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Abstract. A mathematical model is derived for areal flow of water and light hydrocarbon in the 
presence of gas at atmospheric pressure. Vertical integration of the governing three-dimensional, three- 
phase flow equations is performed under the assumption of local vertical equilibrium to reduce the 
dimensionality of the problem to two orthogonal horizontal directions. Independent variables in the 
coupled water and hydrocarbon areal flow equations are specified as the elevation of zero gauge 
hydrocarbon pressure (air-oil table) and the elevation of zero gauge water pressure (air-water table). 
Constitutive relations required in the areal flow model are vertically integrated fluid saturations and 
vertically integrated fluid conductivities as functions of air-oil and air-water table elevations. Closed- 
form expressions for the vertically integrated constitutive relations are derived based on a three-phase 
extension of the Brooks-Corey saturation-capillary pressure function. Closed-form Brooks-Corey 
relations are compared with numerically computed analogs based on the Van Genuchten retention 
function. Close agreement between the two constitutive models is observed except at low oil volumes 
when the Brooks-Corey model predicts lower oil volumes and transmissivities owing to the assumption 
of a distinct fluid entry pressure. Nonlinearity in the vertically integrated constitutive relations is much 
less severe than in the unintegrated relations. Reduction in dimensionality combined with diminished 
nonlinearity, makes the vertically integrated water and hydrocarbon model an efficient formulation for 
analyzing field-scale problems involving hydrocarbon spreading or recovery under conditions for which 
the vertical equilibrium assumption is expected to be a satisfactory approximation. 
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1. Introduction 

G r o u n d w a t e r  c o n t a m i n a t i o n  due  to surface spills o r  subsurface  l eakage  of  hydro-  

ca rbon  fuels,  o rgan ic  solvents ,  and  o the r  immisc ib le  o rgan ic  l iquids is a w i d e s p r e a d  

p r o b l e m .  Numer i ca l  m o d e l s  for  p h a s e - s e p a r a t e d  h y d r o c a r b o n  mig ra t ion  in the  

vadose  zone  and  g r o u n d w a t e r  have  been  p r e s e n t e d  recen t ly  by  var ious  resea rchers .  

Mos t  ana lyses  have  been  res t r i c t ed  to cons ide ra t ion  of  two-d imens iona l  doma ins  

involving a ver t ica l  slice t h rough  u n s a t u r a t e d  and /o r  s a tu r a t ed  zones  ( A b r i o l a  and  

P inder ,  1985; Faus t ,  1985; H u y a k o r n  and P inder ,  1978; O s b o r n e  and Sykes ,  1986, 

K u p p u s a m y  et al . ,  1987; Ka lua rachch i  and  Pa rke r ,  1988). Whi l e  theore t i ca l ly  

ins t ruct ive ,  such m o d e l s  have  l imi ted  appl icab i l i ty  for  the  analysis  of  many  field 
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problems which involve complex geometry and boundary conditions. Fully three- 
dimensional multiphase-flow models have been discussed recently by Falta and 
Javandel (1987) and Faust (1988). However, the high computational cost of using 
such codes imposes severe restrictions on their practical utility. 

An alternative modeling approach which has been widely employed in petroleum 
reservoir engineering involves vertical integration of the governing flow equations 
under the assumption of near-equilibrium conditions in the vertical direction, thus 
reducing the numerical dimensionality as well as the severity of the problem 
nonlinearity (Martin, 1968; Rosenzweig et al., 1986; Aziz and Setari, 1979). Theo- 
retical aspects of vertical averaging for multiphase-flow problems have been dis- 
cussed by Gray (1975). The problem of hydrocarbon spreading from leaking 
underground storage tanks has been analyzed by various researchers using areal 
flow models for the special case of step-function saturation-capillary pressure 
relations. Analytical solutions which ignore water flow (Greulich and Kaergaard, 
1984) and numerical models for coupled water and hydrocarbon flow (Hochmuth 
and Sunada, 1985) have been reported. 

The objective of this paper is to derive a mathematical model for areal flow 
of water and light hydrocarbon by vertical integration of the governing three- 
dimensional, three-phase flow equations under the assumption of local vertical 
equilibrium. Closed-form expressions for vertically integrated fluid volumes and 
transmissivities are developed based on a three-phase extension of the Brooks- 
Corey saturation-capillary pressure function. 

2. Vertical Integration of Governing Equations 

2.1. GENERAL THREE-DMENSIONAL FLOW EQUATIONS 

We wish to consider the problem of flow in a three-fluid phase porous media 
system with air, water, and a nonaqueous phase liquid, which we will refer to 
subsequently simply as 'oil'. Equations of motion for the two liquid phases may 
be written in tensor notation as 

qwi = -Kwij(Ohw + uj), (la) 
\ Oxj 

- K {Oho + (lb) qo, ol, \ ox-- j pro.j j ,  

where qwi and qoi are velocity components in the i direction (i, j = 1, 2, 3) for 
water and oil phases [L 3 L -2 T-l],  xj are Cartesian spatial coordinates, hw and ho 
are water height-equivalent pressure heads in water and oil [L] of the form hp = 
Pp]Pwg (P = o, w) where Pp is the p-phase pressure [F L-2], Pw is the density of 
water [M L -3] and g is gravitational acceleration [LZT-1], Kpij are p-phase conduc- 
tivity tensors [L T-l],  pro is the ratio of oil to water density [L~ and uj = Oz/Oxj 
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is a unit gravitational vector [L ~ where z is elevation. Phase conductivities are 
conventionally assumed to be of the form 

Kw~ = krwKswij , (2a) 

Koij = kroKswJ~qro, (2b) 

where krw and kro are relative permeabilities of water and oil [L~ respectively, 
~ro is the ratio of oil to water absolute viscosity [L~ and K, wij is the saturated 
conductivity tensor for water. (Note: pro is absent from the numerator of Equation 
(2b) due to use of water-height equivalent head ho in Equation (lb).) An equation 
of the same form as (lb) may be written for gas-phase convection. However, we 
shall restrict our attention here to cases in which it is reasonable to invoke 
Richard's assumption - that gas pressure gradients are negligibly small due to 
atmospheric boundary control and low gas impedance - thus avoiding explicit 
consideration of gas flow. 

Assuming negligible compressibility of the water and oil phases and of the soil 
matrix, liquid-phase continuity equations may be written as 

q~ OSw = Oqwi + Yw, (3a) 
Ot Oxj 

q~ OSo_ Oqoi + yo,  (3b) 
Ot Oxj 

where ~ is porosity [L 3 L-3], Sp is p-phase saturation [L3L-3], t is time [T], x~ are 
Cartesian coordinates ( i , j  = 1, 2, 3), and Yt~ are p-phase volumetric source-sink 
terms [L 3 L-3T ~]. 

2.2. VERTICAL EQUILIBRIUM HEAD DISTRIBUTIONS 

To proceed further, it is useful to introduce the concept of piezometric head for 
water and oil phases and define 

�9 ,~ = hw + z, (4a) 

~o = ho + proZ, (4b) 

where ~w and ~o and water and oil piezometric heads and z is elevation above 
an arbitrary datum. We wish to consider the situation in which liquid velocities in 
the vertical direction may be regarded as small relative to those in the horizontal. 
More specifically, we assume that vertical fluid redistribution occurs on a suf- 
ficiently short time-scale such that vertical pressure distributions constantly ap- 
proximate hydrostatic conditions, i.e. 0 ~,JOz and 0 q~olOz ~ O. 

In such circumstances, it is possible to characterize the vertical pressure distribu- 
tions in all phases in terms of various fluid 'table' elevations. Consider a (locally) 
static system containing air, water and lighter-than-water oil in which we install a 
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hypothetical screened well (Figure 1). An oil lens is observed which may be 
characterized by an air-oil table elevation, Zao, at which location the gauge oil 
pressure is zero, and an oil-water table elevation, Zoo,  at which water and oil 
pressures are equal. We may also theoretically define an air-water table elevation, 
zaw, at which the gauge water pressure is zero. Hydrostatic conditions require that 
Oq~JOz = 0 and agrolOz = 0, hence 

% = z~w, (Sa) 

* o  ~- ProZao (5b) 

and 

h w - -  zaw - z,  (6a)  

ho =- pro(Z~o - z ) .  (6b) 

From (6) and the definitions of zoo,, Zoo, and z . . . .  we observe that 

Zo,~ = zow - proHo,  (7a) 

where Ho = Z a o -  zow is the 'piezometric oil height' (see Figure 1). The various 
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Fig. I. Water and total liquid distributions in equilibrium with well (for VG model properties given 
in Table I with Ho = 2 m), 
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table elevations are thus related by 

Z a w  - -  P r o Z a o  
Zow = (7b) 

1 - Pro 

such that stipulation of any two of the three table elevations completely defines 
the three-phase static vertical head distributions. 

2.3. VERTICALLY INTEGRATED FLOW EQUATIONS 

Let us assume that the flow domain of interest is bounded at the top by the soil- 
atmosphere boundary and at the bot tom by an effective lower bound of the 
unconfined aquifer. (In principal, this would be an impermeable layer, but if 
partially penetrating wells are modeled, the effective lower boundary of the well- 
coning zone would be relevant in practice.) We designate the elevations of these 
physical boundaries as zu and z~, respectively. Integration of Darcy's equation (1) 
in the vertical direction subject to the assumption of local vertical equilibrium 
represented by (4) and (5) yields 

Owi= - Tw,j OZaw, (8a) 
Oxj 

Qo, = - Toij OZao, (8b) 
Oxj 

where Qwi and Qoi are vertically integrated fluxes of water and oil [L 3 t -1 T -1] 
in the i direction (i, j = 1, 2) of the form 

; Z u  

Qpi = qpi dz (9) 
Zl 

for the p-phase (p = o, w), and Twij and To,j are water and oil transmissivity tensors 
defined by 

fz Tw,~ = Kw~j dz, (10a) 
I 

To,j=p~ofzi"Ko,jdz. (10b) 

Likewise, integrating the continuity equations (3) over the vertical domain yields 

OVw OQwi t- ]w, ( l l a )  
ot Oxj 

OVo= OQo~+L,  ( l ib )  
Ot Oxj 
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where Vw and Vo are total water and oil volumes per horizontal area [L 3 L z] at 
a point in the areal plane defined by 

Vw = (bSw dz, (12a) 
Zl 

f? Vo = ~So dz, (12b) 

and ]w and ]o are vertically integrated source-sink terms [L 3 L -2 T-i].  
Combining (8) and (11) yields the governing equations for areal flow of water 

and oil as 

O V w _  O [- OZaw] 
Ot Oxi[Tw'J~x~J +]w' (13a) 

OVo a F OZao] 
- - I T o , j - - I  + J o .  (13b) 

ot Ox; L Ox/ J 

Since Vw and Vo will, in general, be functions of both zaw and Z,o, implicit solution 
of the coupled PDEs (13a) and (13b) for fluid-table elevations requires expansion 
of the left-hand sides as 

Oz.o 0 [ OZaw] + fw (14a) OZaw _1_ Ywo - -  -- Two 
yww Ot Ot Ox; Oxj d 

_ _  OZ~o 0 F Ozao] OZaw + 3/00 _ _  _ [To, i Tow Ot Ot Oxi -~xj J + ]o, (14b) 

where ~pq [L t -I] are pq-phase storage coefficients defined by 

]/pq = O Vp/OZaq (15) 

in which p, q = o, w are phase indices. It may be noted that yw~ corresponds to 
the storage coefficient of conventional single-phase groundwater-flow analyses. 

3. Vertically Integrated Saturation-Pressure Relations 
3.1. DERIVATION OF FUNCTIONAL RELATIONS 

To solve the vertically integrated flow equations, (14a) and (14b), expressions 
are required for the integrated saturation-pressure functions, Vw(z~w, Zao) and 
Vo(z~,~, Zao). We proceed to obtain these by assuming local three-phase saturation- 
pressure relations may be described by scaled relations of the form proposed by 
Parker et al. (1987), namely 

Sw(r = S*(h*), (16a) 

St(f3aohao) = S*(h*), (16b) 
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where ho", and hao are oil-water and air-oil capillary heads,/3ow and fiao are fluid 
pair-dependent scaling coefficients, and S*(h*) is a scaled saturation-capillary head 
function defined by 

S*(h*) =- Sp,~st (haw), (16c) 

where SPw fist denotes the effective saturation of water in the pristine air-water 
system and haw is the air-water capillary head. Effective water and total liquid 
saturations are defined, respectively, by 

Sw - Sw - S,~, (17a) 
1 - S i n  

S t -  Sw ~- S~ - Sm , (17b) 
1 - S m  

where Sw and So are actual water and oil saturations and Sm is the 'irreducible' 
water saturation. The pertinent capillary heads are defined by 

hao = ha - ho, (18a) 

how = ho - hw,  (186) 

haw = ha - hw, (18c) 

where hw and ho are as previously introduced and ha is the gas-phase head which 
is assumed here to be zero (i.e., atmospheric pressure). 

It may be shown theoretically that the scaling factors/3,0 and flow are approxi- 
mated by 

/3ao = G",/Oao, (19a) 

rio., = ~ow/Crow, (19b) 

where craw is the surface tension of uncontaminated water, O'ao is the surface 
tension of the organic liquid, and ~ow is the interracial tension between oil and 
water (Lenhard and Parker, 1987; 1988). Contamination of the air-water system 
by an infinitesimal volume of oil such that (16a) and (16b) hold and St---~ 0 indicates 
that the form of the contaminated air-water saturation-pressure relation is 

Sc~ (/3~whaw) = SPw fist (haw), (20a) 

where 

/3;w = O-aw/O"w (20b) 

in which cr'w is the surface tension of organic contaminated water. 
In previous studies, we have taken the form of S*(h*) to be given by Van 

Genuchten's (1980) model 

S*(h*) = [1 + (o&*)"]-", h* > 0, (21a) 
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S*(h*) = 1, h* <~ O, (21b) 

where ~ [ L - q  and n [L ~ are Van Genuchten parameters and m = 1 - l /n.  From 
(21) and (16), the three-phase saturation-pressure relations are given by 

Sw = (1 - Sin){1 + (at~owhow)n} -m + S, , ,  how > 0, (22a) 

Sw = 1, how <~ O, (22b) 

St = (1 - Sin){1 + (o~fiaohao)n} -m + Sin, hao > 0, (22c) 

St = 1, hao <~ O. (22d) 

Substitution of (22) into (12) yields integral expressions for water and oil volumes, 
Vw and Vo. Unfortunately, while (22) has been shown to provide an accurate 
representation of two- or three-phase saturation-pressure relations (Parker et al., 

1987; Lenhard and Parker, 1987; Lenhard and Parker, 1988; Lenhard et al., 1988), 
it suffers a distinct disadvantage for our present purpose because it cannot be 
integrated exactly in (12) to obtain closed-form expressions for Vw and Vo. 

A more suitable choice for S*(h*) which avoids this difficulty is the model of 
Brooks and Corey (1966) which has the form 

S*(h*) = [hd/h*] a, h* > hal, (23a) 

S*(h*) = 1, h* <~ hd, (23b) 

where hd [L] is the air-entry head of the pristine air-water system and A [L ~ is a 
parameter governed by the pore-size distribution. From (23) and (16), water and 
total liquid saturations for the Brooks-Corey model are described by 

Sw = (1 - Sm){hd/[3owhow} a + Sin, how > hd/[3 . . . .  (24a) 

Sw = 1, how <~ hd/fiow, (24b) 

St = (1 - Sm){hJ[3aohao} a + Sin, hao > h J ~ o ,  (24c) 

S~= 1, h~o <~ hd/fiao, (24d) 

and oil saturation is So = S~ -  Sw. The expression for vertically integrated water 
volume (Equation (12a)) can now be expressed as 

f[ Vw = oo(f~ - z,) + �9 Sw(z)  dz,  (25) 

with 

= Min(z~, Zsow) 

Zsow = Zow + hd/~ow(1 -- Pro), 

where Zfow represents the elevation below which complete water saturation occurs 
(upper boundary of saturated oil-water capillary fringe). Substituting (24) for 
Sw(how), making a change of variables from z to how via (6) and integrating 
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assuming uniform soil properties with depth yields for Zjow < z .  

( h. ) 

�9 (1 - Sin) N~ (ar - N~_~ ) + aoS~_ ( a r  N), (26a) 
-t (1 - A)(1 - pro) 1 - pro 

where 

J = (1  - p~o)(Z. - Zoo), ~ = hJ~o~  

For Zyow ~ z .  we have simply 

V w  = C~(z~ - z , ) .  (26b) 

Note that in both (26a) and (26b), Vw is a function of Zo~ only. 
The expression for vertically integrated oil volume (Equation (12b)) can likewise 

be expressed in integral form as 

11o = q5 [1 - Sw(z)] dz + �9 s  dz  - �9 Sw(z )  dz ,  (27) 

in which 

F = Min(z. ,  Zyao), Zyao = Z a o  "Jr ha/~aoPro, 

where  Zf.o represents the elevation below which complete liquid saturation occurs 
(upper boundary of saturated air-oil capillary fringe). Substituting Sw(how) and 
St(hao) from (24), changing variables via (6), and integrating yields for zf .o ~ z .  

V0 - (1 - Sm)dp [a r  ~]  - (1 - -  Sm)(I ) g~A(,5~/1-A -- N t - a  ), (28a) 
1 - P~o (1 - P r o ) ( 1  - -  A) 

and for z,,ao < z .  

(1 - s m ) e  (1 - Sm)~  
V o - -  ( ~ - -  ~ )  -- 

1 - Pro ( 1  - p r o ) ( 1  - A)  

~ ( g *  ~ __ 9 ' - - ~  ) + 

@am(I ) (~.~ _ ~) 4- (1  - -  Sm)(~ c ~ a ( ~ l  x _ C~l A ) _ 

P .o  P r o 0  --  a )  

S~qb ( M -  cg)_ (1 - S , ~ ) ~  Na(a~_-A _ cg~-a), (28b) 
1 - Pro  (1 - A)(1 - P , o )  

where 

= Zoo + ha(1 - Pro) Zow, ~ = pro(Z. - Zao), ~ = hdlflao. 
t~aoPro 

Partial derivatives of vertically integrated water and oil volumes with respect to 
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zaw and Zao may be readily obtained by differentiating (26) and (28) to obtain 
storage coefficients. The results are 

q) 
yww - (1 - (1 - Sm)Ydasg  - ; '  - S m ) ,  (29a) 

1 - Pro 

-p~oq~ 
ywo = - (I - (1 - Sin) N a s l - a  - S in) ,  (29b) 

1 - Pro 

%0 = q~(1-Sm)( 1 _ga@-a  Pro N A ~ y - x )  

1 - Pro 1 - pro ' 
(29c) 

�9 (1 -sin) 
Tow = (Nxsr -A - 1), (29d) 

1 - pro 

where the constants st, N, etc. are as previously defined. 

3.2. E V A L U A T I O N  OF M O D E L  PREDICTIONS 

Experimental validation of multiphase saturation-pressure relations based on the 
Van Genuchten model has been presented by Parker et  al .  (1987) and Lenhard 
and Parker (1987, 1988) for conditions involving monotonic water and total liquid 
drainage. Therefore, we choose here to evaluate the vertically integrated Brooks- 
Corey model by comparison with its Van Genuchten analog. Since the Van Gen- 
uchten model does not yield closed form expressions for integrated water and oil 
volumes, these quantities were evaluated numerically from the integral expressions 
using Gauss quadrature in conjunction with bisection procedures to refine integr- 
ation limits. 

In order to compare the two models, a procedure must be first determined for 
converting Van Genuchten (VG) model parameters to 'equivalent' Brooks-Corey 
(BC) parameters or vice-versa. A simple method for accomplishing this is to 
equate d S * / d h *  for the two models at S* = 0.5 and to force the models through a 
specified match-point saturation (Lenhard et  a l . ,  1988). The resulting expressions 
for BC model parameters in terms of VG parameters are 

m 
�9 ~ = - -  (1 --  0 .51/m),  ( 3 0 a )  

1 - m  

hd  = c ~ - I S ~ / x ( S 7  i/m - 1) ira, (30b) 

where A and ha are BC parameters, a, n and m = 1 - 1 /n  are VG parameters, and 
Sx is the match-point effective saturation which will typically lie between 0.5 and 
0.9 depending on the criterion used to define 'equivalence' -- i.e., where on the 
curves differences are minimized. 

Consider a porous medium with S * ( h * )  as shown in Figure 2 for Van Genuchten 
parameters listed in Table I. The material corresponds to a rather uniformly 



VERTICAL INTEGRATION OF THREE-PHASE FLOW EQUATIONS 197 

E 
v 

1 . 0  

13.8 

0 . 5  

- [ - - 0 . 4  

0 . 2  

0 . 0  

1 VAN GENUCHTEN 

R O O K S - C O R E Y  

i 

I I I I 

O. 0 0 .  2 0.  4 O. 6 O. 8 1. 0 

Fig. 2. 
I. 

S . ~  

Comparison of VG and BC scaled saturation-capillary head functions for parameters in Table 

graded medium sand. If, following Lenhard et at. (1988), we select Sx = 0.72 as 
the optimum match point then corresponding ha and A are as given in Table I. 
The resulting S*(h*) function for the BC model exhibits good correspondence 
with the VG model except at low capillary pressures where the former overpredicts 
fluid saturation due to the assumption of a distinct air entry pressure at which C ~ 
discontinuity occurs (Figure 2). The VG model will asymptotically approach the 
behavior of the BC model as n---~o and A---~oc, in which case S*(h*) for both 

models approaches a step function with discontinuity at h* = ha = 1/o~. 
To investigate the behavior of integrated saturation-pressure relations, we con- 

sider fluid properties typical of a light hydrocarbon spill (e.g., gasoline) in an 
unconfined aquifer bounded by an impermeable layer at z~ = 0 and with the soil 
surface at z ,  = 10 m (Table I). Vertically integrated water volume, Vw, as a func- 
tion of oil-water table elevation, zow, given by (26) is illustrated for the hypothet- 
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Tab le  I. Soil and  fluid p rope r t i e s  e m p l o y e d  in example  

ca lcula t ions  

Scaled retention funct ion 
V G  model :  o~ = 5.0 m -  

n = 3 . 0  

Other  soil propert ies  
S,,, = 0.0 
~=0.4 
Ksw= l O . O m d  -1 

Fluid propert ies  
Pro = O. 8 
v/F o = 0.8 

B C  model :  ha = 0.133 m 
A = 1.29 

z,, = 10.0 m 

z~ = 0.0 m 

/3c, o = 3.2 

fi . . . . . .  1.45 

ical soil in Figure 3. Linearity of Vw(zow) is observed for z u -  zow > 3 m cor- 
responding to the thickness of the capillary water zone in which Sw substantially 
exceeds Sm that for larger Zow begins to intersect the soil surface. Storage coef- 
ficients for water, Tww and Two, are accordingly nearly constant over a similar 

I 
E 
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V 

> 

Fig. 3. 
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C o m p a r i s o n  of ver t ica l ly  i n t eg ra t ed  wa te r  vo lume  as a funct ion  of o i l -water  table  e l eva t ion  

for V G  and  B C  models .  
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range in Zow (Figure 4) and for large z ,  - Zo~ approach values given by 

~ .  = r - Sin)/(1 - Pro), (31a) 

T;o = - sin)l(1 - pro). (31b) 

Although Vw, 7ww and Two are shown as functions of Zow,  the water flow equation 
(14a) is in terms of Zaw and Zao. However,  from (7) it is evident that Zow is linearly 
related to zaw and zao so that the water equation is effectively linear in the storage 
terms excluding effects of coupling with the oil flow equation. 

Unlike problems in petroleum reservoir modeling which commonly involve 

piezometric oil heights, H o  = Zao - Z o o ,  of many meters, hydrocarbon spill prob- 
lems rarely yield H0 greater than 1 - 2 m (e.g., Parker et  a l . ,  1988). We confine 
our attention here to the latter narrow range. Furthermore,  in normal circum- 
stances, the maximum elevation of the zone exhibiting nonzero oil saturation is 
considerably less than z ,  in which case V0 becomes a unique function of H o .  For 
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0. O 

\ \  

VAN GKNUCHTIEN 1 
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Fig. 4. Comparison of water-water and water-oil storage coefficients as a function of oil-water table 
elevation for VG and BC models. 
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the example problem with Ho <~ 2 m, this condition is met if zu - Z,o > 25 cm. A 
comparison of BC and VG model Vo(Ho) relations subject to this restriction is 
shown in Figure 5. For H0 > i m, the two models correspond closely and are only 
mildly nonlinear. At smaller Ho, the functions become markedly nonlinear and 
the BC model increasingly underpredicts Vo. While the VG model predicts Vo --, 0 

as Ho--+O, the BC model indicates V o ~ O  a s  Ho--->H rain, where 

m i n  - -  
R o - BoGo=z;o  

= hd r  P,o) ~ " 

It may be noted that selection of the match point for relating BC and VG par- 
ameters which controls hd will directly influence the degree of deviation between 
BC and VG models at low oil volumes. Since hd is, after all, simply an empirical 
model parameter, it may be adjusted in practice so that the integrated BC model 
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Fig. 5. Comparison of vertically integrated oil volume as a function of piezometric oil height for VG 
and BC models. 
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Fig. 6. Comparison of oil-water and oil-oil storage coefficients as a function of piezometric oil height 
for VG and BC models. 

provides a suitable statistical fit to the true V,~(H,,) function over the range of 
interest. 

Relations between the oil storage coefficients, %0 and Tow, and Ho over the 
same range of 0 < Ho ~< 2 m also clearly illustrate the nonlinearity in the oil-storage 
terms for low oil volumes (Figure 6). Although, in general, Too 4= -Tow, for the 
specific circumstances employed here these quantities are indistinguishable within 
the precision of plotting in Figure 6 and are shown as single curves. For sufficiently 
large oil volumes (Ho ~> 2 m, Yoo--~ Y~,w and Yow--+- Y~ as given by (31a). 

4. Water and Oil Transmissivity Relations 

4.1. DERIVATION OF TRANSMISSIVITY RELATIONS 

Water transmissivity will be largely due to flow in the water saturated zone owing 
to the rapid reduction in permeability with decreasing water saturation. Ignoring 
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any contribution of water flow above Zow yields via (10a) the classical definition 
of transmissivity 

r w , ,  = K s w , j ( Z o w  - z , ) .  (33) 

In the case of the Brooks-Corey model, a well-defined water saturated capillary 
fringe is described which has an upper elevation Zfow. Including the contribution 
of this water saturated fringe to water transmissivity yields a modified expression 
for Twij 

Tw,, = K,~ij(Zjow - z~) (34) 

which may be utilized when the Brooks-Corey model is employed. Except for 
very thin aquifers or very fine grained sediments, the distinction between (33) and 
(34) will generally be small. 

To evaluate oil transmissivity, explicit consideration must be given to variations 
in oil relative permeability with water and oil saturations which in turn depend 
on elevation. Parker el al. (1987) have derived an expression for oil relative 
permeability for the Van Genuchten model as 

kro = ( S t -  3~)~/2{[1 - Sly/m] " -- [1 -- S)/m]m} 2. (35) 

Substituting (35) into (10b) and employing (6), (17) and (22) to define S w ( z )  

and S,(z) yields an integral expression for oil transmissivity which is analytically 
intractable but which may be, nevertheless, evaluated numerically. 

In the case of the Brooks-Corey model, relative permeability-saturation re- 
lations may be derived by application of Burdine's (1953) method which defines 
oil relative permeability as 

f " dS2* 
w h*2 

kro = (S t -  Sw) 2 (1 dS* '  (36) 
/ 

J0 h .2 

Substitution of the Brooks-Corey function for S * ( h * )  yields 

kro = (St  - Sw)  2 (S~ 2 + ~)/* - S ~  + ~)/~) . (37) 

To evaluate oil transmissivity for the Brooks-Corey model, it is convenient to 
first separate the integral expression for To (Equation (10b)) into two terms 
corresponding to regions which are liquid saturated (no air present) and unsatu- 
rated (air present) as 

Xo,j = "l",j + X;,j (38a) 

in which 

T'~j K~w,jp, o f~-i 
= kro(Z)  dz  (38b) 

2qro 
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and 

T"ii = Ksw~176 /'l z" kro(Z) dz (38c) 
Tlr o 2 F 

where T'~, and T~i, are contributions of the liquid saturated and unsaturated regions, 
respectively, to total transmissivity, 12 is the lowest elevation at which air occurs 
(see Equation (25)), and F is the lowest elevation at which air occurs (see Equation 
(27)). 

For the liquid saturated region, employing (38b) and making a change of vari- 
ables from z to ho~ via (6) yields 

K~wPro f(1 --pro)(I'+zow) 
= kro dhow (39) T;,j rbo(1 - -  Pro) Jhd/13ow 

For the case of total liquid saturation (i.e., S ,= 1), (37) can be expressed in 
polynomial form as a function of ho~ via (24) as 

k~o = 1 - 2H a + ]712A - -  ]71 2 + a  § 2II 2+2a - -  l-I  2 + 3 A ,  (40) 

where 

II = ha/~owhow. 

Substitution of (40) into (39) yields 

_ Ksw,jp,o { 2 
Too rbo~ll ~ Pro) o~- . G - l _  A 

+ - -  

+ 

1 1 ~2A(~-I 2A__ ~1 2A)§ 
1 - 2 A  I + A  

~2+A (O~e--I A__ G--I--A) 

2 1 ~2+2A (o~ 1 2A__ ~ 1 2A)§ 
2A - 1 1 + 3A 

~2+3A (.~--- i--3A__ ~-- 1--3A )} 

(41) 

where 

~ =  ag, for Zf~o > Z, , 

o~= gao -- Zaw + 
h . ( 1  - pro) 

fi~oPro 
for Zfao % Zu , 

and other terms are as previously defined. 
Evaluation of the second oil transmissivity term, T", corresponding to the liquid 

unsaturated zone cannot be carried out in closed form. Since oil relative perme- 
ability decreases exponentially as both total liquid saturation and water saturation 
decrease above Zsao, it may be anticipated that the contribution of T~ to oil 
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transmissivity will be small compared to that of 1". Using numerical quadrature 
to evaluate 1"~, we find this to indeed be the case. In general, 1"; is found to be 
rarely greater than 2% of To except for very low oil volumes when the absolute 
magnitude of To becomes in any case very low. Therefore, for the Brooks-Corey 
model we subsequently disregard T/; and take To = 1" given by (41) as the oil 
transmissivity function. 

4.2. E V A L U A T I O N  OF M O D E L  PREDICTIONS 

If effects of the unsaturated zone on water flow are ignored, water transmissivity 
is a simple linear function of zow as given by (33) or (34). However, unless 
piezometric oil height, Ho, is constant, nonlinearity nevertheless arises due to 
coupling with the oil flow equation, which is itself inherently more nonlinear as 
demonstrated by the behavior of oil storage coefficient terms. 

Under the same conditions that Vo is uniquely defined by Ho as discussed 
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previously, oil transmissivity, To, will also be a function only of Ho. The relation- 
ship between 1"o and Ho for the example fluid-porous media system over the range 
0 < Ho ~< 2 m is shown in Figure 7. Substantial nonlinearity of 1"o is exhibited over 
the same range for which Vo(Ho) was observed to be significantly nonlinear, i.e., 
for 14o < 1 m. The Brooks-Corey model consistently predicts lower oil transmissiv- 
ities than those from the Van Genuchten model. 

5. Summary and Conclusions 

A mathematical model was derived to describe flow of water and oil in the presence 
of air at atmospheric pressure in an areal domain subject to the assumption of 
local vertical equilibrium. Independent variables in the model are air-oil table 
elevation where gauge oil pressure is zero and air-water table where gauge water 
pressure is zero. These elevations may, in turn, be related to the oil-water table 
elevation where oil-water capillary pressure is zero corresponding to the oil-water 
separation level which would theoretically be observed in an observation well in 
equilibrium with the soil. Constitutive relations in the model consist of vertically 
integrated water and oil volumes and their derivatives with respect to fluid table 
elevations and water and oil transmissivities. Closed-form expressions for the 
constitutive relations are derived based on a three-phase extension of the Brook- 
s-Corey saturation-capillary pressure function. 

Vertical integration of the governing equations leads to reduced dimensionality 
and nonlinearity and, thus, provides a computationally efficient formulation for 
the analysis of hydrocarbon spreading from leaking storage tanks or removal from 
well or trench systems. Nonlinearity in the constitutive equations is virtually absent 
for large oil lens thicknesses but increases as oil volume diminishes. Agreement 
between the Brooks-Corey model, which yields analytic vertically integrated func- 
tions, and the Van Genuchten model, which is not amenable to closed form 
solution, is close except at very low oil lens thicknesses due the assumption of a 
distinct air-entry pressure for the Brooks-Corey model. 
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