
PAUL EHRLICH 

M E T R I C  D E F O R M A T I O N S  OF C U R V A T U R E  
II: Compact 3-Manifolds 

1. INTRODUCTION 

Let (M, go) be a smooth compact Riemannian manifold. Given a symmetric 
2-tensor h~Coo (S2(T*M)) we can perturb go by the first order metric de- 
formation g(t)=go + th. To linearize the problem and see at first order what 
this deformation is doing to the curvature quantities of (M, go) it is possible 
to calculate the first derivative K'  of the sectional curvature K t of g(t) at 
time t =  0 or the first derivative Ric' of the Ricci curvature Rict of g(t) at 
time t=0 ,  using formulas found, for instance, in [7] and/or [10]. 

Let G2(M) be the Grassman bundle of 2-planes P in TM. Let (M, go) be 
a Riemannian manifold with sectional curvature Kgo > 0. We say a deforma- 
tion g(t) of go is positive at first order for the sectional curvature if for all 
PeG2(M), Koo(P)=O implies K'(P)>O. It is clear how to give analogous 
definitions for non-negative, negative, or vanishing at first or higher orders 
for the sectional and Ricci curvature. 

In [4], using differential operators 

d* : C oO ( T ' M )  ~ C °~ (S 2 (T 'M))  and 

a' : coo ( s  ~ ( T ' M ) )  -~ Coo ( T ' M )  

a splitting C oo (S 2 (T 'M))  =Imd* @ ker 6' was constructed. Explicitly, if ~ is 
_ _ 1  a 1-form on M, 6"~ is a symmetric 2-tensor given by 6 " ~ -  .vXe,~g o where ~ 

is the vector field associated to ~ by go- Following [5] we call a first order 
deformation g(t)=go + th geometric if h~Im6*. The point of the definition 
is to take into account the action of the diffeomorphism group on the space 
of metrics for M. Let X be a global vector field on M with flow ~0,. Set 
g(t) = 99"go. Assuming Koo > O, g(t) will be a deformation of go that vanishes 
at first order and is non-negative at second order so that it might appear that 
g(t) is increasing the positive curvatrue. But since ~0t:(M, go)-4(M, g~) is an 
isometry, we really do nothing at all to the sectional curvature. In this 
example, the 1-jet of g(t) is just ~ x g  so that the definition of geometric 
deformation rules out this kind of trivial deformation. 

In [10], we saw that it is possible to find local geometric deformations of 
the Ricci curvature positive and negative at first order on the outer annulus 
of a convex metric disk (compare also [1]). However, we saw that in general 
there are no local convex deformations of sectional curvature for manifolds 
M~ifn>_3. 
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Thus, the method of proof given in [10] using local convex deformations 
that a compact manifold M" admitting a metric of non-negative Ricci 
curvature and all Ricci curvatures positive at a point admits a metric of 
everywhere positive Ricci curvature does not generalize to prove the 
analogous theorem for the sectional CUl~Cature if n > 3. 

Two lines of investigation are then suggested. Can the problem of 
perturbing from non-negative to positive sectional curvature be solved under 
stronger conditions, such as if  the Rieci curvature is positive? Second, are 
there results which hold in dimension 3 because the Ricci and sectional 
curvatures are nicely related in 3-dimensions? 

In order to answer the first question affirmatively by finding a geometric 
deformation positive at first order, one might attempt to find a symmetric 
2-tensor h such that K(x, y)=  0 implies 

K' (x, y) = Rie (x, x) Ric (y, y) - (R ic (x ,y ) )  2 + Q (x, y), 

where Q (x, y) >_ 0. But S 2 x S 2 with the canonical Riemannian structure g ~  
satisfies K >  0 and Ric> 0 and Berger, [3], has shown that any deformation 
of gca~ non-negative at first order vanishes identically at first order. Hence, 
we cannot in general find such a 2-tensor h. 

In [6], Bourguignon showed that Ricoo¢ImO* unless Ricoo-0 so that 
g(t) =go + t Ricoo is a geometric deformation. This suggests we should calcu- 
late K' and Ric' for this deformation. In Section 2 we calculate K '  in general. 
In Section 3 we observe that in dimension 3 if  Ko0 >_ 0 and Riego>0, g(t) 
= g o - t  Rico o is a positive deformation at first order for the sectional 
curvature and surprisingly enough, 

K' (x, y) = (D'DR) (x, y, y, x) + Ric (x, x) Ric (y, y) 

- (Ric (x, y))2 

showing that in dimension 3, - Ricoo will do as the tensor h mentioned above- 
In Section 4 we sketch the calculation of Ric' for the Ricci deformation. 

Complete details are found in [91. 
There is a recent notion of'rigidity' in connection with the relation between 

curvature and topology in Riemannian geometry suggested to us by D. Gro- 
moll. I f  a global geometric or topological result is implied by an 'open' 
curvature inequality such as ¼<K_< 1, then the result should fail to be true 
if equality holds in the curvature condition, i.e., ¼ < K_< 1, only in a 'rigid' 
way. For example, if  a complete simply connected Riemannian manifold M" 
satisfies the curvature inequality ¼<K_< 1, then M ~ is homeomorphic to S". 
I f  ¼ < K <  1 only and M n is not homeomorphic to S ", then M" is isometric to 
a symmetric space of rank 1. The 'rigidity' is expressed here in that if M" 
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fails to be homeomorphie to S", M is not just homeomorphic to a symmetric 
space of rank 1, but is isometric to a symmetric space of rank 1. 

Given the perturbation theorem for K~> 0 and Ric > 0 in Section 3 (which 
succeeds because K ' >  0 on the zero two-planes), we should thus ask what 
can happen if Ric~> 0 only so that on the set of zero two-planes K '  >~ 0 only. 
One such case in which K'  =0  on the zero two-planes is the standard 
Riemannian structure on S i x  S 2. This raises the question as to whether 
our deformation theorem fails to be true only if the manifold is locally 
isometric to a product. In Section 5 we answer a particular case affirmatively; 
namely, we assume that go is a metric with certain curvature properties of the 
canonical Riemannian structure on S ~ x S 2 such that all deformations non- 
negative at first order vanish at first order. We believe this is a natural 
hypothesis to consider in view of the observation of Berger mentioned above 
that product manifolds have this property. 

I would like to thank Jean-Pierre Bourguignon for suggesting the use of 
the second Bianchi identity to study the Ricci deformation. 

2. A PRELIMINARY CALCULATION 

Fix a manifold M", n > 2, and a metric go for M. Let D be the Levi-Civita 
connection determined by go. We will write ( , ) for go, R for Roo, K for 
K,o, and Ric for Ri%o. We will use the sign convention 

R (X, Y)  = D x D r  - D r D x  - DEx. r] 

for the curvature tensor. For definitions and/or conventions regarding the 
sectional curvature K a n d  Ricci tensor Ric, we will follow [11]. For a tensor h 
and an orthonormal basis {el . . . .  , e,} for Mp, define D*Dh at Mp by 

(D*Dh) (v l ,  v2 . . . .  ) = ~, (DDh) (e,, e,; v l ,  v2 . . . .  ) .  
i 

Also, define a (4, 0) tensor from R and ( , ) which we will also call R 
without danger of confusion, by R(u,  v, w, z) := ( R ( u ,  v)w, z ) .  Then for all 
vector fields X, Y, S, T, U, V 

(*) 

'(DxD.R) (S, T, or, V) - (D.D~R) (S, T, U, V) 
- (Dt..~.~R)(S, r, g, v) 

= - R ( R ( X ,  r ) S , T ,  U, V) - R ( S , R ( X ,  D r ,  tr, V) 
- R(S, r ,  R(X, Y) U, V) - R(S, T, U, R (X, Y) V). 
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Given (M, go) and heC®(S2(T*M)), let g(t)=go +th and define as in [7] 

d 
(X(h)) (x, y) = -~t g(t) (R t (x, y) y, x) l 

t=O 

= (DDh) (x, y; x, y) - ½ (DDh) (x, x; y, y) 

- ½- (DDh) (y, y; x, x) + h (R (x, y) y, x). 

Then if {x, y} is a go-orthonormal basis for a two-plane P~Gz(M), 

K'(P) = If '  (x, y) = (Z(h)) (x, y) 

- K ( x ,  y) (h (x, x) h (y, y) - (h (x, y))2). 

Thus, if K(x, y) = O, then K' (x, y) = (X(h)) (x, y). 
In this section, given (M, go) we calculate S(Ricoo ). Fix go-orthonormal 

vectors x, y~Mp and extend to a go-orthonormal basis {el . . . . .  e.} for Mp. 
Extend to local vector fields X, Y, E1 . . . .  , E, whose Lie brackets vanish 
near p and with DXIp=DYIp=DEiIp=O for all i. We will call this a 'good 
extension' following [7], Definition 3.5. 

Now 

(±4 (kit)) (x, y) 

~ {DxDvR (E~, X, Y, E,) 
i 

+ DxDrR (Ei, X, I1, E~) - DyDxR (E~, Y, I1, E 0 

- DyDrR (E~, X, 22, E,)} + Ric (R (x, y) y, x), 

where all expressions involving the extended vector fields are understood to 
be evaluated at p. 

Note that 

Ric (R (x, y) y, x) = ~ R (ei, R (x, y) y, x, ei) 

= ~ (R (x, e3 e~, R (~, y) y)  

so that 

(* (mc)) (x, y) 

= k F~ {OxD~R (E~, •, Y, E,) 
i 

+ DxDrR (E~, X, Y, Ei) -- DxDxR (E,, Y, Y, E,) 

- DrOrR (E~, X, J2, Ei) + 2 <R (X, Et) E~, R (X, Y) Y)}. 
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The idea is to use (*) and the second Bianchi identity to write this as 
~fDE,DE,R(X, Y, Y, X) plus curvature terms. For convenience we will 
calculate twice the ith term in this sum which we will denote Sum(i). Ex- 
plicitly with X, Y, and E, as above, let 

Sum (i) :=  DxDyR (E,, X, Y, E~) + DxDrR (E,, X, Y, E,) 

-- DxDxR (E~, Y, Y, E~) - DrDrR (E~, X, X, E~) 

+ 2 (R  (X, E,) E,, R (X, Y) Y) .  
First 

DxDrR (E~, X, Y, Ei) 

= DyDxR (E,, X, Y, El) - R (R (X, Y) E,, X, Y, E,) 

- R (E,, R (X, Y) X, Y, E3 - R (E,, X, R 0;, Y) Y, E,) 

-- R (E,, ),;2, IT, R (X, Y) El) 

= DyDxR (E,, X, Y, E,) + (R (Y, EO X, R (X, Y) E,) 

- (R(Y,  EOE, ,R(X,  Y) X )  + (R(E , ,X)  E , ,R(X,  Y ) Y )  

- <R (E,, X) Y, R (X, Y) E,> 
so that 

Sum (i) 

= DrDxR (E,, X, Y, E,) + DxDrR (E,, X, Y, E,) 

- DxDxR (E,, Y, Y, E,) - DyDyR (E,, X, X, El) 

+ (R (X, El) E,, R (X, Y) Y> + (R  (Y, E,) X, R (X, Y) Ef) 

- (R (Y, E,) E,, R (X, Y) X> - (R (E,, X) Y, R (X, Y) E,>. 

Using the second Bianchi identity and then (,), 

DxDrR (E~, X, Y, E~) 

= - a x D x R  (Y, Ei, Y, E~) - DxDe~R (X, Y, t7, Ei) 

= DxDxR (El, Y, Y, E,) - D~,DxR (X, Y, IT, E,) 

+ R (R (X, EO X, Y, Y, E 0 + R (X, R (X, E,) Y, Y, E~) 

+ R (X, Y, R (X, E,) Y, E 0 + R (X, Y, Y, R (X, E,) E,) 

= OxhxR (E,, Y, Y, E,) - D~,,DxR (X, IT, Y, E~) 

- <R (r ,  E,) Y, R (X, E,) X }  + <R (Y, E,) X, R (X, E,) Y)  

- <R (X, Y) E,, R (X, E 0 Y> + <R (X, Y) Y, R (X, EO E~>. 
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Thus, 

Now 

and 

so that 

Hence 

P A U L  E H R L I C H  

sum q) 

= DrDxR (E~, X, IT, E~) - DE,DxR (X, Y, Y, E~) 

- DyDrR (E~, X, X, E~) + 2 (R  (X, E~) E~, R (X, Y) Y )  

+ (R(Y ,E~)X ,R(X ,  Y)E~) - (R(Y,E~)E~,R(X,  Y ) X )  

- (R(Y,E~) Y ,R(X ,E~)X)  + (R(Y,E~)X,R(X,E~) Y ) .  

DrDxR (E~, X, Y, E,) 

= - D r D r R  (Ei, X, Ei, X) - DyD~,R (E~, X, X, Y) 

= DrDrR (Ei, X, .If, E~) - DrDE~R (E~, X, X, Y) 

-- DE,DxR (X, Y, Y, E~) 

= De,D~,R (X, Y, Jr, Y) + D~,D~R (X, r, E,, X) 

DrDxR (E~, X, Y, E 0 - DE,DxR (X, Y, Y, E~) 

- O~OrR (E,, X, X, E,) 

= -O~,D.,R (X, Y, Y, X) - OyO~,R (e~, X, X, Y) 

+ BE,DrR (E~, X, X, Y) 

= -DE,DE,R(X, Y, Y,X) - R(R(E,,  Y)E, ,X ,X,  Y) 

- R(E,,_R(E,, Y)X,X,  r) - R (E,, X, R(E,, Y)X, Y) 

- R(E , ,X ,X ,R(E, ,  Y) Y) 

= -D:,D:,R(X, Y, Y,X) + (R(X, Y)X,R(E,, Y)E,) 

- (R(X, Y)E,, R(E,, Y)X) + (R(E,,X) Z+,R(E,, r3X) 

- (R(X, E3X, R(Y, E3 r ) .  

Sum (i) 

= -Dg,Dg,R(X, I7, Y ,X)  + 2 ( R ( X ,  Et)E~,R(X, Y) Y )  

+ 2 (R (Y, EOX, R(X, Y)E~) + 2 (R(Y,  EOE~,R(Y,X)X) 

- 2(R(X, E3X, R(Y, E , ) r )  + 2 (R(Y, E,)X,R(X, E3 Y) 
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But 
R(X, Y)E~ = - R ( Y , E ~ ) X -  R(E~,X) Y 

= - R ( Y , E ~ ) X +  R(X,E,)  Y 
so that 

Sum (i) 

= -Dn,DE,R(X, Y, Y,X) + 2(R(X,E~)E~,R(X, Y) Y)  

- 2 (R (Y, E,) X, R (Y, E~) X)  + 4(R(Y,E,)X, R(X,E,) Y)  

+ 2 (R(Y, Ei)E,, R(Y, X) X)  - 2(R(X,E,)X,R(Y,E,) Y). 

We have shown 

PROPOSITION 1. For g(t) =go + t ( -  Pd%o ) and {x, y} go-orthonormal vec- 
tors in Mp 

(X(-Ri%o))  (x,y) = ½(D*hR)(x,y,y,x) + Curv(x,y) ,  

where for an orthonormal basis {el , . . . ,  e,} for Mp 

Curv (x, y) 

= ~ {(R (x, e,) x, R (y, e~) y) + (R (y, e,) x, g (y, e,) x)  
f 

- 2 (R (x, e0 y, R (y, e,) x)  + (R (x, y) x, R (y, e0 e,) 

+ ( R  (y, x) y, g (x, e,) e~)}. 

Remark. Although (R(y, e~)x, R(y, e~)x) is not symmetric in x and y, 
~i(R(y ,  ei)x, R(y, ei)x) is symmetric in x and y. 

Given e~, x, y as before, if we make good extensions to local vector fields 
Ei, X, Y, then 

(DDR) (e,, ei; x, y, y, x) 

= e,(E~(R(X, Y, Y,X))) - 2(R(x,y)y,R(x,e,)e~) 

- 2 (R  (y, x) x, R (y, e,) e~). 

Recall that if K_> 0, then K(x, y) = 0 implies R (x, y) y = R (y, x) x = 0. Hence, 
i fK ___ 0 and K(x, y) = 0, we have (DDR) (e~, ei; x, y, y, x) = ei (E~ (R (X, I~; Y,X))) 
_> 0. This proves 

L E M M A  2. If  K>_ O, then K(x, y ) = 0  implies 

(D*DR)(x,y,y,x) > O. 
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3. APPLICATIONS TO COMPACT 3-MANIFOLDS 

We prove 

THEOREM 3. Let (M, go) be a compact 3-manifold with non-negative sec- 
tional curvature and everywhere positive Ricci curvature. Then M admits a 
metric of everywhere positive sectional curvature. 

Remark. It is false that Ric>0 implies K>0  in 3-dimensions, see [9], 
Chapter 7, Part 1, for instance, for a counterexample. 

Proof. Since M is compact, for small t>0,  g( t )=go- t  Ricoo will be a 
metric for M. It is enough to show that under the hypotheses, this is a 
positive deformation at first order for the sectional curvature. 

For a 3-manifold, an elementary calculation shows that if {x, y, z} are 
any triple of go-orthonormal vectors, then 

(,) Curv (x, y) = Ric (x, x) Ric (y, y) - (me (x, y))2 

- 2 (K (x, y))2 _ 2K (x, y) Ric (z, z). 

Let P be a zero two-plane for Kgo with orthonormal basis {x, y}. 
Then by Proposition 1 and formula (.) 

(**) K' (x, y) = ½ (D'DR) (x, y, y, x) 

+ Ric (x, x) Ric (y, y) - (Ric (x, y))2. 

By Lemma 2 and the hypothesis that the Ricci curvature is everywhere 
positive, g(t) is a positive geometric deformation at first order. Q.E.D. 

COROLLARY 4. Let (M, go) be a compact 3-manifold that is ½ positively 
Ricci pinched. Then M admits a metric of everywhere positive sectional 
curvature .  

Proof. It is well-known that ½ positive Ricci-pinching implies Koo > 0 in 
dimension 3. Q.E.D. 

In [10] using the method of local convex deformations, we proved several 
Ricci curvature deformation theorems which imply in 3-dimensions for 
compact manifolds M that: 

(1) if M admits a metric of non-negative Ricci curvature and all Ricci 
curvatures positive at some point, then M admits a metric of every- 
where positive Ricci curvature, and 

(2) if M is d-positively Ricci pinched with 0 < d< ½ and at some point for 
all vectors the pinching is not attained, then the Ricci pinching can be 
improved. 

Combining (1) and (2), and Corollary 4, it is not unreasonable to conjecture 
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CONJECTURE. Let (M, go) be a compact 3-manifold with non-negative 
Rieci curvature and all Ricci curvatures positive at some point. Then M admits 
a metric o f  everywhere positive sectional curvature. 

Remarks. (1) The proof of Theorem 3 does not generalize to dimensions 
greater than 3. Indeed the lemma of Berger (see [3]) implies that for the 
canonical Riemannian structure on S2x S 2, all deformations non-negative 
at first order vanish at first order. For the 'mixed two-planes' which are the 
zeroes of the sectional curvature of the canonical Riemannian structure on 
S 2 x S 2, a simple calculation shows that Curv=0 and the Ricci deformation 
g(t) = g o -  t Ri%o does indeed vanish at first order. 

(2) Unlike the local convex deformations of [10], there is no symmetry in 
the cases Kg o < 0, Ri%o < 0 and Kg o >_ 0, Ri%o > 0 from the viewpoint of the 
Ricci deformation g ( t ) = g o -  t Ri%o. In the case Koo < 0, Ri%o < 0 the terms 
(D*DR)(x, y, y, x) and Ric(x, x)Rie(y, y) in formula (**) will have opposite 
signs so the proof of Theorem 3 does not work. 

(3) Notice that if Kgo>_0, Ri%o>0, formula (**) shows that g ( t ) = g o - t  
x Ricg o is a deformation that is non-negative at first order. This is studied 

in some detail in [9], Chapter 7, Part 2. 

4. T H E  R I C C I  C U R V A T U R E  TENSOR 

AND THE R I C C I  DEFORMATION 

For completeness, we sketch the calculation of Ric' for g ( t ) = g o - t  Ri%o. 
For more details, see [9], Chapter 7, Part 2. Given a symmetric two tensor h, 
define a 1-form 6'h by (6 'h)(w):=~(De,h)(e , ,  w) for any weMp where {e,} 
is an orthonormal basis for Mp. 

First recall the classical 

LEMMA 5. Let {e~} be an orthonormal basis for Alp. Then 

(6' Ric) (w) := ~ (De, Ric) (e,, w) = ½w (z). 

In [2], Berger gives (with a sign mistake) the Classical formula which for 
our sign convention for 6' becomes 

Ric' = -½D*Dh + ½ Ric ® h - R ® h - 6"6'h 

- ½ Hess (tr h) 

where for an orthonormal basis {e~} for Mp, 

(Ric® h) (x, y) : = ~ (Ric (x, e,) h (y, el) 

+ Ric (y, e~) h (x, e~)) 
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and 
(R ® h) (x, y) := ~. R (x, e,, ej, y) h (e~, ej). 

Since h =  - R i o ,  by Lemma 1, ~'h=½d~ so that 

O*O'h + ½ Hess (tr h) = ½~* (dz) - ½~* (dz) = O. 
Thus, 

(1) Ric' = ½D*D Ric - ½ Ric ® Ric + R ® Ric. 

Suppose (M, go) is a compact 3-manifold with Ri%o >_ 0. It is not difficult 
to see that if Ric (x, x) = 0, then 
(D*D Ric)(x, x) _>_ 0 (compare Lemma 2 above). 

Given an orthonormal basis {u, v, w) for Mp, recall that 

(2) K (u, v) = ½ (Ric (u, u) + Ric (v, v) - Ric (w, w)). 

Let xeMp be given. Extend to an orthonormal basis {x, y, z} for Mp. 
Writing out formula (2) in 3 dimensions, we obtain 

Pie' (x,x) 

= ½ (D*D Ric) (x, x) - ( R i c  (x, x)) 2 - (Ric (x, y))2 

-- (Ric (x, z)) 2 + R (x, y, y, x) Ric (y, y) 

+ R ( x , z , z , x )  Ric(z,z) + 2R(x , y , z , x )  Ric(y ,z)  

= ½ (D*D Ric) (x, x) - (Ric (x, x)) ~- - (Pie (x, y))2 

- (Pie (x, z)) 2 + / ~  (x, y) Ric (y, y) 

+ / ~  (x, z) Ric (z, z) + 2 (Pie (y, z)) 2. 

Substituting (2) for K(x, y) and K(x, z) we obtain 

(3) Pie' (x, x) 

= ½ (D*D Ric) (x, x) - (Ric (x, x)) z - (Ric (x, y))2 

- (Ric (x, z )y  + ½ Ric (x, x) (Pie (y, y) + Pie (z, z)) 

+ ½ (Ric (y, y) - Pie (z, z )y .  

Recall that if Ric>0,  then Ric(x, x ) = 0  implies Ric(x, v )=0  for all v. Thus 
given a go-unit vector xeM~, with Ric(x, x )=0 ,  let ll(x) and lz(x) be the 
non-zero eigenvalues for Ric:Mp x Mv~R.  We may then choose vectors 
y, z so that {x, y, z} forms an orthonormal basis for Mp and diagonalizes 
Ric: Mp × Mp~R, with Ric (y, y) = l~(x) and Rio(z, z) = 12(x). With this choice 
of {x, y, z), (3) reduces to 
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PROPOSITION 6. Suppose Ri%o>_0. I f  x is a go-unit vector with Pi%o(X, x) 
=0,  then 

Pie' (x, x) = 12 (O*D Pie) (x, x) + ½ ql(x) - 12(x)) 2. 

Hence, the Ricci curvature deformation of the Ricci curvature is non-negative 
at first order. 

Remark. Consider S i x  S 2 with the standard product metric. Let X be 
the global unit parallel field produced on S i x  S 2 from a trivialization of 
TSL Then the line field determined by X on S ~ x S z is precisely the set of 
zero vectors of the Ricci tensor. Here I~(X)=12(X) and 

(D*D Pie) (X, X) = z IIDXll 2 = 0 since DX = 0 

(where T is the scalar curvature) so Ric' (X, X ) =  0. For more on the study 
of 'Ricci product-like metrics' whose curvature behavior is modelled on this 
example, see [8] and [9]. 

For completeness we note that in n dimensions (n > 2) for the Ricci de- 
formation g(t)=go- t Pi%o, the classical formula ([4], formula 5.3, p. 385) 
for the first derivative 3' of the scalar curvature for an arbitrary deformation 
reduces to 

T' = ½AT~o + IIpiCgoll 2. 

Here we use the sign convention A = tr o Hess opposite to the sign convention 
in [4]. Thus if T___ 0 (but is not everywhere positive), the Picci deformation 
is non-negative at first order for the scalar curvature. If  we define critical 
metrics for manifolds M in the class of Riemannian manifolds (M, go) with 
Too >-0 (but %° is not everywhere positive) analogous to our definition in 
Section 5 below for the sectional curvature, it is immediate that go is a 
critical metric iff Picoo vanishes identically on the set of vectors lying above 
the set of points of zero scalar curvature. 

As in the case of the sectional curvature in Section 3, the cases of non- 
negative and non-positive scalar curvature are not symmetric. Indeed for 
(M, go) with non-positive (but not everywhere negative) scalar curvature, 
we can be sure the first derivative z' of the Picci deformation has a definite 
sign as points p of zero scalar curvature only if (M, go) is Ricci fiat in which 
case the first derivative vanishes identically. 

5. A CONVERSE TO A LEMMA OF BERGER IN 3-DIMENSIONS 

In [3], Berger proved 

LEMMA. Let (M1, gl) and (M2, g2) be two compact Riemannian manifolds. 
Let (M, g)-- (M1 x M2, gl x g2) be the Riemannian product manifold. Let g(t) 
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be a deformation of  go that is non-negative at first order. Then g(t) vanishes 
identically at first order on the zero two-planes of  Kg. 

In 3-dimensions, we have seen that if (M, go) is compact and Kao >_ 0, 
Ricao > 0, then M admits a metric of everywhere positive sectional curvature. 
However, we noted above that if  Ric > 0 only, the proof of Theorem 3 does 
not work. Indeed with a standard product metric go on S i x  S 2, K_>0, 
Ric>0  but since b l (M)= 1, go does not admit a metric of positive sectional 
or even positive Ricci curvature. Hence, there is no geometric deformation 
of go that is positive at first order. As we remarked in Section 4, the Ricci 
deformation vanishes on the zero Ricci directions at first order as it must 
by Berger's Lemma. In fact, if we let X be the vector field of the remark at 
the end of Section 4, Rict(X, X ) = 0  so the Ricci deformation vanishes on 
the zero Ricci directions at all orders. 

It is then natural given a compact 3-manifold (M, go) with certain curva- 
ture properties of the product metric on S i x  S 2 and such that for all 
geometric deformations of go any deformation non-negative at first order 
vanishes identically at first order (as in Berger's Lemma) to ask if (M, go) 
is locally isometric to a product. 

Let (M, g): = (S ~ x S 2, g~ x g2) where g~ is the usual metric on S 1 and g2 
is any metric for S 2 with everywhere positive Gaussian curvature. Then 
Ka > 0, zg > 0, and there is a zero two plane P c  Mp with Ka(P)= 0 for all 
pEM. By the Bochner theory, if go is any metric on S 1 x S 2 with Kao>O, 
there does not exist any pointp ~ S x x S 2 with all sectional curvatures positive 
at p. 

We thus consider the set ~ :  = ((M 3, go); M is compact, Kao >_ O, zg o > 0 
and 32-plane P c M p  for all p ~ M  with Kao(P)=O }. 

DEFINITION. Let (M, g o ) ~ .  We say go is a critical metric for M iff for 
all symmetric 2-tensors h, if  the deformation g(t)=go+th of go is non- 
negative at first order, then it vanishes identically at first order on all the 
zero two-planes for Kg o. 

THEOREM 7. Suppose (M, g o ) ~  and go is a eritical metric for M. Then M 
is locally isometrically aproduct (in the sense of Proposition 5.1 (2), [12]). 

Remark. It is clear that if we replace the condition 30° > 0 by the condition 
zgo -> 0 in the definition of ~ ,  if go is not a flat metric then the appropriately 
modified version of Theorem 7 holds on the open set where ~ao > 0. 

First we state three elementary lemmas, the proofs of which may be safely 
left to the reader. 
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LEMMA 8. Let {x, v, w}eMp be a triple of go-orthonormal vectors. Then 

(D*D Ric) (x, x) = (D'DR) (v, x, x, v) + (D'DR) (w, x, x, w). 

LEMMA 9. Given (M 3, go) with Kgo>_ O. Let peM.  Then either 

(1) Ri%o(V, v)> for allv#O in M E, 
(2) ~x#O in Mp with Ri%o(X,X)=0 and 

Ri%(v, v)=O iff v e R x ,  or 
(3) Ri%o (v, v) = 0 for all v e M E. 

In case (2), Kao (x, v)= 0 iff go (x, v)= 0. 
Suppose the Ricci tensor of (M 3, go) satisfes the following two conditions: 

(1) the scalar curvature T=~oo is never zero, and (2) for each peM,  one of 
the eigenvalues of the Ricci tensor on M E is zero and the other two eigen- 
values are equal and non-zero. We call such a metric almost Ricci product- 
like. 

If (M, go) is almost Ricci product-like, we can find a local unit vector 
field X such that Ricao (Z, X) = 0. Then Xsatisfies DxX= 0 and div X= - X('c)/~: 
(see [9]). Also, locally Ricgo=(z/2)(go--Xb®X ~) where X b is the 1-form 
associated to X by go, i.e., (Xb)(Y):=go(X, I7). A simple calculation gives 

LEMMA 10. Let g( t )=go- t  Ricg o where Ric=Ri%o=(7:/2)(go- Xb ® X b) 
as above. Then 

Ric' (X, X) = ½ (D*D Ric) (X, X) = ½~ IIDX[I 2. 

Proof of  Theorem 7 

Let (M, go)eN. We write Kfor/(go and Rie for Ri%o. Given any peM,  3 a 
two plane P c  Mp with K(P)= 0. Choose a go-orthonormal basis {x, y} for P 
with Pdc(x, y)=0.  Let g(t)=go - t  Pie. From Section 3, this a non-negative 
variation at first order. Hence 

K' (P) = ½ (D'DR) (x,y,y,x) + Ric (x,x) Ric (y,y) = 0 

so Rio(x, x) Ric(y, y)=0.  Since ~(p)>0 by hypothesis, assume Ric(x, x)=0,  
Ric(y, y)¢0.  By Lemma 9, Rx can be the only zero fine for Ric in Mp and 
it follows that (M, go)eN implies (M, go) is almost Pdcci product-like. 

Now let X be a local unit vector field with Ric(X, X ) = 0  and Ric=(~/2) 
x (go - X b  ® X b) as above. Then by Lemma 10, (D*D Ric) (X, X) =~: IIDXII 2. 
But now take local fields Y and Z orthonormal to X. By Lemma 8, 

z IIDXI[ 2 = (D*D Ric) (X, X)  = (D'DR) (I7, X, X, I7) 

+ (D'DR) (Z, X, X, Z). 
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But K(X, Y)= 0 from Lemma 9, so that 

0 = K ' (x ,  r )  = ½ (Z~*DR) (X, Y, Y,X) 

since (M, go)eN.  Similarly K(X, Z ) = 0  implies (D*DR)(X, Z,  Z, X ) = 0 .  
Hence v [IDX[[ 2 =0.  But then since r > 0 ,  this forces DX=O and we are done 

by the deRham Decomposit ion Theorem. Q.E.D. 
We briefly comment  on this type of  rigidity for the Ricci curvature in 

3 dimensions. Fix a non-flat metric go for M with non-negative Pdcci curva- 

ture. We say go is strongly critical atfirst order if  every geometric deformation 
of  go non-negative at first order vanishes at first order. I t  follows f rom the 

local convex deformations of  [10] that i f  go is a critical metric, there is a zero 
Ricci curvature at each point of  M. 

Let us a/so say go is Ricci product-like at p M iff (1) the scalar curvature 

is non-zero at p, and (2) one eigenvalue of Ric: M v x Mv--rR is zero and the 
other two eigenvalues are equal and non-zero. Let Z(go) be the closed set of  

points of  M at which all Ricci curvatures vanish. Arguments similar to those 

given above for the sectional curvature show 

T H E O R E M  11. Given (M 3, go) compact with Ricao >i 0, suppose go is a metric 

strongly critical at first order for M. Then for all p c M ,  either 
(i) all Ricci curvatures are zero at p, or 

(ii) there is an open neighborhood U about p such that go is Ricci product- 
like on U and a unit parallel vector fieM X on U with Ric (X, X ) =  0. 

Hence in the non-fiat part o f  M, namely M -  Z(go), M is locally a product in 

the sense o f  (ii). 
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