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Abstract. The flow of a single-phase fluid through a rough-walled rock fracture is discussed within 
the context of fluid mechanics. The derivation of the 'cubic law' is given as the solution to the 
Navier-Stokes equations for flow between smooth, parallel plates - the only fracture geometry that 
is amenable to exact treatment. The various geometric and kinematic conditions that are necessary 
in order for the Navier-Stokes equations to be replaced by the more tractable lubrication or Hele- 
Shaw equations are studied and quantified. In general, this requires a sufficiently low flow rate, 
and some restrictions on the spatial rate of change of the aperture profile. Various analytical and 
numerical results are reviewed pertaining to the problem of relating the effective hydraulic aperture 
to the statistics of the aperture distribution. These studies all lead to the conclusion that the effective 
hydraulic aperture is less than the mean aperture, by a factor that depends on the ratio of the mean 
value of the aperture to its standard deviation. The tortuosity effect caused by regions where the 
rock walls are in contact with each other is studied using the Hele-Shaw equations, leading to a 
simple correction factor that depends on the area fraction occupied by the contact regions. Finally, 
the predicted hydraulic apertures are compared to measured values for eight data sets from the 
literature for which aperture and conductivity data were available on the same fracture. It is found 
that reasonably accurate predictions of hydraulic conductivity can be made based solely on the first 
two moments of the aperture distribution function, and the proportion of contact area. 
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1. I n t r o d u c t i o n  

In m a n y  geological  formations with low matrix permeabil i ty,  fluid flow takes 
place predominant ly  through fractures. In some cases mos t  o f  the flow takes place 

through a single fracture or fault, while in other cases the flow occurs through a 

network of  fractures. In either case, an understanding is needed of  how fluid flows 
through a single rough-wal led rock  fracture. Fracture-dominated flow is important  
in m a n y  situations of  technical or scientific interest, such as in naturally-fractured 
pet roleum reservoirs (van Golf-Racht ,  1982; Nelson,  1985), most  geothermalreser -  
voirs (Grant  et al., 1982), and in many  of  the sites that have  been proposed  for  
underground radioactive waste  repositories (Pruess et al., 1990). Various theo- 
retical, numerical  and experimental  aspects o f  flow in fractured rock  masses  are 
discussed in Bear  et al. (1993). 
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In this paper, we address the question of relating the hydraulic conductivity 
of a single fracture to the geometry and topography of the fracture walls and 
asperities. We start with the Navier-Stokes equations, which govern the flow of 
a single-phase fluid, and systematically simplify the equations to reduce them to 
manageable form, while carefully considering the conditions required in order 
for the various approximations to be valid. We then discuss and review various 
analytical and numerical studies that have been done for different types of fracture 
geometry models. The aim of this discussion is to arrive at an equation that will 
relate the fracture conductivity to a small number of geometrical parameters, such 
as the mean aperture, fractional contact area, etc. Finally, we compare the various 
theoretical models to a few sets of data from the literature in which conductivity 
and aperture statistics have been measured on the same rock fracture. 

2. Basic Equations Governing Fluid Flow 

The flow of an incompressible Newtonian viscous fluid is governed by the following 
form of the Navier-Stokes equations (Batchelor, 1967, pp. 147-150): 

0_u 
Ot + (u .  ~7)u = F - 1~7p + /z~72u, (1) 

P P 

where p is the fluid density, F is the body force vector (per unit mass), p is pressure, 
# is the fluid viscosity, and u is the velocity vector. The first term on the left 
represents that portion of the acceleration of a fluid particle that is due to the fact 
that, at a fixed point in space, the velocity may vary with time. The second term is 
the advective acceleration term, which accounts for the fact that, even in steady- 
state flow, a given fluid particle may change its velocity (i.e., be accelerated) by 
virtue of moving to a position at which there is a different velocity. The sum of these 
two terms represents the acceleration of a fluid particle computed by 'following the 
particle' along its trajectory. The terms on the right-hand side represent the applied 
body force, the applied pressure gradient, and the viscous forces. 

Equation (1) represents one vector equation, or three scalar equations, containing 
four functions: three velocity components and the pressure field. In order to have a 
closed system of equations, they must be supplemented by the continuity equation, 
which represents conservation of mass. For an incompressible fluid, conservation 
of mass is equivalent to conservation of volume, and the equation takes the form 

div u -- V �9 u = 0. (2) 

The assumption of incompressibility is acceptable for liquids under typical subsur- 
face conditions. For example, as the compressibility of water is only 4.9 • 10-1~ 
(Batchelor, 1967, p. 595), a pressure change of 1 MPa (10 bars) will change the den- 
sity by only 0.05%. The compressibility effect is important for transient problems, 
since it contributes to the storativity of the rock/fluid system (de Marsily, 1986, 
pp. 107-108). However, since the relationship between permeability and fracture 
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geometry is most readily studied using steady-state flow, we will ignore transient 
effects, and assume that the fluid density is constant. The relevant boundary con- 
ditions for the Navier-Stokes equations include the 'no-slip' conditions, which 
specify that at any boundary between the fluid and a solid, the velocity vector of 
the fluid must equal that of the solid (Batchelor, 1967, p. 149). This implies that at 
the fracture walls, not only is the normal component of the velocity equal to zero, 
but the tangential component vanishes as well. 

The most common situation in subsurface flow is for the only appreciable body 
force to be that due to gravity, in which case F = g. Taking the z-direction to be 
vertically upwards, we have g = -gez ,  where g = 9.81 m/s 2 = 9.81 N/kg, and 
ez is a unit vector in the vertical direction. The gravitational term can be removed 
from the governing equations by defining a reduced pressure (Batchelor, 1967, p. 
176; Phillips, 1991, p. 26). 

P = p + pgz, (3) 

in which case the two terms F - (1/p)Vp can be written as 

F -  ! V p  = -ge~ - - 1 V p :  - l ( v p +  pgez) 
P P P 

- 1  V(p + pgz) - 1 V p .  (4) 
P P 

The governing equations can therefore be written without the gravitational term, 
in terms of the reduced pressure, P.  

Fracture permeability is generally defined under the assumption of steady-state 
flow under a uniform macroscopic pressure gradient. In the steady-state, the term 
Ou/Ot drops out, and the equations reduce to 

#V2u - p (u .  V)u = Vp.  (5) 

The presence of the advective component of the acceleration, (u- V)u, generally 
causes the equations to be nonlinear, and consequently very difficult to solve. In 
certain cases this term is either very small, in which case it can be neglected, or 
else vanishes altogether. The case of steady flow between parallel plates is one in 
which the advective terms vanish identically, thus allowing an exact solution to be 
obtained. If other more realistic geometries are to be considered as models of a rock 
fracture, approximations must be made to linearize the Navier-Stokes equations, 
or otherwise reduce them to tractable form. 

3. Parallel Plate Model and Cubic Law 

The simplest model of flow through arock fracture is the parallel plate model. This is 
the only fracture model for which an exact calculation of the hydraulic conductivity 
is possible; this calculation yields the well-known 'cubic law' (Witherspoon et al., 
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Fig. I. Parallel-plate fracture of aperture h, with uniform pressures Pi and P0 imposed on 
two opposing faces. The resulting parabolic velocity distribution given by Equation (10) is 
shown on the right. 

1980). The derivation of the cubic law begins by assuming that the fracture walls can 
be represented by two smooth, parallel plates, separated by an aperture h (Figure 1). 
Now we imagine that there is a uniform pressure gradient within the plane of the 
fracture. In Figure 1, the magnitude of the pressure gradient is (Pi - Po)/L; it will 
also be denoted by [VP[, where the overbar denotes an average over the plane of 
the fracture. We now set up a Cartesian coordinate system which has its x 1 = x 
direction parallel to V P ,  its x2 -=- y direction perpendicular to Xl in the plane of 
the fracture, and its x3 - z direction (not necessarily vertical) perpendicular to the 
fracture walls. The top and bottom walls of the fracture correspond to z = +h/2. 

The (reduced) pressure gradient lies entirely in the plane of the fracture, and 
has no z component. It seems plausible that the velocity will also have no z 
component, particularly since Uz must not only vanish at the two walls of the 
fracture, z = +h/2, but must also have a mean value of zero. Since the geometry 
of the region between the plates does not vary with x or y, the pressure gradient 
should also be uniform within the plane of the fracture. Hence, we assume that the 
velocity vector depends only on z. As all components of the velocity must vanish 
at z = :hh/2, the velocity vector must necessarily vary with z. The components of 
the vector (u .  V)u  can be written explicitly as 

( u . V ) u = ( u . V ) ( u = , u v ,  u z ) = [ u . ( V u = ) , u . ( V u v ) , u . ( V u z ) ] .  (6) 

The velocity components do not vary with x or y, so any of the three velocity 
gradients that are not identically zero must be parallel to the z-direction. The 
velocity vector, on the other hand, is normal to the z-direction. Hence, each of the 
dot products in Equation (6) is zero. This serves to remove the nonlinear term from 
Equation (5), leaving 

#V2u(z)  = VP.  (7) 

As V P  lies parallel to the x-axis, it can be written as 

V P  = OP OP 
' Oy' Ozz - - ( I V P I ' 0 ' 0 ) "  (8) 
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Comparison of Equations (7) and (8) show that the three velocity components must 
satisfy the following three equations: 

v2 x(z) = I v P I / m  v2 y(z) = 0, VZu,(z) = 0. (9) 

The boundary conditions for each velocity component are ui = 0 when z = 4-h/2.  
It is obvious that u = 0 will satisfy the governing equations for uy and u~, and 
their associated boundary conditions. To find ux, we integrate Equation (9a) twice 
with respect to z, and make use of the boundary conditions, to find the following 
velocity profile (see Figure 1) 

IvPI 
u~(z)  - 2# [z2 - -  (h/2)2]" (10) 

This velocity field satisfies the continuity Equation (2), because u v = Uz = O, and 
ux depends only on z, but not on x. 

The total volumetric flux through the fracture, for a width w in the y-direction 
(perpendicular to the pressure gradient), is found by integrating the velocity across 
the fracture from z = - h i 2  to z = +h/2 :  

w [+h/2 dz 
Qar = J - h / 2  

= w f+h/2 IvPI [Z2 _ (h/2)2] dz - -  -IVPIwh3 ( 1 1 )  

a-h/2 2/z 12# 

The average velocity is found by dividing the flux by the cross-sectional area, 
wh: 

-IVel h= 
g x -  w h  - 12# (12) 

Now recall Darcy's law for flow through porous media, which in one dimension 
can be written as (de Marsily, 1986, p. 56) 

Q = - k A [ V P I / # .  (13) 

The cross-sectional area A is equal to wh,  so comparison of Equations (11) and 
(13) shows that the permeability of the fracture can be identified as k = h2/12.  
The product of the permeability and area, which is sometimes known as the trans- 
missivity, is equal to 

T =_ k A  = wh3 /12 ,  (14) 

Although the transmissivity calculated for the parallel plate model is known as the 
cubic law, the dependence of T on h 3 is actually a consequence of the fact that 
the equations must be dimensionally consistent. Since Qx has units of [m3/s], the 
pressure drop has units of [Pa], the length L has units of [m], and # has units of 
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[Pa.s], T must have units of [m4]. As the total flux must scale linearly with the 
depth w perpendicular to the direction of flow, T must be proportional to the cube 
of the aperture. Hence, the transmissivity must be of the form T = Cwh 3, where 
C is a dimensionless parameter. It may therefore be said that the main prediction 
of the parallel plate model is that C = 1/12. 

4. Deviations from the Cubic Law 

The cubic law was derived under the assumption that the fracture consisted of the 
region bounded by two smooth, parallel plates. Real rock fractures, however, have 
rough walls and variable apertures. Furthermore, there are usually regions where 
the two opposing faces of the fracture wall are in contact with each other. Since 
transmissivity is proportional to h 3, fluid flowing in a variable-aperture fracture 
under saturated conditions will tend to follow paths of least resistance, which is to 
say paths of largest aperture, and thereby depart from the rectilinear streamlines of 
the parallel plate model. In order to use the cubic law to predict the transmissivity of 
a real rock fracture, one could assume that Equation (14) still holds if the aperture 
h is replaced by the mean aperture (h). This is sometimes taken to be an alternate 
definition of the cubic law, i.e., (Brown, 1987) 

T = w(h)3/12. (15) 

Although Equation (15) is a first approximation to the actual transmissivity of 
a rough or obstructed fracture, the effects of roughness and obstructions are not 
properly accounted for by merely replacing h with (h), as will be shown below. 
This suggests that we define the so-called hydraulic aperture hH in terms of the 
actual transmissivity T, i.e., 

T = wh3H/12. (16) 

The problem of relating the transmissivity of a fracture to its geometry can therefore 
be thought of in terms of finding an expression for the hydraulic aperture hH. This 
requires solution of the Navier-Stokes equations in fracture geometries that include 
varying aperture and obstructed regions. 

Another possible cause of deviations from the cubic law is turbulence. The 
velocity profile given by Equation (10) is an exact solution to the Navier-Stokes 
equation; however, it is not the unique solution to the problem of flow between 
two smooth parallel plates. In general, there is no uniqueness theorem for the full 
Navier-Stokes equations, as there is, say, for the equations of linear elasticity. 
In fact, at sufficiently high velocities, the laminar velocity profile given by Equa- 
tion (10), although still a solution to the governing equations, will become unstable, 
giving way to turbulent flow (e.g., Sherman, 1990, Chapter 13). This transition will 
typically occur when the Reynolds number, which we define as 

Re -- p~xh/#, (17) 
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exceeds about 1150 (de Marsily, 1986, p. 66). The Reynolds number is a dimen- 
sionless measure of the relative strengths of inertial forces to viscous forces. At 
low Reynolds numbers, viscous forces are strong enough to damp out any pertur- 
bations from the uni-directional, laminar flow field, whereas at sufficiently high 
velocities small perturbations to the laminar flow field will tend to grow in an 
unstable manner. Combining Equations (12) and (17) yields the following criterion 
for the velocity profile (10) to be stable: 

IVPI < 13800#2/p h4. (18) 

This expression shows that high viscosity, low density, and small apertures all tend 
to stabilize the flow field. 

The stability condition given by Equation (18) is satisfied in most subsurface 
flow situations. For example, consider water with a viscosity of 10 -3 Pa- s and 
a density of 103 kg /m 3. For fracture apertures as large as 10 -3 m, laminar flow 
will be stable for pressure gradients as high as about 1.4 x 107 Pa/m. If the fluid 
is air, with a viscosity of about 2 x 10 -5 Pa.  s and a density of about 1 .2kg/m 3 
(Batchelor, 1967, p. 175), flow through a 1 mm wide fracture will be stable for 
pressure gradients up to about 4.6 x 106pa/m, or about 46bars/m. Hence, it 
seems that genuine turbulent instability will rarely occur during flow through rock 
fractures. Exceptions include situations of forced fluid flow, such as hydraulic 
fracturing (Jung, 1989), where large pressure gradients may be developed. For 
a rough-walled fracture, however, inertial effects due to tortuous flowpaths will 
lead to deviations from the cubic law long before (i.e., at lower flowrates) genuine 
turbulence occurs, as will be discussed below. 

5. Reynolds Lubrication Approximation 

At low flowrates, the two main causes of deviations from the cubic law are rough- 
ness of the fracture wails, and asperity contact between the opposing fracture 
faces. Although asperity contact can be thought of as an extreme case of aperture 
variation, it is convenient to analyze these two effects separately. First consider 
the case where the aperture varies from point to point, but is always greater than 
zero, i.e., no asperity contact. Under certain geometric and kinematic conditions, 
the Navier-Stokes equations can be reduced to the simpler Reynolds 'lubrication' 
equation. One necessary condition is that viscous forces dominate the inertial forces 
(Batchelor, 1967, p. 222). To quantify this criterion, we employ the following order- 
of-magnitude analysis. Let U be a characteristic magnitude of the velocity, which 
could be taken to be the average velocity, as given by Equation (12). The velocity 
varies from 0 at the upper and lower walls to some maximum value of order U at 
the midplane of the fracture, and this variation occurs over a distance h. Hence, the 
order of magnitude of the viscous terms in Equation (5) can be estimated to be 

mag[#V2u] ~ #U/h 2, (19) 
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Fig. 2. Side view of a cross-section of a rough-walled rock fracture containing no contact 
areas. The two half-apertures are hi and h2, both defined as positive. The characteristic length 
over which the aperture varies appreciably is denoted by A. 

where h 2 appears due to the fact that there are two derivatives taken with respect to 
z in the expression V2u. To estimate the magnitude of the inertial forces, we first 
define a characteristic length A in the x-direction, which may be the wavelength of 
the aperture variations, or the distance between asperity obstacles, etc. (Figure 2). 
The velocity gradient is then on the order of U/A, and the inertial terms have 
magnitude 

mag[p(u.  V)u] ~ pU2/A. (20) 

For the inertia terms to be smaller than the viscous terms, we must have (Schlichting, 
1968, p. 109) 

pU2/A << #U/h 2, or Re* - pUh2/#A << l, (21) 

where the reduced Reynolds number Re* is defined to be the product of the 
traditional Reynolds number, pUh/#, and the geometrical parameter h/A. 

If condition (21) is satisfied, then the advective inertia term (u-V)u  is negligible 
compared to the other two terms in Equation (5), and we can replace the nonlinear 
Navier-Stokes equations (1) with the mathematically linear Stokes 'creeping flow' 
equations: 

/~V2U • VP, (22) 

which can be written in component form as 

02Ux O2Ux 0 2 U x  1 0 P  (23a) 

02Uy 0 2 U y  0 2 U y  1 0 P  (23b) 
OX 2 -Jr- ~ - ' } -  OZ 2 -- t ~ Oy' 
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02Uz 02Uz  02Uz  10P (23c) 
ox 2 + + oz - - r  = o-7 

These three equations must still be accompanied by the continuity Equation (2). 
Although the linearity of the Stokes equations allows methods such as Green's 
functions (Pozrikidis, 1987) and separation of variables (Tsay and Weinbaum, 
1991) to be invoked, solutions are still difficult to obtain, and unwieldy to utilize and 
interpret. Hence, it is desirable to further simplify the equations before attempting 
to solve them for different fracture geometries. 

The validity of the Stokes equations requires that the flow rate be sufficient- 
ly small. Further reduction to the simpler Reynolds lubrication equation can be 
obtained under the additional stipulation that any changes in the aperture occur 
gradually. The magnitudes of the second derivatives of ux that appear in Equa- 
tion (23a) can be estimated as 

[02Ux] [02Ux] ,.~ U 
m a g [ ~ ]  ~ m a g [ 0 y  2 j ~ a--5, 

02Ux] U 
mag [ Oz z j ~ h--g, (24) 

where we assume that the characteristic lengths in the x- and y-directions are 
the same for a macroscopically isotropic fracture. Equation (24) shows that if 
( h / A )  2 << 1, the derivatives with respect to x or y will be negligible compared to 
those with respect to z. Although a reasonable choice of a characteristic magnitude 
for u v is not as obvious, the same order-of-magnitude argument nevertheless shows 
that 02uv /Oz  2 is the dominant term on the left-hand side of Equation (23b). 

Estimates of the magnitudes of the terms in Equation (23c) are more difficult 
to make. As u,  must vanish at the top and bottom walls of the fracture, and as the 
average value of u~ must vanish over the entire fracture plane, it seems reasonable 
to assume that u~ will be small at all points (x, y, z). But as long as the fluid always 
fills the entire fracture, this assumption can never be exactly true, except when 
the aperture is uniform. Abrupt changes in aperture in the x- or y-direction would 
require the fluid velocity to have a component in the z-direction. As long as the 
aperture variations are very gradual, i.e., h / A  << 1, it seems plausible to assume 
that Uz is negligible. Equation (23c) then implies that OP/Oz  is zero, in which case 
P is a function only of (x, y). 

If the aperture varies gradually, and the flowrate is sufficiently low, the Stokes 
equations (23a-c) can therefore be replaced by 

02Ux OP 
Oz 2 OX (25a) 

02Uy OP 
_ (25b) 

# Oz 2 Oy" 
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The right-hand sides of Equation (25) do not depend on z, so the equations can 
be integrated with respect to z, making use of the no-slip boundary conditions at 
the top and bottom walls, z = hi and z = - h a  (see Figure 2), to yield 

1 
OP(o-~x x' Y) ( z - hl )( z + h2), (26a) ux(x, y, z) - 2# 

1 OP(x, 
Y) (z - hl)(z + h2). (26b) Uy(X, y, z) - 21z Oy 

This is essentially the same parabolic profile as was found for the case of 
constant aperture, Equation (10), except that the velocity is now parallel to the 
local pressure gradient, which is not necessarily aligned with the overall pressure 
gradient. We now integrate these velocity profiles from z = - h 2  to z = hi, to 
find 

1 [hl 1 -h2(x,  y) OP 
OP[z" - hl)(z - hz)dz  - (27a) 

~x ": ~ J-h2 2# Ox 12# Ox ' 

1 t:~j_ , 1 0 P ( z _  h l ) ( z -  h2)dz = -h2(x 'Y)OP (27b) 
~v = -s hz 2# Oy 12# Oy ' 

where the overbar indicates an average taken over the z coordinate, and h = hi + h2 
is the total aperture. 

Equations (27a,b) satisfy the equations of conservation of momentum, Equa- 
tion (25), but contain an unknown pressure field, P(x, y). The pressure must be 
found by appealing to some form of the continuity equation. The continuity equa- 
tion given by Equation (2), however, applies to the actual local velocities, not to 
the integrated values. But V �9 u = 0, so the integral of V �9 u with respect to z must 
also be zero. Interchanging the order of these two operations (which is valid as 
long as the velocity components vanish at z = hi and z = -h2 ,  as can be proven 
by applying Liebnitz' rule), then shows that the divergence of the local flux, h~, 
is also equal to zero. Hence, we can apply Equation (2) to the local fluxes given in 
Equation (27), yielding V-  [h3Vp] = 0, i.e., 

, = 0 ,  (28) 

which is the equation first derived for lubrication-type flows by Reynolds (1886). 
Equation (28) has often been derived for flow in fractures (Walsh, 1981; Brown, 
1989) by merely assuming that the cubic law holds locally at each point in the 
fracture, and then invoking the principle of conservation of mass. This type of 
derivation unfortunately does not shed light on the conditions that are required for 
the lubrication approximation to be applicable. 

Equation (28) is a single, linear partial differential equation that describes the 
pressure field in the fracture plane. Its solution requires prescription of either the 
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Fig. 3. Side view of a frature channel bounded by one smooth wall and one sinusoidal wall, 
with the aperture given by Equation (30). The mean aperture is (h}, the spatial wavelength is 
A, and the amplitude of the roughness is 5. 

pressures or their normal derivatives (i.e., the fluxes) over the outer boundary of 
the fracture plane. To find the permeability of a fracture, one would typically solve 
this equation in a rectangular region defined by 0 < x < Lx, 0 < y < Ly. The two 
lateral sides y = 0 and y = Ly would be no-flow boundaries, implying that uu = 0 
at y = 0 and y = L v. But Equation (27) shows that ~y is proportional to OP/Oy, 
so we see that OP/Oy = 0 on the lateral boundaries. The two sides z = 0 and 
x = L~ are constant pressure boundaries, with P(0 ,  y) = Pi, and P(Lx, y) = Po. 
The overall flux is found by integrating ~ across the inlet of the fracture: 

jfO 
Ly 

Q~ = h ~ ( O ,  y) dy. (29) 

Finally, the fracture transmissivity is found from T = Q~#/IVP[. The fracture 
permeability could be defined as in Equation (14) by dividing by the nominal area 
of the fracture, w (h). The transmissivity is the more useful parameter, however, as its 
use does not require knowledge of the mean aperture. 

6. Range of Validity of the Lubrication Approximation 

Reduction of the Navier-Stokes equations to the Reynolds equation requires that 
the aperture h always be much less than the characteristic spatial wavelength A of 
the aperture variations. It would be useful to have a quantitative measure of how 
small h/A must be in order for this reduction to be permissible. Although rigorous a 
priori error estimates are difficult to derive, some insight into the criterion h/A << 1 
can be obtained by comparing the Navier-Stokes and Reynolds solutions for a 
particular geometry that is amenable to analytical treatment. Consider the problem 
of flow between a smooth wall and a sinusoidally varying wall (Figure 3), with the 
aperture described by 

h(x) = (h)[1 + (~ sin(27rz/A)]. (30) 

The aperture does not vary with y, and the macroscopic pressure gradient (and 
flow) is taken to be in the z-direction. 
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Hasegawa and Izuchi (1983) performed a perturbation analysis of this problem, 
using as their small parameters the Reynolds number, Re = pU(h}/#, where U is 
the mean velocity that would occur if the walls were smooth (i.e., Equation (12)), 
and the geometrical parameter s = (h)/A. Assuming that the two nonzero velocity 
components ux and uz can be expanded as power series in Re and s, the standard 
procedure of regular perturbations then reduces the nonlinear Navier-Stokes equa- 
tions to a series of  linear equations for the coefficients in the power series. Their 
solution, including the first nontrivial corrections in Re and E, can be written as 

[ 3re2(1 -- ~2)~54 (1 13 Re2) 62 ] 
= ( h - 3 )  - '  1 - + (31) 

The term (h -3) -1 corresponds to the solution of a one-dimensional version of the 
lubrication equation (see Equation (38) below). The second term inside the square 
brackets therefore represents the relative discrepancy between the Navier-Stokes 
and Reynolds solutions. To see the conditions that must be satisfied by Re and 
s in order for this term to be negligible, first let Re = 0. As ~5 is restricted by 
definition to lie between 0 and 1, it can be shown that the term that multiplies 
E 2 in Equation (31) is always less than 0.662. In order for the error to be less 
than, say, 10%, we would need 0.662(B)2/A 2 < 0.1, which implies ), > 2.57(h). 
Since the aperture undergoes its maximum variation within a half-wavelength, this 
condition is equivalent to saying that sizable aperture variations should only occur 
over distances greater than (h). This condition is much less restrictive than the one 
proposed earlier by Brown (1987), which can, in the present context of a sinusoidal 
aperture variation, be expressed as A > 30(h). Nevertheless, examination of aper- 
ture profiles measured on real rock fractures (Gentier et al., 1989) shows that even 
this less restrictive condition is not always satisfied. 

We now consider the criteria that must be met by Re in order for the correc- 
tion term in Equation (31) to be small. The term due to nonzero Re is always 
multiplied by the term due to nonzero (h)/A. As we have already seen that the 
Reynolds approximation will break down if A is not sufficiently small, in order 
to find restrictions on the allowable values of Re we focus our attention on the 
worst admissible case, A = 2.57(h), in which case the error is already 10% 
when Re = 0. If we now assume that at most another 10% error will be tolerat- 
ed, Equation (31) yields the condition 13 Re2/8085 < 1, which in turn implies 
Re < 25. However, when Re > 1, it is not permissible to ignore the subsequent 
terms in the perturbation series, which would be proportional to higher powers of 
Re, but which were not found by Hasegawa and Izuchi. What can be said with 
some confidence is that if Re < 1, the error due to a nonzero Reynolds number will 
be smaller than that due to nonzero (h)/A. At least for this particular geometry, 
Re < 1 seems to be a conservative criterion for the validity of the lubrication 
equation. 
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When expressed in terms of parameters such as the applied pressure gradient, 
this criterion takes a form similar to the stability criterion given in Equation (18), 
except that the maximum Reynolds number is 1 instead of 1150: 

IvPl < 12#2/p h4. (32) 

The condition for the validity of the Reynolds lubrication equation is therefore 
stricter, by a factor of about 103, than the stability condition for flow in a smooth- 
walled channel. For a fracture having an aperture of 1 mm, saturated with water 
of density 1000 kg/m 3 and viscosity 0.001 Pa.s, the pressure gradient must be less 
than 104 Pa/m, or about 0.1 bars/m. This is certainly larger than most naturally- 
occurring groundwater potential gradients, but will often be exceeded in cases of 
forced flow (cf., Jung, 1989). , 

The criterion given by Equation (32) does not merely refer to the validity of 
the lubrication equation as a mathematical expediency; it also determines whether 
or not the total flowrate will be a linear function of the pressure gradient. If 
the Navier-Stokes corrections to the lubrication solution, i.e., the second term in 
brackets in Equation (31), are negligible, hH will be independent of the flowrate, 
and (see Equations (13), (16)) the flowrate will then be directly proportional to 
VP.  For larger values of Re, Equation (31) shows that hH will depend on the 
pressure gradient, in which case Equations (13, 16) show that the flowrate will 
be a nonlinear function of xTp. Comparison of Equation (32) and Equation (18) 
shows that the appearance of a nonlinear relationship between Q and V P  can 
occur at flowrates that are much less than those required to produce turbulence. 
This point was made by Bear (1972, p. 178) in the context of flow through three- 
dimensional porous media. Bear discussed experimental results by Wright (1968) 
and others that showed nonlinear effects arising at Reynolds numbers as low as 
1-10, whereas genuine turbulence did not occur until Re reached about 60-100. 
Geertsma (1974) pointed out, also in the context of three-dimensional porous 
media, that in cases of practical importance in petroleum engineering, including 
converging flow near wellbores, nonlinear departures from Darcy's law occur 
during laminar, not turbulent, flow. Coulaud et al., (1991) solved the full Navier- 
Stokes equations numerically for transverse flow past an array of infinitely long, 
parallel cylinders, and found nonlinearity in the relationship between xTP and Q to 
appear at about Re = 2, although the flow was still clearly laminar. Nevertheless, 
deviations from a Darcy-type linear relationship between xTp and Q are often 
attributed, perhaps erroneously, to turbulence (cf., Geertsma, 1974). This issue has 
been discussed in the specific context of flow through a rock fracture by Holditch 
and Morse (1976). 

7. Numerical Solutions to the Lubrication Equations 

Although the lubrication equation is in one sense simpler than either the Navier- 
Stokes or Stokes equations, because it is a single scalar equation rather than a 
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vector equation, the presence of the term h(x, y) renders it an equation with variable 
coefficients. For certain special geometries the equation becomes one-dimensional, 
and, consequently, easy to solve; these cases are discussed in the next section. For 
arbitrary isotropic aperture distributions it cannot be solved analytically, but it 
is amenable to numerical solution procedures (Amadei and Illangasekare, 1992). 
Several studies have been done in which the equations were solved numerically for 
various aperture distributions, with the intention of finding some simple relation 
between the transmissivity and the statistics of the aperture distribution. 

Patir and Cheng (1978) used finite differences to solve the lubrication equation 
for flow between two surfaces whose half-apertures hi and h2 obeyed a Gaussian 
height distribution with a linearly-decreasing auto-correlation function. They dis- 
played their calculated results as a function of the ratio of the nominal aperture h0 
to the standard deviation of the roughness distribution function, ad. The results are 
shown in Figure 4, in which each data point represents the average of about ten 
different realizations based on the same values of h0 and ad. For values of ho/ad 
between 0.5 and 6.0, Patir and Cheng found that the hydraulic aperture could be fit 
with the function 

h 3 = h3[1 - 0.90exp(-0.56h0/~rd)]. (33) 

The nominal aperture h0 is therefore a zeroth-order approximation to the hydraulic 
aperture hH. The presence of surface roughness decreases the hydraulic aperture 
below the value h0. The parameters 0.90 and 0.56 in Equation (33) were chosen so 
as to fit the data when ho/ad lies between 0.5 and 6.0, and so this equation cannot 
be thought of as a rigorous first-order correction to the cubic law for small values 
of the roughness. 

An important point to note about the findings of Patir and Cheng concerns the 
issue of areas at which the two opposing surfaces touch, and the manner in which 
this affects the definitions of h0 and an. They defined upper and lower surfaces, the 
distances of which from the z = 0 plane are given by two half-aperture distributions 
as follows: 

h0 hl(x,y) = -~ + dl(x,y), h2(x,y)= h~ -~ + d2(x, y), (34) 

where the functions di(x, y) have a mean value of zero. If hi + h2 > 0, then 
the fracture is open at that point, and the aperture is given by h = hi + h2. If 
hi q- h2 ~< 0, i.e., the curves representing the upper and lower surfaces of the 
fracture overlap each other, then the fracture is assumed to be obstructed at that 
point, and the aperture is taken to be zero. As pointed out by Brown (1989), the 
mean aperture (h) will equal h0 if there are no contact regions, but (h) will be 
greater than h0 if there are contact regions, since the negative values of the function 
h = hi + h2 are not allowed to contribute to the calculation of (h). Hence, the 
parameters h0 and an used by Patir and Cheng (1978) do not represent the actual 
mean and standard deviation of the aperture, except for small values of aa, when 
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Results found numerically by Patir and Cheng (1978) and Brown (1987) for the 
hydraulic aperture as a function of the relative roughness. The slightly different definitions 
used by h and o- are discussed in the text. Also plotted is Equation (33), which was fitted by 
Patir and Cheng to their numerical values. 

no contact occurs. According to Patir and Cheng, contact regions occurred when 
ho/~ra < 3, but they did not quantify the amount of contact area that occurred. 
Therefore, when ho/~ra < 3, the results shown in Equation (33) and Figure 4 
represent the combined effects of aperture variation and asperity contact. 

Brown (1987, 1989) used a finite difference method to solve the Reynolds 
equation for fractures having randomly-generated, fractal roughness profiles. The 
fractal dimension of the fracture walls varied from 2.0, which represents a smooth 
wall, to 2.5, which was found by Brown and Scholz (1985) to correspond to a 
maximum amount of roughness that occurs in real rock fractures. The flow region 
between fracture walls was formed by generating two surfaces having the same 
fractal dimension, and then choosing a value for the mean distance between the two 
planes, h0. The aperture was then set to zero at any point in the fracture plane where 
the two fracture walls overlapped. Although Brown presented most of his results 
in terms of the actual mean aperture (h), he followed Patir and Cheng (1978) in 
using od to quantify the roughness, which is to say, he used the standard deviation 
of the distance that exists between the two surfaces before all negative apertures 
were set to zero. Hence, it is not possible to replot his data in terms of the actual 
mean and standard deviation of the fracture aperture. 

The transmissivities computed by Brown (1987) for a surface having a fractal 
dimension of  2.5 are plotted on Figure 4, along with the results of Patir and Cheng 
(1978). Each data point represents the mean of 10 different realizations. Brown 
found that the fractal dimension had little effect on the computed transmissivities, 
and that hH seemed to be mainly a function of (h) and crd. Brown's mean transmis- 
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sivities fell very close to the values found by Patir and Cheng (1978), regardless 
of the fractal dimension of the surface. However, for low values of (h)/ad, the 
unquantified amount of contact area makes it difficult to rigorously compare the two 
sets of results, since h0 and (h) are not equivalent when there is contact between 
the two fracture faces. 

8. Analytical Treatment of the Lubrication Model 

Once the Navier-Stokes equations have been reduced to the Reynolds lubrica- 
tion equation (28), fluid flow through the fracture is then governed by the same 
equation that governs, say, heat conduction in an isotropic but inhomogeneous two- 
dimensional medium. The cube of the local aperture, h3(x, y), is analogous to the 
thermal conductivity, k, aside from the multiplicative constant 1/12 that can be fac- 
tored out and ignored. A similar equation governs fluid flow in a nearly-horizontal 
aquifer which has a permeability and/or thickness that varies gradually from point 
to point (Bear, 1972, p. 215). The problem of finding the effective hydraulic aperture 
for a fracture that is governed by the Reynolds equation is therefore equivalent to 
finding the effective conductivity of a heterogeneous two-dimensional conductivity 
field. 

The effective macroscopic conductivity of a heterogeneous medium depends 
not only on the statistical distribution of the local conductivities, but also on the 
geometrical and topological manner in which the local conductivity is distributed. 
If the statistical distribution of conductances is known, but the correlation structure 
of the conductivity field is either unknown or ignored, upper and lower bounds can 
be computed for the overall effective conductivity (Beran, 1968, p. 242). These 
bounds, which are derived using variational principles and certain trial functions 
for the local pressure field, can be expressed as 

(k)<<.keff<<.(k), or (h-3)-X~<h3H~<(h3), (35) 

where we identify the local conductivity with h 3. The lower bound (l/k) is often 
called the harmonic mean, whereas the upper bound {k) is called the arithmetic 
mean (de Marsily, 1986, p. 81). 

The upper bound can be thought of as corresponding to the hypothetical situation 
in which all of the conductive elements are arranged in parallel with each other, 
whereas the lower bound corresponds to a series arrangement of the individual 
elements (Dagan, 1979). These extreme cases correspond to geometries in which 
the aperture varies in only one of the two directions, x or y, while the imposed 
pressure gradient is in the x-direction (see Figure 5). In the case where the aperture 
varies only in the direction of the applied pressure gradient, the Reynolds Equation 
(28) reduces to 

d ( h 3 ( x ) ~ 2 - ) = 0 ,  (36) 
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Fig. 5. Fracture in which the aperture varies either only in the direction of flow (top), or only 
in the direction transverse to the flow (bottom). First case leads to h 3 ---- (h -3 )  -1 , which is a 
lower bound on the actual isotropic conductivity. Second case leads to h 3 = (h3), which is 
an upper bound on the actual isotropic conductivity. 

which can be integrated to yield 

h 3 ( x ) ~  - = C, (37) 

where C is a constant of integration. Comparison of Equations (37) and (27a) shows 
that the constant of integration is equal to -12#(hgx)0.  A second integration from 
x = 0 to z = Lx yields 

fo Lx dx _12#(h~x)oLx(h_3)  ' (38) 19o - Pi = - 1 2 # ( h ~ ) 0  h3(x ) - 

which can be rearranged to yield 

-IVPI (h_3)_t (39) 
- 

The total flux is found by integrating ( h ~ ) o  in the y-direction, as in ,Equation (29), 
which yields 

Qx _ - I V P I L y  (h-3) -1. (40) 
12# 

But L v is equivalent to w, the width of the fracture in the direction normal to the 
flow, so comparison with Equations (11), (14) shows that this model leads to 

h 3 = (h-3) -1, (41) 

which is identical to the lower bound in Equation (35). An analogous treatment of 
the case where the aperture varies only in the direction normal to the flow would 
lead to (Neuzil and Tracy, 1981) 

h 3 = (h3), (42) 

which coincides with the upper bound. These models have been used to estimate 
the effect of aperture variations on the overall conductivity (Neuzil and Tracy, 
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1981; Silliman, 1989). However, these types of aperture variations do not lead 
to macroscopically isotropic behavior. Rather than interpret the bounds given by 
Equation (35) as representing any specific fracture geometry, we interpret these 
'series' and 'parallel' conductances as upper and lower bounds that utilize infor- 
mation about the aperture distribution function, but do not utilize information 
concerning the spatial correlation of the aperture field. 

More restrictive upper and lower bounds on the overall effective conductivity of 
a heterogeneous medium have been found by Hashin and Shtrikman (1962). For the 
commonly-assumed case of a log-normal distribution of conductivities, however, 
these bounds degenerate (Dagan, 1979) into the series and parallel bounds given 
by Equation (35a). For this case, the 'self-consistent field' approximation has 
been used (Dagan, 1979), along with a perturbation approach (Dagan, 1993), to 
approximate the effective conductivity in terms of the mean and standard deviation 
of the conductivity distribution function. In the case of a statistically isotropic 
m-dimensional medium, Dagan found 

heft = (k) e-~'~/2[1 + (Xa 2) + (X2o4/2) q--- '] ,  (43) 

where Y = ln(k), a y  is the standard deviation of ln(k), and X = (m - 2)/2ra.  
The term in front of the square brackets is equal to the geometric mean of the 
conductivity distribution, ha, which is defined (in general) by 

h G = e (ln(k)). (44) 

The appropriate dimension ra for flow in a fracture is 2, in which case X = 0, 
leaving 

]r = (k) e -a2/2 -Jr O(~r6). (45) 

This result can also be expressed as 

heff = (k)[1 - (cry/2) + . . . ] .  (46) 

Although Equation (46) was derived for the specific case of a lognormal conductiv- 
ity distribution, it can nevertheless be used, as an approximation, regardless of the 
form of the conductivity distribution. For this purpose, it is convenient to express 
Equations (45), (46) in terms of the standard deviation of k, rather than in terms of 
the standard deviation of In(k). To do this, we first recall that if k is lognormally 
distributed, then the first two moments of k are related to the first two moments of 
Y = In(k) by (Aitchison and Brown, 1957, p. 11) 

2 =  (k) = e (Y)+'~}/2, cr k (k)2[e ~ / 2  - 1]. (47) 

Eliminating a 2 from Equations (45), (47) yields 

h e f  t ~ ( h ) [ l  -~- 0"2/(/~)2] - 1 / 2 ,  (48) 
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which, to first-order in 2 a k, can be expressed as 

keff ~ (]r - -  cr2/2(k) 2 +.. .] .  (49) 

Equation (49) agrees with the result that can be found from a two-dimensional 
version of the calculation performed by Landau and Lifshitz (1960, pp. 45-46), 
who assumed that the conductivity varied smoothly in space about its mean val- 
ue, (k), but did not assume that k was lognormally distributed. It therefore is a 
valid approximation, up to order cr 2, for all smoothly-varying two-dimensional 
conductivity distributions. 

We now make use of the identification of k with h 3 to express the above results in 
terms of the moments of the aperture distribution itself. In general, there is no fixed 
relationship between (h 3 ) and (h), or between cr~ and a2h" In the case of a lognormal 
distribution, however, we can make use of the fact that In(k) = ln(h 3) = 3 In(h) 
to find that (In(k)) = 3(In(h)), a n d  O.ln2 k =- 9~ h (Aitchison and Brown, 1957, 
p. 11). Furthermore, if k is lognormally distributed, then so is h = k 1/3. If we 
let z = In(h), where z has mean value (z) and variance cr 2, then the statistical 
moments (h ~) are given by (Aitchison and Brown, 1957, p. 8; Gutjahr et al., 
1978) 

(h n) = en(z)+n2aZ~/2. (50) 

Using these relationships, along with Equation (47), we can rewrite 
Equations (48), (49) as 

h 3 ~ (h3)[1 q- 9cr2/(h)2] -1/2 ~ (h3)[1 - 9cr2/2(h) 2 + . . . ] .  (51) 

Again using Equation (47), with h in place ofk and z = In(h) in place ofY = In(k), 
we eventually find that Equation (51) can also be written as 

hH~3 ~ ( h ) 3 [ l _  1.5a2/(h)2q_. . . ] .  (52) 

Equation (52) indicates that roughness will tend to reduce the hydraulic aperture 
below the value of the mean aperture. This result is nontrivial, as it can be shown 
(Silliman, 1989) that the lower bound on hn given by Equation (35b) can never 
exceed (h), whereas the upper bound can never be less than (h). Hence, the bounds 
alone are not powerful enough to discern whether or not hH is greater than or less 
than (h). Equation (52) is also in rough agreement with the numerical results of 
Patir and Cheng (1978) and Brown (1987), particularly when (h)/~h > 2, which 
is the range where, due to lack of substantial contact area, the different definitions 
of (h) and O" h c o i n c i d e .  

Equation (52) has also been derived by other methods, using specific fracture 
geometries that did not require lognormal aperture distributions. Elrod (1979) 
used Fourier transforms to solve the Reynolds equation for a 'fracture' whose 
aperture had 'sinusoidal ripples in two mutually perpendicular directions', and 
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arrived at Equation (52) for the isotropic case. Zimmerman et al. (1991) considered 
the case of small regions of unidirectional ripples, as in Equation (30), which 
were then assembled together so that the direction of striation was randomly 
distributed. For both sinusoidal and sawtooth profiles, their results agree with 
Equation (52) up to terms of order a2/{h) 2. They also examined the effect of higher- 
frequency sinusoidal components in the aperture profile, using the assumption that 
the amplitudes of the sinusoidal components scaled with the wavelengths to some 
positive power, as was found to be the case by Brown and Scholz (1985). (In other 
words, the small-wavelength roughness will be of small amplitude, so that there 
will be no sharp dagger-like peaks in the aperture profile.) As long as the results 
were expressed in terms of  (h) and a 2, the relationship between hn, (h}, and a h 
was essentially unaffected. Hence, it seems that there is much evidence to support 
Equation (52) as an estimate of the hydraulic aperture in terms of only the mean 
and standard deviation of the aperture distribution. 

If the details of the aperture distribution are known, the geometric mean of h 
can also be used to estimate hH, since (Piggott and Elsworth, 1993) 

h 3 = keff ~ kG = e (lnk)= e (in(h3)) = e 3(lnh) : (e(Inh)) 3 = h 3. (53) 

This estimate is accurate to at least O(a  6)  for lognormal aperture distributions 
(Dagan, 1993), but it is not clear that Equation (53) is preferable to Equation (52) 
in the general case. For example, the numerical simulations of Piggott and Elsworth 
(1992) indicated that the geometric mean is a very poor predictor of the effective 
conductivity when the conductivity follows a bimodal distribution, particularly in 
two dimensions (see also Warren and Price, 1960, Figure 7). 

9. Effect of Contact  Areas 

The areas where the rock faces are in contact with each other can be thought 
of as regions where the aperture is zero. However, most of the methods used to 
estimate or bound hH will break down if the aperture distribution function takes 
on zero values at any region of the fracture plane that has non-zero measure. For 
example, the harmonic mean of k, which provides a lower bound to the effective 
conductivity, will degenerate to zero in these cases, as will the the geometric mean, 
since a finite probability of having k = 0 will cause (In(k)) ~ - e e .  These facts 
suggest using methods such as those discussed above for the regions where the 
fracture is open, and treating the contact regions by separate methods (cf., Walsh, 
1981; Piggott and Elsworth, 1992). 

To isolate the effect of contact areas, we consider a fracture for which the 
aperture is uniform and equal to h0, except for isolated contact regions where h = 0 
(Figure 6). Flow through this sort of geometry could, in principle, be analyzed by 
solving the full Navier~Stokes equations. As this is not practical, we again reduce 
the governing equations to a more tractable form. Following the procedure by 
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Fig. 6. Schematic diagram of computational problem for the Hele-Shaw model, with 
impermeable boundaries at y = 0 and y = L u, constant pressure boundaries at x = 0 and 
x = L~, and two internal impermeable boundaries that represent the asperity regions. 

which the lubrication equation was derived for flow in smoothly-varying channels, 
we again find the requirements 

Re* = pUh2/#A << 1 and h/A << 1, (54) 

where now the characteristic lengthscale in the plane of the fracture, A, should be 
identified with, say, the dimensions in the (x, y) plane of the typical contact region 
(see Figure 6). We again arrive at the lubrication equation (28), except that since 
h = 0 in those regions of the plane where the fracture faces are in contact, the 
equation has no meaning in those regions. Hence, we can only use this equation 
in the unobstructed regions, where h(z, y) = ho, where Equation (28) reduces to 
Laplace's equation: 

OZp Ozp 
V 2 p ( x ,  y )  ~ - -  "[- - -  - O. ( 5 5 )  

O z  2 Off  2 - -  

This mathematical model of flow between a pair of parallel plates that are obstructed 
by cylindrical posts is known as the Hele-Shaw model (Bear, 1972, pp. 687- 
692). 

The boundaries Fi of the contact regions must be treated as boundaries of the 
region in the (x, y) plane where this equation is to be solved. Since no fluid can 
enter the contact region, the component of the velocity vector normal to Pi must 
be zero. Equation (27) shows that the velocity vector is parallel to the pressure 
gradient, so we see that 

OP 
On -- ( V P ) .  n = 0, (56) 

where n is the outward unit normal vector to P~, and n is the scalar coordinate in 
the direction of n. If we consider a rectangular region such as shown in Figure 6, 
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with uniform pressures on the x = 0 and x = L~ boundaries, no flow on the y = 0 
and y = L v boundaries, and no flow across the interior boundaries Fi, we have 
a well-posed boundary value problem for Laplace's equation, which will have a 
unique solution (see Bers et al., 1964, pp. 152-154). 

One difficulty that arises with this model is that, in general, the solution will not 
satisfy the no-slip boundary conditions on the internal boundaries Fi. In physical 
terms, the Hele-Shaw model does not account for viscous drag along the sides of 
the posts. The no-slip condition specifies that not only must the normal component 
of the velocity vanish, but so must the tangential component. But the Hele-Shaw 
solution will generally yield a nonzero tangential component of the velocity along 
Fi, and will consequently be in error in some small region surrounding each 
asperity. In the original mathematical derivation of the the Hele-Shaw equations, 
Stokes (1905, p. 278) hypothesized that the thickness of this region would be on the 
order of h0. This was verified by Thompson (1968), who used matched asymptotic 
expansions to solve the creeping flow equations, Equation (23), for flow between 
two parallel plates that are propped open by a single cylindrical obstacle of radius 
a, and found that the relative error in the flux perturbation due to a single obstacle 
was 1.26ho/a. Kumar et aL (1991) used the Brinkman equation to further analyze 
the deviations from the Hele-Shaw model caused by finite values of ho/a.  In the 
Brinkman model, the obstacles are not explicitly included in the geometry of the 
problem, but their effect on retarding the flow is represented by a distributed body 
force that is proportional to the velocity. This body force is found by solving the 
problem of flow past an array of infinitely long, parallel cylinders (Sangani and 
Yao, 1988). The results of the B rinkman analysis, along with the experimental data 
collected from various sources by Zimmerman and Kumar (1991), show that as long 
as ho /a  < 1, deviations from the Hele-Shaw conductivity will be less than 10%. 
As the criterion ho /a  < 1 will be met by most rock fractures, the error incurred 
through the Hele-Shaw approximation will be negligible. For example, Pyrak- 
Nolte et al. (1987) found that typical average apertures of fractures in crystalline 
rock are on the order of 10 -4 - 10 -5 m, whereas asperity sizes (in the fracture 
plane) are on the order of 10-1 _ 10 - 3 m. Gale et al. (1990) measured apertures and 
asperity dimensions on a natural fracture in a granite from Stripa, Sweden, under a 
normal stress of 8 MPa, and found average values of h ~ 0.1 mm, a ~ 1.0 mm. 

The problem of creeping flow through a smooth-walled fracture of aperture h0, 
propped open by an array of circular cylinders of radii a >> h0, therefore reduces 
to the problem of finding the effective conductance of a two-dimensional medium 
of conductance k0, and which contains a dispersion of non-conductive, circular 
obstacles. This is a typical problem in effective medium theory, although it is of 
a different type than that discussed above in relation to the lubrication model, in 
which the conductivity varied smoothly in space. Various methods that have been 
proposed to solve this type of problem are reviewed by Hashin (1983). Fortunately, 
the predictions of the different methods do not diverge appreciably until the areal 
concentration of obstacles approaches about 0.30, which exceeds the amount of 
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contact area that usually occurs in rock fractures (see Tsang and Witherspoon, 
1981; Pyrak-Nolte et al., 1987). Any reasonable two-component effective medium 
theory can therefore be used for this problem. 

Walsh (1981 ) used the effective medium theory originally proposed by Maxwell 
(1873, pp. 360-365), who estimated the effective conductivity of a 
three-dimensional medium containing a dispersion of non-conductive spheres. In 
the terminology of the present discussion, Maxwell's method consists of calcu- 
lating the decrease in flow due to a single asperity of known size and planform, 
averaging this effect over all shapes and orientations of the asperities, and then 
equating the resulting decrease in flow to that which would be caused by a single 
circular 'obstruction' which has some effective conductivity keff. Utilizing the 
solution for flow around a single circular obstruction in an otherwise uniform flow 
field (Carslaw and Jaeger, 1959, p. 426), Walsh (1981) found that the hydraulic 
aperture can be expressed as 

h 3 = h03[(1 - c)/(1 + c)], (57) 

where c is the areal fraction of the fracture plane that is occupied by the obstruc- 
tions. Zimmerman et aI. (1992) used boundary element calculations to verify the 
accuracy of this result to within about 2% for asperity concentrations up to 0.25. If 
Equation (52) were applied to a fracture that has aperture h0 with probability (1 - c) 
and aperture zero with probability c, it would predict h 3 = h3(1 - 1.5c + . . . ) ,  
which to first order in c is somewhat, although not substantially, different from 
Equation (57). 

The bracketed term in Equation (57) reflects the tortuosity induced into the 
streamlines by the obstacles, so it would be expected to depend on the planform of 
the asperity region. Zimmerman et al. (1992) extended Walsh's result to the case 
where the asperities were a randomly-distributed and randomly-oriented collection 
of ellipses, utilizing the basic solution to two-dimensional flow around an elliptical 
obstacle that was derived by Obdam and Veling (1987). For ellipses of aspect ratio 
(~, the hydraulic aperture was found to be given by 

h 3 = h3[(1 - / 3c ) / (1  +/3c)], where /3 = (1 + a)2/40~. (58) 

The shape factor in Equation (58) satisfies/3 /> 1, and increases monotonically 
as the ellipse becomes more elongated. Elliptical obstacles therefore obstruct the 
flow to a greater degree than do circular obstacles. This is consistent with the 
fact that Walsh's expression for circular obstacles coincides with the Hashin and 
Shtrikman (1962) theoretical upper bound on kefr/ko for a two-component medium 
with individual conductivities k0 and 0. Although actual contact areas in fractures 
are not elliptical in planform, Zimmerman et al. (1992) showed that Equation (58) 
can be applied to a smooth-walled fracture propped open by irregularly-shaped 
asperities if the actual asperities are 'replaced' by ellipses that have the same 
perimeter/area ratio. 



24 ROBERT W. ZIMMERMAN AND GUDMUNDUR S. BODVARSSON 

Another method of accounting for the tortuosity caused by contact areas is 
to use the effective medium theory of Kirkpatrick (1973), which was originally 
devised to study electrical conduction in random networks of resistors. This model 
can be interpreted as corresponding to a checkerboard-like geometry in which 
each square is randomly assigned an aperture from the actual aperture distribution. 
In the present context, this corresponds to each square having either aperture h0 
with probability (1 - c), or aperture 0 with probability c. The finite-difference 
representation of conduction on such a checkerboard geometry would be a square 
lattice of conductors, in which case Kirkpatrick's theory predicts that 

h 3 = h3(1 - 2e). (59) 

At low concentrations, Equation (59) agrees with Walsh's result for circular asper- 
ities, since each give a tortuosity factor of (1 - 2c), to first order in c. The tortu- 
osity factor predicted by Equation (59) lies below that predicted by the Hashin- 
Shtrikman upper bound, which is (1 - c) / (1  + c). It also predicts the existence of a 
percolation limit, which is the value of the contact area (in this case, 0.50) at which 
flow is completely obstructed. Although it seems reasonable that a sufficiently 
large amount of contact area will block off all flow paths, contact areas as large as 
0.50 have not been reported very often in the literature, so for practical purposes 
this issue may be irrelevant. Nevertheless, the fact that Equation (59) incorporates 
the percolation phenomena in some manner is an additional argument for its use in 
estimating the tortuosity. 

10. Comparison of Models to Experimental Data 

We now address the question of whether or not the various models and approx- 
imations presented and discussed above can be used to quantitatively relate the 
hydraulic conductance of  a fracture to its aperture distribution statistics, bearing 
in mind that in many cases one might actually be more interested in the inverse 
problem of determining apertures and contact areas from conductivity data. We 
will not consider issues related to the measurement of apertures either in the field 
or in the laboratory, which have been discussed by Gentier et al. (1989), Hakami 
and Barton (1990), and Johns et al. (1993), among others. We assume that data are 
available pertaining to the distribution function of the apertures, and also on the 
amount (and possibly the shapes) of the contact regions. 

Although many measurements of fracture surface roughness have been reported 
in the literature, as well as many measurements of fracture conductivity, there are 
very few data sets in which both aperture data and hydraulic conductivity have 
been measured on the same fracture. Although single fracture surface profiles can 
be measured in the laboratory, it is problematic to infer from these measurements 
the aperture formed between two opposing surfaces when they are in contact 
(cf., Brown et al., 1986; Wang et al., 1988). Many of the measurements upon 
which certain widely-used roughness-conductivity correlations are based were 
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TABLE I. Hydraulic transmissivities of fractures in 
two quartz monzonite granites from Stripa, Sweden. 
Aperture data and measured conductivities are from 
Gale et al. (1990); the various predictive equations 
are described in the text. 

$2 $3 

(h) 180 223 
ah 106 162 
c 0.146 0.349 
(h 3) 7.54 51.8 
(h3)(1 - 2c) 5.34 15.6 
(h) 3 5.83 11.1 
(h)3(1 - 2c) 4.13 3.35 
h~ 5.13 5.13 
h3(1 - 2c) 3.63 1.55 
(h)3[1 - 1.5~r~/(h) 2] 2.80 2.31 
(h)3[1 - 1.5~r~/(h)2](1 - 2c) 1.98 0.70 
h 3 (measured) 1.12 0.34 

(h) and ~rh are given in units of 10 -6 m; c is dimen- 
sionless; other values are in units of 10-12 m 3. 

actually made on artificially-roughened channels, whose aperture profiles bore 
little resemblance to those of  real fractures (Lomize, 1951; Louis, 1969). We will 
discuss only those available data sets in which measured fracture conductivities 
can be directly compared to aperture measurements made on the same fractures. 
The hydraulic apertures will be predicted using eight different schemes that are 
suggested by the previously-discussed analyses. 

Gale et al. (1990) measured the apertures and conductivities of two fractures 
in a quartz monzonite granite from Stripa, Sweden, using a resin-impregnation 
technique that allowed aperture measurements to be made on the fracture under 
the same stress conditions as were used in the flow tests. Data from their two 
samples, which were taken from the same rock core, are shown in Table I, along 
with the various predicted values of h~ .  The values of (h) and ~rh were computed 
directly by Gale et al. (1990). We computed (h 3) by assuming that the distribution 
was lognormal, which is shown by Figures. 3.19 and 3.31 of Gale et al. to be a 
reasonably accurate assumption, in which case Equations (50, 53) can be used to 
show that @3) = (h )9 /h6 .  The values used for ha are arithmetic means of  the 
hG values measured on four profiles from each fracture. Since in each case all four 
profiles were statistically very similar, this method of averaging hG should yield 
nearly the same result as would be found by averaging all the individual values 
of In h. Table I shows that use of the mean aperture (h) in the cubic law, even if  
corrected for the contact area, will greatly overestimate the actual conductivity. Use 
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TABLE II. Hydraulic transmissivities of fractures in granite cores from Stripa, Sweden. 
Aperture data and measured conductivities are from Hakami (1989); the various predictive 
equations are described in the text. 

B $2 $3 $4 A1 A2 

(h) 309 464 494 261 83 161 

~rh 193 273 295 98 34 72 

(h 3) 79.24 243.7  232.0 26.46 0.912 7.209 
(h) 3 29.50 9 9 . 9 0  60.70 17.80 0.572 4.173 
h 3 18.00 6 3 . 9 6  31.05 14.60 0.453 3.175 
(h)3[1 - 1.5a2h/(h) 2] 1 2 . 2 4  48.03 9.397 14 .04  0.428 2.921 
h 3 (measured) 13.14 7 8 . 4 0  14.53 13.31 < 10 -4 2.406 

(h) and ~rh are given in units of 10 -6 m; other values are in units of 10 -12 m 3. 

of  (h3), as was suggested by Neuzil and Tracy (1981), will result in even greater 
error. The geometric mean h c  is somewhat more accurate, particularly if  corrected 
for the effect of  contact area. The most accurate predictions of  hH are those made 
by using the two-term perturbation estimate, Equation (52), in conjunction with 
the tortuosity correction, (1 - 2c). More accurate predictions could probably be 
made by assuming that the contact areas were non-circular, and using the tortuosity 
factor given by Equation (58). As it is not possible to objectively estimate the 
equivalent aspect ratio of  the contact areas from the available data, we have used 
Kirkpatrick's ' random lattice' tortuosity factor. Although Brown (1987) did not 
use precisely the same models as used in Table I to test his numerical solutions of  
the lubrication equations, it is worth noting that he also found that (h} 3 was a more 
accurate predictor o f h  3 than was (h3), and that (h)3(1 - c) / (1 + c) was yet more 
accurate. 

Aperture and hydraulic conductivity measurements were made by Hakami 
(1989; see also Hakami and Barton, 1990) on epoxy replicas of  fractures in five 
granite cores from Stripa. Sample A was a fine-grained granite, sample B was a 
leptite, and samples $2, $3, $4 were quartz monzonites. Mean apertures, averaged 
over areas of  about 1 cm 2, were found by injecting a known volume of dyed water 
into the fracture at various locations, and dividing the volume of the water drop by 
the observed area it occupied in the plane of  the fracture. Although no contact area 
percentages were reported, the photographs shown of  the water drops (Hakami, 
1989, p. 46), as well as the aperture histograms at different stress levels (ibid., p. 
67), seem to imply that contact area was negligible; this is consistent with the fact 
that the aperture measurements were made under very low values of  normal stress 
(ibid., p. 66). We will therefore assume c = 0 in our calculations. Experimental 
values, and the various predictions of the hydraulic aperture, are shown in Table II 
for Hakami 's  five samples; sample A was measured under two different stresses. 
We used the values of  (h) and crh corresponding to the best log-normal fit to the 



HYDRAULIC CONDUCTIVITY OF ROCK FRACTURES 27 

aperture distributions; in most cases these values were well within 10% of the actu- 
al values, but for sample $3 this has the effect of ignoring a few anomalously high 
apertures, which would alter Crh, but would not be expected to affect hH. Of the four 
methods of estimating h 3 ,  Equation (52) is in general the most accurate, followed 
by h 3, (h) 3, and then (h3). In five of the six cases, both Equation (52) and the 
geometric mean yield conductivities that are within a factor of two of the measured 
value. In one case, A1, which was sample A tested under a nonzero normal stress, 
the measured conductance was extremely low, and was not accurately predicted by 
any of the methods. No explanation was given for the extremely low permeability 
measured in this test. Excluding this anomalous case, Equation (52) had an average 
error (in absolute value) of 21.5%, whereas the geometric mean had an average 
error of 42.1%. The fact that Equation (52) did not systematically overestimate 
the conductivity supports our assumption that the contact area correction factor is 
negligible for these cases. 

For both sets of data discussed above, we have found that the expression 

h 3 ~ (h)3[1 - 1 .5a2 / (h)2] (1-  2e) (60) 

usually provides a good estimate of the fracttlre conductivity. In fact, it was gen- 
erally superior to the use of the cube of the geometric mean aperture, even after 
correction for the tortuosity due to contact area. This latter estimate is equivalent 
to that suggested by Piggott and Elsworth (1992), with (1 - 2e) used as their tor- 
tuosity factor 7-. Since there is much theoretical evidence in support of use of the 
geometric mean in the case of two-dimensional lognormal distributions, whereas 
the correction given by Equation (52) is only an 0 (a 2) perturbation approximation, 
these results call for some explanation. One point to bear in mind is that the actual 
distributions always deviate somewhat from being lognormal, and in such cases 
h~ should only be a first-order estimate of hH. Hence, ha and Equation (52) are 
both first approximations to hH, each in a different sense, for distributions that 
are slightly perturbed from lognormal. Another point is that some error is intro- 
duced when replacing the Navier-Stokes equations with the lubrication equation, 
Equation (28), due to finite values of (h)/A, as was discussed previously. Equa- 
tion (31) implies that these errors tend to reduce the effective conductivity below 
the value predicted by the lubrication model, which may explain the fact that ha  
overestimates hH. 

11. Summary 

We have discussed the problem of fluid flow through a rock fracture, treating it as a 
problem in fluid mechanics. First, the 'cubic law' was derived as an exact solution 
to the Navier-Stokes equations for flow between smooth, parallel plates. For more 
realistic geometries, the Navier-Stokes equations cannot be solved in closed form, 
and they must be reduced to simpler equations. The various geometric and kine- 
matic conditions that are necessary in order for the Navier-Stokes equations to be 
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replaced by the lubrication or Hele-Shaw equations were then studied. A review 
was given of analytical and numerical studies of the lubrication equation for a 
rough-walled fracture. Several analytical and numerical studies lead to the conclu- 
sion that the hydraulic aperture can be predicted from knowledge of the mean and 
the standard deviation of the aperture distribution. The tortuosity effect caused by 
regions where the rock walls are in contact with each other can be accounted for 
by simple correction factors that depend only on the fractional amount of contact 
area. Finally, comparison was made between the various predictions of hH, and 
the measured values, for eight data sets from two different research groups in 
which apertures and conductivities were available on the same fracture. The results 
showed that, in general, reasonably accurate predictions of conductivity could be 
made by combining either the perturbation result, Equation (52), or the geometric 
mean, Equation (53), with the tortuosity factor given by Equation (59). 
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