Short Communication

A general equation for the evaluation of the error that affects the value of the maximum specific growth rate

W. Borzani

A general equation is proposed to evaluate the absolute error that affects the maximum specific growth rate calculated from batch or continuous experiments. This error depends on the relative errors of the cell concentration measurements and on the duration of the test.

Key words: Error evaluation, maximum specific growth rate.

A simple method (Borzani 1980) quantified the absolute error that affects the value of the maximum specific growth rate (μ) when the relative error of the cell concentration measurements is constant during all the tests. When α , the relative error that affects X (the cell biomass), is <0.20, then:

$$
\Delta \mu \cong \frac{2\alpha}{\Delta t} \tag{1}
$$

The above equation, however, cannot be applied if great variations occur in the cell concentration during the test because, in some cases, the value of α may decrease as the cell concentration increases (Hiss 1979).

The purpose of the present communication is to present a general method, similar to that of Borzani (1980), to evaluate the absolute error that affects μ when the relative error of X depends on X.

Evaluation of $\Delta \mu$

 $\left(\frac{X}{X} \right)$ experimental points of the exponential points of (X_1) and the last (X_2) experimental points of the exponential growth phase of a batch test [Figure 1 (A)] or of the washing-
out stage of a continuous experiment [Figure 1 (B)]. Figure 1

 W the only purpose to evaluate \mathcal{M} by evaluate \mathcal{M} , let us consider the first \mathcal{M}

 (A) permits the equations, 2, 3 and 4, to be written:

$$
\mu_1 = \frac{1}{\Delta t} \ln \frac{X_2}{X_1} \tag{2}
$$

$$
\mu_1 = \frac{1}{\Delta t} \ln \frac{X_2'}{X_1''}
$$
 (3)

and:

$$
\mu_2 = \frac{1}{\Delta t} \cdot ln \frac{X_2''}{X_1'} \tag{4}
$$

Consideriing that $X''_1 = X_1(1 + \alpha)$, $X'_1 = X_1(1 - \alpha)$, $X''_2 = X_2(1 + \beta)$ and $X'_2 = X_2(1 - b)$, equations (2) to (4) lead to:

$$
\mu_1 = \mu + \frac{1}{\Delta t} \ln \frac{1-\beta}{1+\alpha} \tag{5}
$$

and:

$$
\mu_2 = \mu + \frac{1}{\Delta t} \ln \frac{1+\beta}{1-\alpha} \tag{6}
$$

where β is the relative error that affects X_2 . Consequently

$$
\bar{\mu} = \frac{1}{2}(\mu_1 + \mu_2) = \mu + \frac{1}{2\Delta t} \ln \frac{1 - \beta^2}{1 - a^2} \tag{7}
$$

 \mathbb{R} 1980). Depending on the values of contract \mathbb{R} (Borzani 1980). Depending on the values of α , β and Δt , $\bar{\mu}$, will be practically equal to µIf, for instance, $\alpha = 0.05$, $\beta = 0.02$ and $\Delta t = 5$ h, the difference $\bar{\mu} - \mu$ will be 0.0002 h⁻¹. Equations (5) to (7) lead to:

$$
\Delta \mu = \bar{\mu} - \mu_1 = \mu_2 - \bar{\mu} = \frac{1}{2 \cdot \Delta t} \cdot ln \frac{(1 + \alpha)(1 + \beta)}{(1 - \alpha)(1 - \beta)} \tag{8}
$$

The author is with the lnstituto Maui de Technologia, Estrada das Ldgrimas The author is with the Instituto Mauá de Technologia, Estrada das Lágrimas
2035, 09580-900, São Caetano do Sul, SP, Brazil; fax: 55 11 743 0707.

W. Borzani

If the relative errors of the cell concentrations measurements are smaller than 20% (α < 0.20 and β < 0.20), we may use the following approximate equation:

$$
\Delta \mu \cong \frac{\alpha + \beta}{\Delta t} \tag{9}
$$

When $\alpha = \beta$, equation (9) leads to equation (1). In the case of a washing-out phase, Figure 1 (8) leads to:

$$
\mu = D - \frac{1}{\Delta t} \ln \frac{X_1}{X_2} \tag{10}
$$

$$
\mu_1 = D - \frac{1}{\Delta t} \ln \frac{X_1''}{X_2'} \tag{11}
$$

and:

$$
\mu_2 = D - \frac{1}{\Delta t} \ln \frac{X_1'}{X_2''}
$$
 (12)

Combining equations (10) to (12) with the values of α and β we will obtain equations (7), (8) and (9) and their consequences.

It must be pointed out that the absolute error of μ depends not only on the relative errors of the cell concentration values, but also on the duration of the test.

Nomenclature

- X_1 Cell concentration at the beginning of the exponential growth phase or of the washing-out period
- X'_1 Lowest value of X_1 due to experimental errors
- X''_1 Highest value of X_1 due to experimental errors
- X_2 Cell concentration at the end of the exponential growth phase or of the washing-out period
- X_2' Lowest value of X_2 due to experimental errors
- X'' Highest value of X_2 due to experimental errors
- α Relative error that affects X_1
- β Relative error that affects X_2
- Δt Exponential growth stage or washing-out duration
- $\Delta \mu$ Absolute error that affects μ
- μ Maximum specific growth rate
- μ_1 Lowest value of μ due to experimental errors
- $-$ Highest value of μ due to experimental errors.

References

Borzani, W. 1980 Evaluation of the error that affects the value r z ani, w . 1960 Evaluation of the error that affects the value of the maximum specific growth rate. Journal of Fermentation
Technology 58, 299-300.

Figure 1. Schematic representation of the exponential growth phase of a batch culture test (A) and of the washing-out phase of a continuous experiment (B). The absolute errors of X , and X , are represented.

Hiss, H. 1979 Cultivo descontiuo de Candida guilliermondii em \mathbf{S} s, $\mathbf{\Pi}$, \mathbf{I} meio contendo óleo diesel como principal fonte de carbono.
PhD Thesis, University of São Paulo, São Paulo, Brazil.

(Received in revised form 14 Janua y 1994; α accepted in revised form