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Abstract. To make the analysis more tractable, we simplify the equations of Part I to apply to two 
superposed layers of fluid, with horizontal variations in the motion and magnetic field represented 
by a small number of Fourier harmonics. The resulting set of eighteen ordinary nonlinear differential 
equations in time for the Fourier amplitudes is integrated numerically. We analyze in detail the 
dynamo action from a typical Rossby wave motion and compare it with the solar cycle. 

The field reversal process is similar in some respects to that put forth by Babcock. Toroidal fields 
are dragged up by vertical motions in the Rossby waves to form large-scale vertical fields, whose 
polarities alternate with longitude roughly like bipolar magnetic regions. Vertical fields of prefer- 
entially one polarity are carried toward the pole by the meridional motion in the wave to form an 
axisymmetric poloidal field. This poloidal field is then stretched out by the differential rotation into 
a new toroidal field of the opposite sign from the original. The poloidal field changes sign when the 
toroidal and bipolar region like fields are maximum, and vice versa. 

For the case studied, the reversal period is too short (~ 2 years) and the poloidal fields too large 
(~  40 G) for the sun. Improvements for the model are discussed. 

1. Introduction 

W e  wish to test the d y n a m o  equat ions  derived in Pa r t  I in a relat ively s imple manner .  

To this end, we shall replace the vertical  coord ina te  z by  jus t  five equal ly  spaced 

levels (cor responding  to the  middle  and  edges o f  two superposed  layers of  fluid), and  

represent  hor izon ta l  var ia t ions  in the var iables  by a small  number  of  Four i e r  har-  

monics  chosen to satisfy the b o u n d a r y  cond i t ions  at  the sides. This technique was 

used successfully by Lo renz  (1962, 1963) to s tudy some aspects o f  thermal ly  dr iven 

Rossby  waves in the annulus .  

This is a ra ther  severe t runca t ion  o f  the equat ions,  and  the quest ion na tura l ly  

arises as to whether ,  when many  more  levels in the vert ical  and  harmonics  in the 

hor izon ta l  are added ,  the system will behave  in basical ly  the same way. I t  is possible  

tha t  the smal ler  scale mo t ions  and  magnet ic  fields, represented  by  the higher  har-  

monics  and  higher  vert ical  resolut ion,  will d ra in  energy away  f rom the large scale 

magnet ic  fields faster  than  it can be replenished (see, e.g., Kra i chnan  and  Nagara jan ,  

1967). However ,  since the comput ing  t ime requi red  increases roughly  as the square 

of  the number  of  ha rmonics  and  levels, the comput ing  effort quickly becomes very 

large. F o r  this reason,  we have not  yet  a t t empted  to test the convergence of  the system. 

To derive equat ions  for  this t runca ted  system, it is necessary to make  one further  

approx ima t ion .  By virtue o f  the re la t ion ~(~  = 0 (o) [Eq. (16), Par t  I], the b o u n d a r y  

condi t ion  0 ( ~  0 at  the side walls of  the annulus  [Eq. (28), Par t  I] requires tha t  the 

t empera tu re  be the same on the inner  and  outer  walls. This is very inconvenient  since 

we wish to s imulate  a l a t i tud ina l  t empera tu re  gradient  by  heat ing the outer  half  of  the 

* Part I has been published in Solar Phys. 8, 316. 
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annulus and cooling the inner half. Instead of ~(o)=0, we can require that 

8 2 
- -  = o (I) 
8ySt 

at the sides, where the angular brackets denote an average with respect to x around 
the annulus. However, with this condition, we can retain the energy integral discussed 
in See. 5F, Part I only if we drop the term Pk .V  x (h(~176 from the vorticity 
Eq. (24), Part I, and k.  V x 8 (h(~176 from the toroidal induction Eq. (25), Part I. 
Doing this is equivalent to saying that only the horizontal shears in the heliostrophic 
wind V~ ~ are allowed to stretch poloidal fields into new toroidal fields. Leaving out 
stretching by the vertical shears would appear only to weaken the dynamo rather than 
strengthen it. In other words, if the dynamo works without this effect, and subsequent 
results show it does, then it will almost surely work when the vertical shear terms are 
included. Quantitatively, however, we should expect the dynamo to be somewhat 
different in the two cases. We therefore propose to ignore these terms, and use the 
boundary condition (1) instead of ~b (~ = 0. Clearly later models should take them into 
account. For the particular solutions we shall study, however, we can show that 
k.  V x r (h(~176 would make a considerably smaller contribution to the induction 

I 7 2 U .  [ U ( O )  v 1LI(O)~ of toroidal fields in (25), Part I than does the t e r m .  ~ t . o  ,, ~.~ j. 

2. Two-Layer Equations 

The levels for the two-layer model are labeled 0 to 4, from bottom to top. The spacing 
between successive levels is denoted by E/2. We use ordinary centered differences to 
evaluate vertical derivatives. With subscripts denoting the level, the boundary con- 
ditions (12), Part I for the top and bottom approximate to 

0 o) : : z l o )  : z(oO), z l o )  : v l o )  : r  

7(4 o) (o). h(o o) h(4O) W(o o) = 73 , = = 0; = w~ ~ = 0. (2) 

To approximate the Eqs. (22)-(25) and (27), Part I, we evaluate the variables )(o), 
~(o), 7(o) explicitly at levels 1 and 3, and h (~ w (~ at level 2. When we need a variable 
at some other level than these, we use the simple average of its values one level above 
and below. With this scheme, we evaluate Eqs. (22) and (25), Part I at levels 1 and 3, 

and Eqs. (23) and (27) at level 2. Thus, for example, using the condition h(o ~ = k(4 ~ = 0, 
Eq. (22), Part I yields 

V .~(~ h(2~ = - v-~(~  (3) v ~-~71 . 

Clearly we may set 7(3~ 7(1 ~ and to simplify notation we let 7(3~ 7, 7(o)= _ 7, 
and h(z~ (not to be confused with the continuous variables of Part I). Eq. (3) then 

gives h = EV27. (4) 

Similarly, it is convenient to define w(2 ~ = w and introduce new variables 0, r, Z, t / in 
the two-layer model such that ~b(3~ +% ~bi~ 0 -  z, Z(30) =Z +t/ and Z(t~ 
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(Again, note that ~b and Z here are distinct from the continuous variables ~ and Z 
of Part I.) In terms of these new variables, we can get prediction equations for V2O 
and V2z from (24), Part I, and for vEz and V2t/from (25), Part I. We first assume 
( ~  - ~*)/~8" ~ 1, and define the Jacobian operator J(a, b) - Qa/~?x c~b/Oy- c~a/@ Ob/Ox, 
where a, b are any two variables. We may also set P =  1 without loss of generality. 
The boundary conditions (2) allow us to evaluate the vertical diffusion terms. The 
equations then are, respectively 

0 V2 ~ = _ j ( ~ ,  V2~p ) _ J(z,  vZz) + J(Z, V2Z) + J(r/, V2r/) 
#t 

+ v . ( v ~ v T )  + khV44, (5) 

V ~  = - J(~, V20) - J (0 ,  V2~) + J (Z, V2~) + J (~, V2Z) 
~3t 

+ V-(vZzvT) - w/E + khV4Z - k~VZ.c (6) 

v ~ z  : - v~J (~ , ,  z) - v 2 d  (~, ~) + v ~ (vT.  w )  + b~V~z (7) 
~t 

0 
8t V2t/ = - V2J (0, q) - VZJ (z, Z) + V2 (V?- V~p) + bhV4q - bvV2q. (8) 

In the above equations kh= 1/RL, kv=4/RoE z, bh= 1/GL, bv=4/GoE 2 (the subscripts 
h and v refer to horizontal and vertical diffusion, respectively). 

From (27), Part I, using (4), we can find a prediction equation for VZ?, given by 

~3 1 2 ~?t V27 = - J (0, V27) + RoS (Z, w)/E + bhV47 - zb~V 7. (9) 

Finally, from the thermodynamic Eq. (23), Part I, we can obtain, (defining e '= E/2e, 
qh = 1/GL, q~ = 2/CDE 2) 

- J ( ~ ,  7) - ~'w + q .V2(~  - ~) - qo(~ - ~). (10) 
#t 

In (10) we have represented the forcing function Q in terms of a prescribed 'temper- 
ature' f toward which the convection is always trying to push the 'temperature' field. 

will be chosen as a simple function of y, representing a warm equatorward side of 
the annulus and a cold poleward side (the net heating over the whole annulus will be 
zero). The vertical temperature structure, also determined primarily by the convection, 
is contained in e', which we assume constant. 

3. Truncated Harmonic Equations 

The six Eqs. (5)-(10) now comprise the prediction equations for the two-layer dynamo, 
predicting the six two-layer variables ~b, z, X, q, w, ?. The boundary conditions at 
the top and bottom have been incorporated directly into these equations. The 
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boundary conditions at the sides for the twoqayer variables are, from (11), Part I, (28), 
Part I (for X (~ only), (1) and (4), 

V2"~ = O .  (11) 
~x'  8x'  ~y 3t ' ~y ~t ' Z, ~/, t~y 2 , ~ y 2 ,  ~ y ,  ~y 

The next step is to expand each variable in a set of normalized orthogonal Fourier 
harmonics each of which satisfies the appropriate boundary conditions. We note that 
w, which has no boundary conditions at the sides, is completely determined by (6) 
and (10) if there are no magnetic fields and ~ and z are known. It is therefore natural 
to expand w in the same harmonics we use for r and z. 

Let us take the side walls of the annulus at y = 0 ,  +re, and also let x vary from 
0 to 2~. Since we are describing the annulus in Cartesian geometry, we have, in effect, 
replaced it by an infinite or periodic channel. The dimensionless length L really need 
not be commensurate with the annulus circumference, but can be compared to 
a longitudinal 'wavelength' of bipolar magnetic regions on the sun. With 0 ~<y ~< 7z, 
0 ~< x ~< 2~, we define the following normalized harmonic functions: 

fmo = 2-1/2 cosmy;  fmn = 2-1 cosmy cosnx;  f,~n = 2 -1 cosmy sinnx 

gmo = 2 - 1 / 2  sinmy; gm~ = 2-1 sinmy cosnx;  g ~  = 2 -1 sinmy sinnx.  

(12) 

Then the appropriate expansions for 0, z, w are (using upper case symbols for the 
amplitude coefficients, which are functions of time only) 

m = l  m , n = l  

+ 7J~.,T'. ,W~.gm.. 
m,  n m l  

Similarly, for )~, q, we have 

(Xoo, I oo) gmo+ 
m = l  m , n = l  

(Xm., Hm.) Ore. 

re, n = 1  

Finally, for y, we have 

m = l  m , n = l  m , n = l  

(13) 

(X' . ,  H,'..) 9,..' �9 (14) 

(15) 

We can represent the thermal forcing ~ by a series completely analogous to (13). 
In general, then, by substituting these expressions into Eqs. (5)-(10), then multi- 

plying by each harmonic in succession and integrating over the domain 0~<y~<7c, 
0 ~< x ~< 2n, we can obtain an infinite set of ordinary nonlinear differential equations 
in time for the amplitude coefficients of each of the variables. The nonlinear terms 
represent interactions between different harmonics. In the absence of thermal forcing 
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and dissipation, we can find an energy integral analogous to that discussed in Sec. 5F, 
Part I. 

Obviously, to obtain a closed system, we must truncate the harmonic series. 
Lorenz (1963) was able to obtain useful results for the Rossby wave problem without 
magnetic fields with a system in which he retained only harmonics for m = 1, 2 to- 
gether with a single nonzero value of n = 2, as well as n = 0. The nonlinear interaction 
terms in the equations, then, involve interactions only among the harmonics of this set. 
Interactions with higher harmonics are discarded. The truncated system still conserves 
energy when forcing and dissipation are suppressed. 

We propose to truncate our system in exactly the same way. The results of Lorenz 
(1963) then, will serve as a useful guide for what to expect from our system without 
magnetic fields, although his choice of boundary conditions at the bottom of the 
annulus is somewhat different. 

With the truncation we have chosen, each of the six variables is represented by six 
harmonics: four with longitude (x) and latitude (y) dependence, and two with only 
latitude dependence. Thus from (5)-(10) we would obtain a system of thirty-six 
ordinary differential equations. It is convenient to replace the double subscript and 
prime notation for the amplitude coefficients in this truncated system by single letters, 
following Lorenz (1963). Thus if Z is an amplitude coefficient for any of the variables 

q/, 3, w, Z, ~/, y, welet Zto =ZA, Zll=Z~, Z;I=ZL, Z2o=Zc, Z21=ZM, Z ~  =ZN. The 
A, C modes for each variable~ then, are the symmetric modes, and the K, L, M, N 
modes are the longitudinally varying or 'Rossby wave' modes. 

These modes can be broken down further into two groups of eighteen such that 
if no harmonics from one group are excited initially, they will remain unexcited. To 
thermally force the system we chose -~ = Ta 2-2/2 cos y (as did Lorenz, 1963), which 

represents a temperature monotonically decreasing from the equator (outer edge of 
the annulus) toward the pole. The eighteen modes that group with Ta are 

TA, TL, TM, ~K, ~c, ~N 
WA, WE, Wza, XA, X~, X N (16) 
HL, Hc, HM, F A, FK, F~v. 

The study of just these modes will give sufficient indication of the dynamo properties 
of the system. Within this set, we can think of TA, Tc as representing the axisymmetric 
'differential rotation', and W A as the axisymmetric meridian circulation. The modes 
T L, TM, TK, TN, WL, WM, then represent the 'Rossby waves', in this case with a single 
longitudinal wavelength. Similarly, X A and H c comprise the axisymmetric toroidal 
field, while F A is the symmetric poloidal field. The modes XK, XN, HL, HM, F~, FN give 
the magnetic structure of the Rossby wave, which we might identify with the bipolar 
magnetic regions of the sun. FA, FK, F~, being related to the vertical field h [by (15) 
and (4)], can be compared to the observed large-scale solar fields. 

Defining r=~/2, s=4r/157r, setting E = I ,  e '=0.1, and letting dots denote time 
differentiation, we may now write down the eighteen differential equations for the 
amplitudes (16). 
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128s 7r 2r 6r 
~K = -- 16sTLTA - 5 -  g N ~ C  -- 5- XaXN + 5 HcHL - 5 HcFK 

4r  
+ ~ HMVa - 5kh~/~  (17 )  

qJc = 24S(g*K~N -- TuTL - XKXN + HMHL) - 16sHcFA - 40sHLFtr 

- 32sH~F~: - 4kh~gc (18) 

r 5r 
tPN = 14sTATM + 4s~P~Tc + ~ XAXK - ~ HLFA -- 8 k h a n  (19) 

TA = WA -- I O s X A F A  -- 5 0 s X ,  f ~ - 128sXNFN -- (kh + lc~) T A (20) 

1 128s 7r 2r 
T L = ~  WL + 1 6 s T K T A  + 5 T M T c + 5 X A H M - 5  HcXK 

4r 3r 
+ ~ XNF a + ~ XAF N - (5kh + k~) TL (21) 

1 r 5r 
TM = 8 WM -- 14s~NTA -- 4sTL ~'c -- ~ XAHL -- ~ XKF A 

3r 
-- - -  XaFK - (8kh + k~) T v  (22) 

8 

TA = 20S~KTL -- 1 6 s T N T u  -- e'WA -- (qo + qh) (TA -- TA) (23) 

TL = -- 20s~KTA + 32SgcTM -- e'WL -- (q~ + 5qh) TL (24) 

7"~ = 16Sg*NTa -- 32S~gcTL -- dWM - (q~ + Sqh) Tv (25) 

2 ~  = r ( X K ~ N  -- XN~K + H u r l  -- HLT~)  + IOsTAFa 

+ 3r (TMF K - TLF~) - b,,Xa (26) 

Y(I~ = -- rXA~gzv + 2rHcTL - 20sHLTa - 3 2 s X N g c  

+ IOsTAF K + rTMF a - 5bhX~ (27) 

r 

XN = r XA~K + 16sHuTa + 32SXK~c + 16sTaFN - ~ TLFA -- 8bhXN 

1:1 L = rXATM -- 2 r H c ~ K  + 20sXKTA + 32s(HM~Pc + gcFN)  

+ r ~ N F  A -- (5bh + by) HE 

3P 
[ t  c = 2r(HLtI'K -- XKTL) + 16S~cVa  + ~ ~KF~ -- (4bh + b~) Hc 

(28) 

(29) 

(30) 

I:tu = - rXATL -- 16sXNTA - 32sHLtPc + 16s~cFK 

F 
- ~ ~KFA -- (8bh + b~) H ~  (31) 

[ ~ A = - - 5 r ~ N F K - - 8 r ~ K F N + 4 s R o ( 5 W L X K - - 4 W M X N ) - - ( b h + b 2 ) F A  

(32) 
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/~K -- 64S ~ClVN + ~NFA + Ro X N W  ~ + 2SXAW L -- 5b h + F K 
5 -5 

(33) 

r r ( b~'~ F 
tf'N = 5S~cFK + 8 t[tKrA + 8 R ~  -- \Sbh + ~ j  u.  (34) 

4. Numerical Integration Procedure 

For all cases, we fix the thermal forcing ~A=0.5, and let Ro=0.1.  Furthermore, to 
reduce the number of parameters, we let qv = 2qh - q, kv = 4k h - k, b~ = 4b h =- b. This is 
equivalent to letting D =L,  so that horizontal and vertical diffusion are roughly of  
equal magnitude (actually horizontal diffusion is larger for the high horizontal wave 
numbers, vertical diffusion bigger for the low wave numbers). Finally, we let q = k .  
This is equivalent to fixing the effective Prandtl number v/~c --= 0. 5, which does not 
seem unreasonable for solar turbulence. In summary, then, q is proportional to the 
effective thermal and mechanical diffusion, while b is proportional to the magnetic 
diffusion or resistivity. 

Since we are taking L = l . 5 x  105 kin, assuming D = L  is inconsistent with our 
original statement in Part I, Sec. 3 that the depth of the annulus is not much larger 
than a scale height. Since we have also taken -* (~o3 -~*) /0"  ~ 1 for the two-layer model, 
we are in effect dealing now with a stratified liquid, with mean density that of the 
convection zone, contained in an annulus with roughly the depth of the convection 
zone and of width perhaps 40 ~ latitude. 

To integrate Eqs. (17)-(34) in time we replace the time derivatives by a two-step 
finite difference form, the so-called Adams-Bashforth scheme. This scheme has been 
tested and found satisfactory for problems of our type by Lilly (1965). With this form, 

if I 7 = f (t) (35) 

is any of our differential equations, the value of Y at time ti+ 1 is given in terms of  
quantities computed for the previous two time steps ti, ti- 1 according to the formula 

Y( t i+ l )  = Y( t l )  + [z3-f (ti) - � 8 9  (h - l ) ]  At .  (36) 

where At is the time increment between steps. Eq. (36) works for all but the first time 
step, for which we use an ordinary forward difference, given by 

Y ( A t )  = Y(O) + f (0) At  (37) 

The value of A t used is chosen when successive integrations with decreasing A t, for 
fixed values of all other parameters, show little difference in behavior (amplitudes, 
periods, etc.) after several thousand time steps. In all cases, At=0.25 was found to 
be satisfactory for our purposes. 

To actually integrate (17)-(34), using (36) and (37), we proceed as follows. First, 
we specify nonzero but small initial values for Ta, ~K, gin (following Lorenz, 1963). 
The magnetic field is initially kept equal to zero. Then, eliminating TA, TL, T M from 
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(20)-(25), we may find consistent initial values for Wa, WL, WM. Then from (17)-(23), 
using (37), we find new values for ~u,c,N; TA, L,M at t = A t ,  and then use (36)to 
determine ~K, c, N ; TA, L, M at t = 2A t. Thereafter the process is repeated for each A t 
increment. Doing this, we allow the solution without magnetic fields to develop until 
it has reached its final form (we discuss the various types of solutions without mag- 
netic fields in the next section). At this point, usually after at least 10 a time steps, we 
insert a small value for one of the magnetic field components, say X A, so small that 
at first the Maxwell stresses have no significant effect on the motion. Eq. (26)-(34), 
together with (37), then provide values for all the magnetic amplitudes at later times. 
The magnetic fields then either grow or decay, depending upon how large a resistivity 
(proportional to b) we choose. The integration is terminated when it is clear that 
further iterations will not yield any new information. 

5. Solutions Without Magnetic Fields 

As stated earlier, our model without magnetic fields, represented by Eqs. (17)-(25), 
is very similar to that studied by Lorenz (1963). We can therefore classify the solutions 
in the same manner as he did. Roughly speaking, as we reduce q (corresponding to 
reduced effective thermal conductivity and viscosity) the solutions become more 
turbulent. In the neighborhood of q=0.24, we get steady Rossby-wave solutions in 
which all nine modes for the motion approach nonzero constant values after sufficient 
time. We will concentrate on the dynamo properties of this type of solution. For 
somewhat larger values of q, we find steady Rossby-wave solutions in which only five 
of the nine modes (I//K, TA, TL, WA, WL) are present. For still higher q, we find only 
the axisymmetric modes TA, W A are produced, corresponding to a meridian circu- 
lation and zonal flow or differential rotation. 

For q somewhat smaller than 0.24, we find that all nine modes are present, but 
rather than being steady they oscillate about mean values close to the solution for 
q = 0.24. As q is decreased still further, the amplitude of the oscillation becomes larger. 
A typical oscillation period is 20 dimensionless time units. These are called vacillating 
solutions. All of the above solutions correspond qualitatively to observed motions 
in rotating annulus laboratory experiments. 

Because the boundary conditions at the top and the bottom of the annulus are the 
same, our Rossby waves are standing waves relative to the rotating coordinate system. 
If we had required no slip at the bottom, which is approximately what Lorenz did, 
we would have found the waves moved around the annulus slightly faster than the 
basic rotation. We have also looked at the dynamo properties of these waves, and 
found them to be quite similar to what we shall report below for the standing Rossby 

waves. 
6. Analysis of a Solution with Reversing Magnetic Fields 

A. TIlE INDUCTION PROCESS 

We shall analyze here in detail the dynamo action of the steady Rossby-wave solution 



A ROSSBY-WAVE DYNAMO FOR THE SUN, II 11 

for the thermal and viscous diffusion parameter q = 0.24. The results for this case are 
typical of  the dynamo behavior of  the Rossby wave motions in general. To find the 
Rossby wave solution, we initially set TA= 10 -2, kgK=5 • 10 -3, 7':4= --5 • 10 -3, with 
~c,  TL, TM and all the magnetic amplitudes equal to zero. After two thousand iter- 
ations with At=0.25 ,  a steady state is well established, for which 

7sE = 1.479 x 10-1;  7% = - 7.702 x 1 0 - 2 ;  txP N = -- 3.527 x 10 - 2  

T A = 3.953 x 10-1;  T L = -  6.945 x 10-2;  T~t = -  1.725 x 10 -2 
WA = 1.186 x 10-1; WL = - -  7.695 x 10-~;  WM = - -  2.663 x 10 -1 

At this point, we set X a = 5 x 10 - 3, and proceed with the integration for three thousand 
more iterations. One run of  this length typically took about two minutes on a C D C  
6400 computer. The results are presented in Figures 1-3. All the magnetic field ampli- 
tudes oscillate periodically about zero, with a period of  around 160 time increments. 
The peak amplitudes of  XA (denoted by + and - )  are plotted in Figure 1, for four 
different values of  b, the magnetic diffusion parameter. We note that the period of  
field reversal is rather insensitive to b, but whether the peaks grow or decay is strongly 
dependent on it. The 'dynamo threshold', for b values smaller than which the suc- 
cessive peaks amplify, is for the present case b~0 .04 .  Since for E =  1, b=4/GL,  b =0.04  
corresponds to effective magnetic Reynolds numbers G o = GL-- 100. 

For b = 0.03, the peaks level off after 3600 increments. Up to this point, the inducing 
motions are virtually unchanged from their steady values found from the first 2000 
interations. Beyond this time the fields are large enough so that the Maxwell stresses, 
reacting upon the motion, modify it in such a way as to reduce further induction to 
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Fig. 1. Peak amplitudes ( +  and --)  of the principal toroidal field amplitude XA as a function of  
the number of  iterations. Solution is for mechanical and thermal diffusion parameter q =0.24; 

b is the magnetic diffusion parameter. 



12 PE T E R A. G I L M A N  

0.5 

0.4 

0.3 

0.2 O3 
0.1 

I -  0 

n -J -0.1 --'<- 

i I I I , ] I I 
b) 

~ xN 
o.I XK 

hm 

-0.11~~~ - ........ ~-----~ 
- 0 ' 2 F  ~ , I , I , I i / 

4760 4800 4840  4880 4920 

N U M B E R  OF ITERATIONS 

a) 
/ - ~ . . ~ : _ _  TA ~ ~ ~ _ 

~N 

TA 

% 

% 

Fig. 2. (a) Amplitudes of selected harmonics for the Rossby wave (rUse, ~ v ;  dashed lines) and 
differential rotation (TA, 7xc; solid lines) for one complete cycle with b 0.03. Hatch marks on the 
right edge indicate values of these amplitudes without magnetic fields. (b) Amplitudes of the toroidal 

field for the same cycle. 
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Fig. 3. (a) Amplitudes of the vertical magnetic fields for the same cycle as in Figure 2. (b) Analysis 
of the processes determining the axisymmetric vertical field f'A for the same cycle. 
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the point that, on the average over a cycle, induction of fields is balanced by diffusion. 
The field reversal period is changed very little by this effect. The peak energy in the 

magnetic field once the balance is achieved is about 25~ of the energy in the horizontal 
motion. Note that if the reaction of the induced fields on the flow had not been 
included, successive peaks in the field amplitudes would have continued to grow 
without limit. 

We have also looked at the dynamo behavior for b = 0.025, (not plotted) and have 
found that the peaks grow still faster, but once the Maxwell stresses are large enough 
to alter the motion, successive peaks do not settle down to steady values, but rather 
fluctuate rather irregularly with a variation of a factor of two or so. The average 
value of the peaks is, however, close to that for b = 0.03. 

The details of the field-reversal process and reaction of the fields on the flow are 
illustrated in Figures 2 and 3 for one cycle with b=0.03. In Figure 2a, we have 
plotted representative amplitudes for the motion. We note that the reversing fields 
induce an oscillation in the motion with period one-half that of the field oscillations. 
These oscillations, however, represent only small modulation of the motion without 
magnetic fields, indicated by the labelled marks on the right-hand edge of the figure. 
The total kinetic energy of the motion changes by no more than 10~ over an oscil- 
lation. That the period of oscillation in the motion is half that of the magnetic field 
is reasonable, since the Maxwell stress is invariant to a change in sign of all field 
components. The stress acts in the same way on the motion at corresponding points 
in successive half cycles of the field. 

Figure 2b shows the cyclic variations in the toroidal field amplitudes XA, X~r XN, 
HCT (HL, Hi,  not plotted, have about the same amplitudes and variations as XK, XN), 
while Figure 3a gives variations in the poloidal field. The poloidal harmonics are 
weighted so that each curve is proportional to the vertical magnetic field for that 
harmonic. We do this for easier comparison with the observed radial fields on the sun. 

We note that the bulk of the toroidal fields (Xa, XK, XN, Hc, H~t) are strongest when 
the symmetric poloidal field F A is changing sign. On the other hand, the asymmetric 
poloidal fields Fro and F N are largest at about the same time the toroidal fields are largest. 

A careful examination of the various nonlinear interactions in the induction Eqs. 
(26)-(34) reveals the dominant feedbacks which comprise the reversal process. From 
XA, the vertical motion WL in the Rossby wave produces vertical fields in the form 
of Fro [through the term 2sROXAW L in Eq. (33)]. Some of this vertical field is trans- 
ported across the channel by the meridional motion of the Rossby wave associated 
with ~N to increase the axisymmetric poloidal field FA (represented by the terms 
(r/5)~NF A in (33) and - 5r 7JNFt: in (32)). In addition, some of F r  is transformed into 
F N by ~c, whence into FA by the horizontal transport due to 7Jr of the Rossby wave 
(through the terms - (64s/5) 7 j cFN in (33), 5s T cF1r and (r/8) 7J~cFA in (34), and - 8r TrcFN 
in (32)). Finally, the induced poloidal field FA, by interacting with TA, which represents 
the bulk of the differential rotation, is stretched put into a new toroidal field X A of 
the opposite sign from the original. [This is accomplished by the term IOsTAF A in (26)]. 
Then the induction of new F~, FN repeats but with signs reversed. The other non-linear 



14 PETER A. GILMAN 

interactions also contribute to the reversal process, of course, but in lesser amounts. 
For  dynamo solutions, then, the terms representing the twisting of toroidal fields 

into the vertical by vertical motions in the Rossby waves, which are multiplied by Ro 

in Eqs. (22)-(34), are as large as all other terms in these equations, despite the fact 
that they are formally of higher order in Rossby number. 

The processes determining the size of the symmetric poloidal field are evaluated in 
Figure 3b. Taking terms from Eq. (33), we define 

- 5r~NFK -- 8r~KFN -- transport 

4sRo (5WLX K - 4 W M X N )  ---- twisting 

- (b h + by~2) F A - diffusion. 

Comparison of the transport curve in Figure 3b with the variations seen in Figure 3a 
clearly shows that the horizontal transport of vertical fields by the Rossby waves 
produces FA. When this transport is positive, f fA  is becoming increasingly positive; 
when it is negative, F A is becoming more negative. The transport process is opposed 
by the vertical motions WL, WM of the Rossby wave twisting toroidal fields XK, XN 

into the vertical to partially cancel the flux in Fa. Finally, diffusion, of course, is 
always trying to reduce the magnitude of FA. 

Plots similar to Figure 3b for the other induction equations can be constructed to 
reveal the rest of the induction process described above. 

B. OTHER DYNAMO SOLUTIONS 

We have also looked at the dynamo action of flows for q somewhat larger and some- 
what smaller than 0.24. For larger q, when only the five harmonics TA, TL, 7Jr, WA, WL 

are excited, we found that when a small magnetic field is added, all nine magnetic 
harmonics are excited. Then the reaction upon the motion excites the remaining 
amplitudes Tc,  ~N, TM, WM of the motion. Thereafter the solution behaves in much 
the same way as the one discussed in detail above. 

For q smaller than 0.24, in the region of vacillating motions, we find that, in general, 
when the induced fields are large enough to influence the motion, the original vacil- 
lation period is suppressed and replaced by the oscillation at one-half the period for 
field reversals. The periods for all solutions looked at vary by no more than 20~. 

As mentioned in Sec. 5, we have also looked at the dynamo behavior of Rossby- 
type motions subject to different boundary conditions. In particular, if we allow no 
slip at the bottom of the channel, the boundary condition on 0(0), used to evaluate 
the vertical diffusion of vorticity ~2/~Z2 V2~/(0) for the two-layer model, is that ~,(o ~ =0. 
With this asymmetry in the boundary conditions (since O(a ~ ~9~~ it can be shown 
that all thirty-six amplitudes are linked, instead of being broken into two non-inter- 
acting groups of eighteen. Also the Rossby waves are not stationary, but instead 
propagate around the channel. Nevertheless, we have found that reversing magnetic 
fields with roughly the same period are produced by these motions too. 

C. EFFECT OF NEGLECTED TERMS 

We need to assess as far as practical the effects by the various terms we have neglected 
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on the field reversal process we have presented above. First, since only Eq. (9) for the 

vertical field h=EV27 contains a term formally of higher order in Rossby number 

[the term RoJ06 w)/E], we should examine all the other terms of this order which 
would have been present in this equation had we not chosen to ignore them for reasons 
discussed in Part I, Sec. 5E. Before approximating to the two-layer model, these terms 
are, from the right hand side of Eq. (8), Part I (dropping the Ro 2 factor) 

(H~~ V) w (~ - (V(~ ~ �9 V) h (~ + w(~ ~ -h (~  .(~ (35) 

For the two-layer system, these terms, evaluated at level 2, at which Eq. (9) applies, 
become 

(o) ( ~ ( o )  H ( o ) ~  r . (o )  ~(o)~ (V(~ ~ + V~3) ,~,(o) ~-~1 + - ~ 3 ,  
~ 1  + ~-~s J.Vw(zO) "Vh(z ~ + "2 V" 

2 2 2 
( V  (~ + V(~  

_ h(2o)V.~,--al- --,,3J (36) 
2 

We show now that all these terms actually vanish. We have already shown in Sec. 2 
from Eq. (3) that for the two layer model we may set r o) = - 7(1 ~ so that H(~ - H(o) x~73 - -  - - ~ 1  

and therefore rT(o)j_~(o) a This means the first and third terms in (36) vanish. ~xy I ~ x y  3 = ~ .  

Since we are assuming also that ( 0 " - 0 ' ) / ~  8. ~ 1, we can show by approximating 
Eq. (20), Part I for the two layer model that 

V"--a3v(O) = w(2~ = - V" -,,1re(~ (37) 

Eq. (35) is completely analogous to Eq. (3) for the poloidal field, so that we may 
v(o) -~(o) 0 set v 1#~ _#0),,3 and consequently -~1 +v~3 = �9 Therefore the second and fourth 

terms in (36) drop out. Of course, when we go to more sophisticated models, with 
more levels in the vertical, the corresponding form for (35) may no longer vanish. 

For reasons discussed in Sec. 1, we also ignored in the induction equation for 
toroidal field the term k.V x 8 (hw)V~~ For the two-layer model this term ap- 
proximates to k" V x [h(2 ~ (V~, ~ -~(o)~ 2E + v03 j ]/ at level 1, and the negative of this at level 3. 
These will together add a term - ( V "  vZyvo) to the right hand side of (8). Since (8) 
is the prediction equation for va t / f rom which we obtain (29), (30), (31) for IlL, Ho 
HM, we expect that these harmonics will be somewhat different, but certainly not 
larger by an order of magnitude. On the other hand, the forms of (26)-(28) for the 
amplitudes XA, XK, X N are unchanged, as are (32)-(34) for the poloidal fields FA,  [ 'K,  

FN. We have shown that the dominant toroidal field in the reversal process is X A. 
Its magnitude is determined in (26) primarily by the interaction IOsYAF A of the 
differential rotation and poloidal field. The interactions involving HL and HM are 
smaller typically by a factor of ten, so that the changes in H L, HM caused by the 
additional terms in (29), (30) and (31) should have little effect. Since in addition, 
Eqs. (32)-(34) for the poloidal fields do not even contain H, the principal reversal 
process should not be altered significantly. 
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Finally, since terms formally of higher order in Rossby number in the poloidal 
field induction Eqs. (32)-(34) are in fact as large as the other terms in these equations, 
it is legitimate to ask whether this would be true of higher-order terms we have omitted 
from the toroidal field induction equations. However, we find for our solutions that 
these terms are in fact as small as they should be according to the Rossby number 

expansion. 
In summary, then, within the context of a two-layer, truncated harmonic model, 

we feel we have captured the principal processes responsible for the dynamo mainte- 
nance and reversal of the magnetic fields. 

7. Comparison with Solar Observations 

Our dynamo model is sufficiently idealized that we really can make only qualitative 
and order-of-magnitude comparisons to the solar cycle. First of all, the period of 
magnetic field reversal in our solution is about 160 iterations for A t = 0.25. Given the 
time scale L/U= 1.5 x 106 sec, this is in real time 6 x 107 sec, or two years, compared 
to about 20 years for the actual solar cycle. Peak energies in the toroidal field for 
our model are about 25% of the kinetic energy of flow. This means a peak toroidal 
field strength Mr=nl/Z~l/Zu, so that for 0 ~ 1 0 - 4 g c m  -3, U = 1 0 0 m s e c  -1, 

M T = 180 G. The peak energy in the symmetric vertical field FA, corresponding to the 
sun's polar field, and in the 'bipolar magnetic region' fields FK, FM are each about 
6% of the total toroidal field energy. Therefore these peak field strengths are about 
40 G, about one order of magnitude larger than observed on the sun. Obviously, 
since our model is incompressible and highly truncated, our estimates are crude. Also, 
choosing a 6 smaller than one would reduce the vertical fields proportionately. 

We can summarize the process of field reversal in our model in three steps. 1. Vertical 
motions in the Rossby waves drag up toroidal field lines to make large-scale vertical 
fields. 2. These are in turn transported in latitude to form the axisymmetric poloidal 
field. 3. This poloidal field is then stretched out by the differential rotation into a 
new toroidal field of the opposite sign. This sequence fits well with, for example, 
Babcock's (1961) conception of the reversal process. Babcock invoked magnetic 
buoyancy to produce vertical flux instead of large-scale vertical motions, but he did 
postulate meridional currents to transport flux poleward, as well as the differential 
rotation stretching the poloidal into a new toroidal field. Bumba and Howard (1965) 
have observed the poleward migration of vertical flux, but could not say whether 
large-scale mass motions were producing it. 

Other properties of our model also have their counterparts in the observations. 
For example, the poloidal field /~A in our model is a maximum when F~:, FN and the 
toroidal field are changing signs. This corresponds roughly to solar activity minimum. 
When FA changes sign, the rest of the fields are maximum, corresponding to activity 
maximum. Also, through the dynamo cycle the horizontal flow varies only a moderate 
amount (10%). So far as is known, the sun's differential rotation does not undergo 
large variations with the solar cycle either. 
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In general, our dynamo is much more 'coherent' than is the sun. That is, the field- 

reversal process is much smoother as well as faster. This is presumably because the 
motion and fields have so few degrees of freedom. We would expect on the sun (and 
in a model with many more degrees of freedom) that individual Rossby wave distur- 
bances would grow and die (corresponding perhaps to the birth and decay of active 
regions), each successive disturbance making its contribution to the reversal process. 
It would seem from this that there would be more local cancellation of magnetic flux 
and that probably the cycle would proceed more slowly and with somewhat smaller 
amplitudes. 

Within our model, it is possible to achieve longer periods simply by reducing the 
Rossby number. Decreasing it by a factor of three would give reversal periods of ~20  
years. However, this small a Rossby number would correspond to a solar differential 
rotation smaller than is observed. 

For the dynamo solution most thoroughly studied above (with q=0.24, b=0.03 
and 6=  1) the turbulent viscosity is v~1013 cm 2 sec -1, while the thermal diffusion 
coefficient 1 ~ 2  x 1013 cm 2 sec -1. The former is in line with values given in Cocke 
(1967). The effective resistivity 2 ~ 1.5 x 1012 cm 2 sec-1, which is two orders of magni- 
tude smaller than used by Leighton (1964) for diffusion of bipolar magnetic region 
fields toward the pole. However, in our model, Leighton's diffusion process that forms 
the polar field is replaced by the transport of vertical fields by the mass motions in the 
Rossby waves. 

Finally, we can make an estimate of the latitudinal temperature gradient needed 

for the dynamo. Again, since our model does not take account of compressibility, this 
is crude. As stated in Gilman (1968), the temperature difference A T between equator 
and pole is given by the thermal wind relation so that 

A T ~ (m~lR) (~a12) (U/N) 

where R is the universal gas constant, m the molecular weight, a the sun's radius, 
and N the number of pressure scale heights the fluid layer is deep. For m = �89 (ionized 
hydrogen), a = 7  x 10 l~ cm, U = 2  x 104 cm sec -1, 

A T ~ 40 K/N 

so that if the layer in which the temperature difference produced by the convection 
zone is, for example, ten scale heights deep, A T ~ 4 K .  This is within the error limits 
of equator - pole temperature difference observations made so far. 

8. Needed Improvements for the Model 

There are several major improvements needed in the model. In summary, these are: 
1) spherical geometry; 2) compressibility; 3) more realistic boundary conditions, 
particularly at the top of the fluid region; 4) many more layers in the vertical and 
harmonics in the horizontal, or, alternatively, a three-dimensional grid for a spherical 
shell. 
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At present there is work in progress by others on a model for a spherical shell 
which still has two layers, but which has more harmonics in the horizontal. This 
model allows for a potential field outside the spherical shell that is solved for simul- 
taneously with the dynamo field in the fluid. In our model, the annulus geometry 

gives us a differential rotation with a maximum in the middle of the annulus (i.e., 
mid-latitudes within one hemisphere on the sun) which is not particularly realistic. 

I t  is hoped that the spherical shell model will give an equatorial acceleration as well 

as reversing magnetic fields. With a spherical shell model, the heliostrophic assumption 
is also dropped, since Coriolis forces in the heliostrophic balance vanish at the equator. 

Therefore the Rossby number expansion is also abandoned. 
Unfortunately, because of the computing expense, it will not be possible in the 

immediate future to test the convergence of models of our type when many more 

harmonics and layers are added. 
In addition to the above improvements needed, we also need to know more about 

solar convection, particularly how big the eddy viscosity produced by it is, and how 
big a latitudinal temperature gradient it can produce when influenced by rotation. 

Finally, we are also developing mathematical models to test the dynamo and differ- 

ential rotation maintenance capabilities of  giant convective cells on the sun arising 
from the vertical temperature gradient rather than a latitudinal one. These motions 

have one advantage over thermally driven Rossby waves in that modelling them 

requires fewer assumptions that have no direct observational support. 
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