comes 
from small values of u (i.e. u~rZ/6x), hence: 

,, (,., t )  ~ 1 / ( , . ' , 9 ,  r (,', 0 ~ ~,' / ,  as , - +  ~o.  (25 )  

Consequently, if the source does not decay too rapidly, we can cxpect the anisotropy 
to persist at large times. 

C. TI lE EFFECT OF A NON-UNIFORM DIFFUSI(}N COliI"FI('IEN'I.' 

If the diffusion coefficient has the form x=~c0 r/s, with 0~<fl~< 2, then the solution of 
(23) corresponding to an impulsive release of 4gq particles at r=0 ,  t = 0  is easily 
found to be (PARKER, 1963): 

r# exp [ -  r 2-p/(2 - fl)Z,cot ] 
,, (,-, t) = (2 -Ti)(4- ' :~T{~-#;/-(3/(2 " - / 3 ) )  (,~ot) ' / (~ - ' }  (26) 

with 

(r, t) = - ~ . . . . . . .  (27) 
n c," (2 - / 3 )  Pt 

Thus, the anisotropy decreases inversely with time and asymptotically approaches 
zero. It has been found that this solution for n(r, t) can in many instances provide 
a good fit to observations of the temporal behavior of the particle intensity during 
solar cosmic-ray events (e.g. KRIMIGIS, 1965). Apart from a case discussed in Section 4 
of this paper, it is not generally known whether this agreement between theory and 
observation also applies to the anisotropy. However, observations which show that 
a persistent anisotropy occurs in some events suggest that this very simple model 
might be inadequate, since there is 11o persisting anisotropy when the diffusion 
coelficient is of the form assumed. 

A persisting anisotropy is possible if the diffusion coefficient increases sufficiently 
rapidly with r. This can be seen for the case of bi-directional scattering (Equations 
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(20), (21)) with x=tr o exp(r/ro) and V=0, where lbllowing impulsive release of 4nq 
particles at r=0 ,  t=0 ,  

1/2 qz 
n (r, t) = ,%rot (in--(z)) 2 1, (p)exp [ -  (1 + z)ro2/,%t] (28) 

and 
(r, t ) =  r o [Io ( P ) -  zl/211 (P)]/[vtza/2lt (P)], (29) 

i ~ 2 ] 1 2 1 .  ~, where z = e x p ( - - r / r o )  and p=z roz  ' /1%.. For large values of  t we f ind that 

(r, l) ~ Q%/rov ) exp (r/ro) = (to/roy) (30) 

and hence there is a persisting anisotropy. 
On examining the asymptotic solutions (25) and (30) it can be seen that the values 

of the residual anisotropy are comparable. This might have been expected since the 
main consequence of having a diffusion coefficient of the form i~=~c o exp(r/ro) is 
to retard the escape of particles from the region r<ro and to allow them to move 
relatively freely in r>>r0, thus producing (as far as distant regions arc concerned) 
the effect of a source which appears extended in time rather than impulsive. In both 
cases the residual anisotropy is approximately (x/Vr) times that expected from con- 
vection acting alone (V/v). 

4. Observations of Anisotropies 

Anisotropies have almost always been evident in ground-level observations of solar 
cosmic-ray events (McCRAc~zE~, 1963). A clear example is shown in Figure 3, which 
is taken from a paper by BURL,~OA (1967) (the observations, which were originally 
described by McCRAcKEN, 1962, refer to the event of 12 November, 1960). In this 
event the neutron monitor at College was looking approximately along the local 
interplanetary magnetic-field direction, towards the sun, while the neutron monitor 
at Mawson looked in the opposite direction. Thus the College observations refer to 
,/+ (t) and the Mawson observations t o f ( t ) .  

The manner in which Burlaga has been able to plot these data suggests that this 
portion of the event fits the diffusive phase of a model having impulsive release of 
particles at r=0 ,  t=0 ,  with lC=Ko rp, [1"~ (see Equation (26)) and r being measured 
along the interplanetary magnetic-field lines leading to the earth (see AXVORD, 1965). 
The anisotropy at earth is obtained by taking the ratio of the difference to the sum 
of the College and Mawson observations (cf. Equation (2)). It can be shown from 
Equations (2) and (27) that the difference in the slopes of the straight lines drawn 
through the College and Mawson data should be approximately 2~t = 6r / (2-  [3)v ~ 5r/v. 
Since r/v is the minimum transit time from the source to the earth along the inter- 
planetary magnetic field (r/v "~ 12-14 min), the predicted slope difference is 60-70 min. 
According to Figure 3, the observed slope difference is about 63 rain, which must 
be considered very satisfactory agreement, although it may well be fortuitous. 

Detailed observations of anisotropies of low-energy (1-100 MeV) solar cosmic 
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Fig. 3. The neutron monitor data from College and Mawson for the event of 12 November 1960 
(taken from BURLAGA, 1967). Here, I is the intensity observed at each of thc two stations. The differ- 

ence in the slopes of the straight lines through the two sets of data is about 63 rain. 

rays have been made from space probes Pioneer VI and VII (McCRACKI.:N and NESS, 
1966; BARTLEY et a[., 1966; MCCRACKEN e ta[ . ,  1967; FAN et al., 1966, 1968). It is 
typically found that the anisotropy is pronounced in the early phases of solar cosmic- 
ray events and decays to a value ot" 5-10&,Y' rather than to zero. The observed pitch- 
angle distributions of the particles arriving from the sunward direction (FAN et al., 
1968) and the observed backscatter of the particles beyond the point of observation 
(MCCRAcKEN eta[ . ,  1967) indicate that the mean collision time for low-energy solar 
cosmic rays is quite long (a sizeable fraction of an hour). The direction of the 
anisotropy is strongly controlled by the interplanetary magnetic field, and the par- 
ticles are observed to arrive from 40-50 ~ West of the sun-satellite line even if the 
flare is on the east side of the sun; late in the event the anisotropy will frequently 
lie in a direction closer to the sun-satellite line (McCrACKEN el al., 1967). 

Certain aspects of  these space-probe observations are well described by models 
of  the type described in Sections 2 and 3. The tendency of the observed anisotropies 
to persist can be interpreted as being due to Ca) convection by the solar wind parallel 
to the interplanetary magnetic field lines; (b) continued emission of particles from the 
source (BARTLEY et al., 1966); and (c) a steep increase of the diffusion coefficient 
with heliocentric distance. In addition one must take into account anisotropies result- 
ing from particle drifts perpendicular to the magnetic-field lines. These drifts can 
arise from (d) the presence of an electric field (i.e. an E x B drift) and from (e) density 
gradients perpendicular to the magnetic field. In the direction parallel to the magnetic 
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field (b) and (c) are likely to be the most important,  with (c) being consistent with a 
long mean collision time for scattering beyond I A U, deduced from the observations 
of MCCRACKEN et al. (1967). The effect (d) can be quite important,  especially if the 
particle-energy spectrum is soft (FORMAN, 1968). Late in the event, the direction of 
the observed anisotropy will presumably lie closer to the sun-satellite line when the 
anisotropy due to (d) becomes comparable with the anisotropy parallel to the magnetic 
field (McCRACKi~N et al., 1967). 

It is unlikely, however, that the simplified mathematical treatment given here 
will adequately describe the highly anisotropic phase of  a low-energy solar cosmic- 
ray event. The long mean collision times which are observed are consistent with 
the effective mean collision time for small-angle scattering given in Equation (19). 
As we have pointed out, our equations will not describe the initial behavior of the 
particles when there is small-angle scattering. Further, since a likely cause for the 
observed persisting anisotropies is a diffusion coefficient which increases rapidly with 
distance from the sun, the solution (16) for constant z, although indicating some of 

the features of  the particle behavior to be expected, is unlikely to be useful in a quan- 
titative sense. 

Finally, we wish to emphasize that it is necessary to determine whether a model 
explains the behavior of  the anisotropy as well as the behavior of the intensity before 
deciding that it is acceptable. An event is cited by M CCRACI(EN et al. (1967), in which 
the variation of the intensity with time can adequately be described in terms of a simple 
diffusion model, which is, however, inconsistent with observations of  the anisotropy. 

McCItACKEN et al. have described a method of estimating the local mean free 
path from observations of  the rate at which a highly anisotropic beam of solar cosmic 
rays becomes more isotropic due to back-scattering of the particles beyond the 
point of observation.* From the Pioneer VI and VII  observations they deduce that 
for several events in 1966, the mean free paths were on the order of I AU. It should be 
remembered, however, that this result refers to the mean distance a particle must 
travel to have its pitch angle turned through 180 ~ , whereas, in general, one would 
be satislied to call scattering through 90 ~ or perhaps even one radian an effective 
'collision'. There is, in addition, the complication that small increment pitch-angle 
scattering is not uniform with respect to angle (cf. JOKIP., 1968). Nevertheless, one 
must conclude that the mean free paths which existed near the orbit of earth during 
1966 were quite large and certainly much larger than the values of about 0. I AU 
deduced by MCCRACKE_~ et aL (1967) on the basis of  a simple diffusion model with 
a diffusion coefficient independent of r. This model provides a very good fit to the 
observations of the behavior of the intensity in one case, but as MCCRACKEN et al. 

suggest, since it does not at the same time fit the observations of the anisotropy, it 
cannot be regarded as being correct. This demonstrates very clearly the shortcoming 
of much of the work which has been done in the past on fitting diffusion models to 
observed intensity-time variations and thereby deducing information concerning the 

* This is discussed in terms of the bi-directional scattering model in the appendix to this paper. 
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diffusion coefficient to(r). Since diffusion theory makes specific predictions about 
the behavior of  the anisotropy, these must also agree with the observations if a 
particular model is to be considered acceptable. 

Appendix 

In the bi-directional scattering model, both f+ and f_  satisfy the telegraph equation. 
Hence, given f+ (t) at r = 0 ,  we can determiner+ (r, t) by solving the telegraph equation 
as a boundary value problem. Using Laplace transform methods (see CARStAW and 
JAEGER, 1953), we find that 

f+ (r, t) = fo (t - r/v) e -r/2''~ ] 
! 

r r [i [I/2"c( u2 -- r2/l)2) 1/23 , [ 
+ 2zv J J o ( t -  u) e -'/z~ I 

(31) 
. . . . . . . .  (u 2 -~7.2/v2),-/2 d u ,  t > , . iv ,  I 

rlf: ] 
where we have assumed that./'+ =(ff.+/~t=O at t=O,f+ (r, t )= fo ( t )  at r = 0 ,  t>0 ,  and 

J'+-~0 as r-*.zo. Substituting into Equation (4) above, we find: 
l 

e -  112r 

f _  (r, t) = f+  (,', t - u) .... 1 t [u/2z] du. (32) 
I I  

0 

McCI~ACKEN et al. (1967) obtained a similar result by a physical argument. The only 
essential difference is that we define the probability per unit length that a particle 
is back-scattered to be 1/2rv, while MCCRACKEN et al. considered it to be l/zv. Our 
theory, like most diffusion theories, assumes that the probability that a particle should 
be back-scattered at the end of a mean free path is ~-. 
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