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ABSTRACT. A variety of researchers in the last fifteen years have described how people 
learn and use mathematics in out-of-school situations. These researchers have found that 
mathematics learning and practice in and out of school differ in a number of ways. In this 
paper we examine and discuss these differences while maintaining the position that while 
some differences may be inherent, many differences can be narrowed so that mathematics 
learning and practice in school and out of school can build on each other and be connect- 
ed. Before discussing a framework that we think sheds some light on connecting these 
experiences, we present some research from several of our studies that illustrates some 
of the differences between in-school and out-of-school mathematics practice and lays the 
groundwork for the discussion of the framework. 

We then discuss Saxe's (199 l) research framework for 'gaining insight into the interplay 
between sociocultural and cognitive development processes through the analysis of practice 
participation' (p. 13). Although Saxe's framework is a method for studying the interplay 
between sociocultural and cognitive development processes, we propose that it may be 
helpful in working towards connecting in-school and out-of-school mathematics learning 
and practice. Thus, we discuss the framework with illustrations from our own research, and 
then elaborate on ways to make this interplay between in-school and out-of-school contexts 
more deliberate. 

1. INTRODUCTION 

A variety of researchers in the last fifteen years have described how people 
use mathematics in out-of-school situations to solve problems and achieve 
goals (e.g., Lave, 1988; Masingila, 1992a; Millroy, 1992; Scribner, 1985). 
Furthermore, it is generally accepted that mathematics learning 'is not 
limited to acquisition of the formal algorithmic procedures passed down 
by mathematicians to individuals via school. Mathematics learning occurs 
as well during participation in cultural practices as children and adults 
attempt to accomplish pragmatic goals' (Saxe, 1988, pp. 14-15). 

However, there are differences between mathematics practice in and 
out of school, as well as mathematics learning in and out of school. Lave 
(1988) has found evidence that mathematics practice in everyday settings 
differs from school mathematics practice in a number of ways. In every- 
day settings: (a) people look efficacious as they deal with complex tasks, 
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(b) mathematics practice is structured in relation to ongoing activity and 
setting, (c) people have more than sufficient mathematical knowledge to 
deal with problems, (d) mathematics practice is nearly always correct, (e) 
problems can be changed, transformed, abandoned and/or solved since the 
problem has been generated by the problem solver, and (f) procedures are 
invented on the spot as needed. 

Researchers who have investigated how persons solve problems in 
school-like situations and solve mathematically-similar problems in every- 
day contexts have found that in the former situation people 'tended to pro- 
duce, without question, algorithmic, place-holding, school-learned tech- 
niques for solving problems, even when they could not remember them 
well enough to solve problems successfully' (Lave, 1985: p. 173). When 
the same people solved problems in situations that appeared different from 
school, they used a variety of techniques and invented units with which to 
compute (Lave, 1985). 

These differences in mathematics practice appear to be explained by 
the fact that: (a) problems in everyday situations are embedded in real 
contexts that are meaningful to the problem solver and this motivates and 
sustains problem-solving activity (Lester, 1989), and (b) 'the mathematics 
used outside school is a tool in the service of some broader goal, and not 
an aim in itself as it is in school' (Nunes, 1993: p. 30). 

Just as mathematics practice in and out of school differs, so does mathe- 
matics learning. Whereas school learning emphasizes individual cognition, 
pure mentation, symbol manipulation and generalized learning, everyday 
practice relies on shared cognition, tool manipulation, contextualized rea- 
soning and situation-specific competencies (Resnick, 1987). 

Knowledge constructed in out-of-school situations often develops out 
of activities which: (a) occur in a familiar setting, (b) are dilemma driven, 
(c) are goal directed, (d) use the learner's own natural language, and 
(e) often occur in an apprenticeship situation allowing for observation 
of the skill and thinking involved in expert performance (Lester, 1989). 
Knowledge gained in school often grows out of a transmission paradigm 
of instruction and can be largely devoid of meaning (lack of context, 
relevance, specific goal). Furthermore, Resnick (1987) has argued that 
'the process of schooling seems to encourage the idea that ... there is not 
supposed to be much continuity between what one knows outside school 
and what one learns in school' (p. 15). 

In some instances, the difference between mathematics practice in and 
out of school may be inherent. Sometimes a mathematical concept is 
understood and used differently in everyday situations than the way it is 
taught in school (e.g., de Abreu & Carraher, 1989). For example, percent 
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of change is a common concept in retailing and in school mathematics. In 
school, percent of change is understood to be the amount of change from 
the original amount. A typical textbook exercise involving this concept 
might be to find the percent of change for a sweater that a retailer has 
purchased for $29 but is selling for $99. A student finding the answer to 
this exercise would subtract $29 from $99 to get a $70 increase, then divide 
$70 by $29 to get an increase of approximately 241%. 

Percent of change in retailing, however, is understood to be the amount 
of change from the retail price. Thus, for the situation in the exercise 
described above, a retailer would divide $70 by $99 to get an increase of 
approximately 71%. Since the final result in retailing is sales, all percents 
of change are based on retail prices. In this case, the solution process 
in the everyday context is different because of the different conceptual 
understanding of percent of change (Masingila, 1993b). 

We believe that while some differences may be inherent in mathematics 
learning and practice in and out of school, the differences can be narrowed 
so that instead of being disjoint activities that do not influence each other, 
mathematics learning and practice in and out of school can build on and 
complement each other. In this way, students can bring to bear their math- 
ematical knowledge gained in out-of-school experiences on their school 
mathematics. Likewise, students can use their school mathematics in solv- 
ing problems that occur in everyday situations. Acioly and Schliemann 
(1986), in their study of lottery game bookies in Brazil, found that the 
bookies with school mathematics experience were able to understand and 
solve novel problems while bookies who had not attended school were 
unable to do this. In this case, the schooled bookies seemed able to draw 
on their school mathematics to use in an out-of-school situation. 

Individuals need both in-school and out-of-school mathematical expe- 
riences in our society. Without everyday mathematical experiences, in- 
school learning is solely for the sake of learning. Students need in-school 
mathematical experiences to build on and formalize their mathematical 
knowledge gained in out-of-school situations, as well as help them build 
generalizable schemas. This occurs in the classroom through the activity 
of constructing knowledge that is subject to 'explanation and justifica- 
tion as students participate in the intellectual practices of the classroom 
community' (Cobb et al., 1992: p. 7). 

The question, then, is how can teachers use students' in-school and 
out-of-school experiences so that mathematics learning and practice in 
these contexts can be connected? Before discussing and elaborating on a 
framework that we think sheds some light on this, we will present some 
research from several studies (Davidenko, 1994; Masingila, 1992a, 1993b; 
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Prus-Wisniowska, 1993) that illustrates some of the points made above and 
lays the groundwork for discussion of the framework. 

2. ILLUSTRATIONS FROM RESEARCH 

2.1. Structure of the Studies 

In each of these studies, mathematics practice was examined in an everyday 
work situation. Work is one of a variety of activities in which humans 
engage; certainly there are other contexts - political, social, cultural - 
that can be examined in studying mathematics practices in out-of-school 
contexts. We chose to focus on the activities that occur in the workplace for 
reasons of both significance and strategy. Work is obviously significant; 
it is basic to human life in all societies and all cultures and occupies a 
great part of an adult's time. When we considered examining mathematics 
practice in everyday situations, the strategies involved in such research 
also pointed in the direction of the workplace. Occupations such as the 
ones we examined are 'highly structured and involve tasks whose goals 
are predetermined and explicit' (Scribner, 1984: p. 3). 

Participant observation, ethnographic interviewing, artifact examina- 
tion, and researcher introspection were used in collecting the data. Workers 
in each context were observed and informally questioned as they worked, 
documents such as blueprints, item inventories, and menus were exam- 
ined, and each researcher recorded her own reflections, feelings, reactions, 
insights, and emerging interpretations in a journal. Data were collected 
from carpet laying estimators and installers, a dietitian, an interior design- 
er, a retailer, and a restaurant manager. We analyzed the data through a 
process of inductive data analysis, looking for the concepts and processes 
that we saw as involved in the mathematics practice in these contexts. 

Selected problems that occurred in these contexts were then given to 
pairs of secondary students. We observed and informally questioned the 
pairs of students as they solved these problems. We analyzed the data by 
examining how each pair solved the problems, and then compared these 
with how the persons in the work context had solved the same problems. 

2.2. Comparing In-School and Out-of-School Practice 

The follow discussion focuses on three key differences that we found in 
our work comparing in-school and out-of-school mathematics practice. The 
differences involved the goals of the activity, the conceptual understanding 
of persons in each context, and flexibility in dealing with constraints. 
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Salad Ingredients 
2 cups d~ced apples 
1/2 cup shredded carrots 
1/2 cup chopped peanuts 

Dressing 
2 eggs 
1/2 cup sugar 
1 Tbl flour 
1 Tbl butter 
1/4 cup vinegar 
1/2 cup cream 

Mix apples, carrots, and peanuts together. Cook  dressing 
until it thickens. Add cream and allow to cool. Pour 
dressing over  salad mixture and serve. Serves 6. 

Figure 1. Apple and vegetable salad. 

2.2.1. Goals of the Activity 
In each context (carpet laying, dietetics, interior design, retailing, restaurant 
managing, school), the distinctions between the goals of the individuals 
in the out-of-school contexts were in sharp contrast to the goals of the 
students in the school context as long as the students viewed the problems 
as school problems. However, we found that when the students were able 
to place themselves in the everyday situation, they appeared to view the 
problems differently. 

For the individuals in work situations, the goal was to make a deci- 
sion. In the course of that decision-making process, problems needed to be 
solved and mathematics was a tool to be used to solve them. The students 
had as their goal to solve the problems we gave them; nothing beyond that 
was required of them. We offer two examples of this distinction. 

The restaurant manager's approach. In the restaurant management context, 
the restaurant manager was faced with the problem of changing a recipe 
obtained from a newspaper (Prus-Wisniowska, 1993). The recipe gave the 
ingredients for serving six persons (see Figure 1). However, the restaurant 
manager needed to use the recipe for a dinner party for 20 people. Her goal 
appeared to be to decide the amount of each ingredient needed and give 
instructions for the cooks while being efficient. To this end, she decided 
to make enough fruit salad for 24 portions and divide the remaining four 
portions among the 20 fruit cups. 

When the restaurant manager was asked about buying the groceries 
needed for making the fruit and vegetable salad, she responded that she 
would first check to see if she already had all the ingredients and then order 



180 3OANNA O. MASINGILA ET AL. 

those that she needed. For instance, if she was low on sugar she would order 
a large quantity since it will be needed for other things as well: 'Only in the 
case of very unusual meals, like scallop salad, do I order the exact amount.' 

The students' approach. A pair of secondary students was asked to change 
the same recipe so that it would make 10 portions. These students were 
second-year high school students in an advanced algebra course. They 
were on track to take calculus in their fourth year of high school. They 
immediately calculated 10 + 6 = 1.7 and began increasing each ingredient 
by this factor. When they multiplied the 1/2 cup of carrots by the factor 1.7 
and obtained .833 cups, they were not able to interpret this as a proper frac- 
tion and abandoned this approach. Instead, the students set up a proportion 
for each ingredient. For example, for the apples they used the proportion 
6/2 = lO/z and obtained 3 1/3 cups of apples. Using this method, the stu- 
dents found the increased amount for each ingredient, including 5/6 cup of 
carrots. When asked about how they would measure 5/6 of a cup, the pair 
decided to accept only halves, thirds, fourths, and eighths. 

The students decided that 5/6 cup of carrots was equivalent to '2/3 cup 
+ 2/2 of 1/3 cup.' They said they could measure this by just filling up 
half of a 1/3 measuring cup. The students found that they needed 3 1/3 
eggs and decided that they would mix together four eggs and then take out 
about 2/3 of an egg. We noticed that, unlike the restaurant manager, these 
students had no discussion about the level of accuracy that was needed for 
the ingredients involved. We also noted that the restaurant manager was 
able to use mathematics as a tool in order to modify the constraints and 
make decisions that made sense in her situation. Certainly to her, using 
fractions instead of decimals allowed her to make better use of her number 
sense and she was able to convert the decimals into fractions that suited 
her purpose. 

When asked to decide what groceries they would need to buy for the 
fruit and vegetable salad, the students' list contained items like 3 1/3 cups of 
apples and 1 2/3 tablespoons of butter. It appears that these students saw the 
goal of the problem as simply to obtain measurements for the ingredients 
without regard to their reasonableness in an everyday situation. 

Another pair of students, however, after thinking about the problem 
noted that if they really had to make this salad they would make the salad 
for 12 portions by doubling everything and then divide the two extra por- 
tions among the 10 people. These students were second-year high school 
in a geometry course. Although these students initially saw the problem as 
simply using proportions to find the increased amounts, they realized that 
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they would do things less formally in an out-of-school context. 

The interior designer's approach. Another illustration of this difference in 
goals is from the interior design context. The interior designer was deciding 
on the amount of materials needed for a house that was being refurbished. 
One aspect of the redecorating involved wallpapering a number of walls of 
the house. The wallpaper that was chosen was 20 in. wide and had a repeat 
length of 9 in. (i.e., the pattem repeated every 9 in.). The interior designer 
told me that what she does in considering repeat lengths is to divide the 
desired length by the length of the repeat, in this case 96 in. - 9 in. This 
gives the number of repeats in the desired length. She calculated that there 
were 10.67 repeats, 'so there needs to be 11 repeats in each strip of wall 
paper so 11 times 9 in. means 99 in. needs to be considered as the length 
of the wall. So, you figure the number of strips you need for the rooms and 
figure each strip to be 99 in. long. Of course, you also have to consider 
that you have to place the seams for the strips at least two inches past the 
corner so it stays down better. Also, wallpaper is sold in single, double, 
and triple rolls so you must figure the best deal for what you need.' The 
interior designer's solution process is aimed toward the goal of making 
a decision about the quantity of materials needed while considering cost 
efficiency. 

The students' approach. We gave a pair of secondary students a prob- 
lem concerning this same situation. These students were from the same 
advanced algebra course as the first pair of students who solved the recipe 
problem. In order to structure the situation a bit more and focus on how 
the students would deal with the repeat length constraint, we gave the 
following problem: 

Suppose you decide to wallpaper your bedroom. If your room is 10' by 8' and the walls 
are 8' high, how much wallpaper do you need if the wallpaper has a repeat length of 9 in. ? 
The wallpaper is 20 in. wide and a roll has 45feet of wallpaper on it. 

The concept of repeat length was explained and the students indicated 
that they understood. They began the solution process by calculating that 
the one wall was 120 in. long and the other was 96 in. long. The students 
decided that they would need 6 strips of wallpaper on each of the 10' walls 
and 5 strips of wallpaper on each of the 8' walls. They figured that each 
wall was 96 in. from ceiling to floor so that 576 in. of wallpaper were 
needed for each 10' wall. When asked to explain what the 576 in. inches 
meant, they said that there were 6 strips needed across the wall and each 
strip was 96 in. long 'and 6 times 96 is 576.' The students continued in this 
vein and determined that each 8' wall would need 480 in. of wallpaper. 
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Totaling the amount needed for the walls, they indicated that 2112 inches 
of wallpaper were needed for the room. 

As one student checked back over the statement of the problem, she 
noted that they had not considered the repeat length: 'Well, how would we 
do this if we were really going to wallpaper a room? Maybe we should 
draw a picture to see what this looks like.' At that point, the students drew a 
diagram of one 10' wall: 'The first strip doesn't matter. The pattern doesn't 
have to match anything, so all we need is 96 in. But the next strip has to 
match that one.' 

The students decided to divide 96 by 9 to find out how many sections of 
the pattern are on each wall. They determined that there were approximately 
10.7 sections of the pattern in the first strip and so three inches were going 
to have to be trimmed off the wallpaper before cutting the next strip. When 
asked to explain their reasoning, one student replied, 'Since 99 in. would 
be a whole number of 9 in. sections, we have to cut off three more inches 
[after the 96 in.] so that the pattern will be starting again for the next strip.' 
At this point, the students decided that they could treat all the remaining 
strips as 99 in. and come out with matching patterns. They totaled the strips 
and decided that 2175 inches of wallpaper were needed. 

The approaches to the problem-solving activity were different in the 
in-school and out-of-school contexts because the persons involved had 
different goals. For both the restaurant manager and the interior design- 
er, solving the problems were necessary parts of their jobs. They used 
mathematics as a tool to help them solve problems and not as the goal 
of the problem. The students, however, seemed to view the problems as 
mathematical exercises and immediately started using algorithms that they 
thought would be appropriate. Although two of the pairs gained some 
insight when they tried to put themselves in the everyday problem situa- 
tion, they did not stick with this perspective totally and did not check the 
reasonableness of their solution with the everyday context (e.g., check- 
ing for groceries already on hand, converting the number of inches of 
wallpaper needed into the unit of rolls). 

2.2.2. Conceptual Understanding 
We observed differences in conceptual understanding between individuals 
in the everyday work situations and the secondary students. Although the 
students had the procedural knowledge to solve the problems, they were 
not able to understand the concept involved and apply the procedures. On 
the other hand, the workers understood the concept, at least in this con- 
text, and had the tools necessary to solve the problems. The following two 
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examples illustrate the differences between the workers and the students. 

The carpet layer's approach. In the carpet laying context, the concept of 
area is pervasive in all work done by the estimators and installers. All the 
workers Masingila (1992a) observed converted square feet to square yards 
by dividing square feet by nine. This algorithm is essential in the carpet 
laying business since measurements are taken in feet but carpet must be 
ordered from a supplier in square yards. In a conversation with Joanna, 
one of the researchers, Dean, an estimator, explained why this algorithm 
worked. 

Joanna: If you just know the length and width of a room, how do you 
find how many square yards of carpet you need? 

Dean: Well, if the room is 12' by 8' then you take 12 x 8 + 9. 

Joanna: What does the 9 mean? 

Dean: That's the way you convert square footage to square yardage. 

Joanna: Okay, but where does the 9 come from? 

Dean: I don't know. Maybe I don't understand the question .... 
Where does the 9 come from? 

Joanna: Yeah, why isn't it 8 or 6? 

Dean: Well, when you have square footage (draws diagram with 3 
by 3 grid - see Figure 2) ... each of these squares is a square 
foot and there are three feet in a yard (puts z 's inside the 
three squares in the right column of the grid) and then three 
across (puts z 's  inside three squares in the top row) - so that 
makes 9. (pp. 114-115) 

By using a diagram Dean was able to illustrate, although not fully artic- 
ulate, that in one square yard there are nine square feet and to convert from 
square feet to square yards involves dividing by nine. 

The students' approach. In contrast, several pairs of secondary general 
mathematics students were given a similar problem and did not understand 
that the concept of area was involved. The problem and conversation with 
two students, Jim and Matt, are given below. 

Suppose you need a piece of  carpet 12feet by 9feet. How many square yards should you 
order from the carpet supplier? 
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X 

Figure 2. Converting square feet to square yards. 

Matt: 

Joanna: 

Jim: 

Joanna: 

Matt: 

Joanna: 

Matt: 

Jim: 

Joanna: 

Jim: 

Joanna: 

Matt: 

Joanna: 

Jim: 

Joanna: 

Jim: 

Joanna: 

Jim: 

Joanna: 

Jim: 

Joanna: 

Matt: 

I don't know nothin' about square yards. 

Well, let's see. What does a piece of carpet 12' by 9' look 
like? 

(draws a rectangle and labels the dimensions 12' and 9') 

Alright. Now how would you change that to yards? 

Divide by 3. 

Why? 

Cause it takes 3 feet to make a yard. 

(writes '4 yds' and '3 yds' and scribbles out 12' and 9') 

Okay, now how many square yards is that? 

Square yards? Oh ... well, there's two 4's and two 3's - one 
on each side. So that's 4 square yards and 3 square yards. 

What does square yards mean? 

I don't know. (Jim shakes his head.) 

What it means is area; finding the square yardage of this 
carpet is finding the area. 

So that's 4 z - 8 and 3 2 - 6 and take 8 • 6. 

Where did you get the 8? 

4 2 - 4 x 4 - no, that's not 8. Area is length times width times 
height. (pause) I 'm not sure. 

Area of a rectangle is length times width. So what's the area 
of this carpet piece? 

You'd multiply 4 • 3 - no, 8 x 6 because those are square 
yards. 

So the area or square yards is what? 

8 x 6 .  

Matt, do you agree with that? 

Yeah. (Masingila, 1992a, pp. 235-237) 
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None of the six pairs of students who worked this problem, including 
this pair, understood that finding the square yardage of the piece of carpet 
was the same as finding the area of the carpet piece. However, these students 
had studied area with square units for several years. In fact, in the textbook 
they had used the previous year there were exercises that were similar to 
this problem. The main difference may have been that the exercises were 
in a chapter on area and in a lesson on area of rectangles, so the students 
knew what procedure to use. 

Contrast this with Dean's explanation of how to convert from square 
feet to square yards. He knew the algorithm, dividing by nine - because 
he used it regularly in his job. However, Dean also understood that he was 
dealing with area, and that in one square yard there are nine square feet. 
It is our conjecture that if Dean had been asked to explain this conversion 
when he was a ninth grader, his explanation would not have been much dif- 
ferent than that of these general mathematics students. However, through 
his day-to-day experience working with rectangular area, Dean had come 
to a fuller understanding of this conversion and was able to construct a 
reason for its mathematical validity. 

The dietitian's approach. In the dietetics context, the concepts of ratio, 
proportion, percent, and conversion of units are used by dietitians in a 
variety of problem situations and in varying levels of difficulty. Most of 
the calculations and algorithms required to solve the problems are simple; 
however, we observed that a conceptual understanding of the concepts of 
ratio and proportion is necessary in order to properly interpret, model, and 
solve complex problems (Davidenko, 1994). 

We gave a dietitian and several pairs of students the following problem: 

You buy a 12 Ib roast for which you pay $3.98 per lb. The waste, when removing fat and 
bones is about 18%. Then, when you cook it, the roast will shrink about 14%. What is the 
cost of a 3 oz portion of the cooked roast? 

Judy, the dietitian, read the problem and looked a little puzzled. She 
read it again and said, 'First, the goal is to find 32% of 12 pounds and 
find what is available.' She worked a bit on some calculations and then 
realized that 32% was not right. Judy mentioned that she faces similar 
problems: 'For example, we can buy two different brands of ham at dif- 
ferent prices. One has 13% fat, the other has 15% fat, and the fat has to 
be removed. Then we have to compare prices per unit to see which is the 
best buy.' During the ensuing discussion, it was clear that Judy understood 
the concept involved in these problems - finding the unit price of a prod- 
uct after discarding unusable parts - and was then able to solve the problem. 
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The students' approach. We gave this problem to four pairs of sec- 
ondary students who were second-year students in a geometry course. 
We explained what was shrinkage and they all indicated that they under- 
stood; all the students approached the problem in the same way. The first 
step the students took was to multiply 12 x 3.98 to find the total price 
of the roast, $47.76. Next the students tackled the problem of account- 
ing for the removal of fat and bones. One pair's dialogue is as follows: 

Nina: It is 18% waste, so let's take 18% of 47.76 and subtract it 
from the total price. 

Todd: No, it was 18% waste and 14% shrinkage, so that is 32% of 
$47.76. 

Nina: Let's take 18% of the $47.76 and then 14% of that. 

Todd: Wait! Shouldn't we take 18% of the 12 pounds? 

Nina: I don't know. 
Nina and Todd discussed whether to take 18% of the cost or of the 

weight. Finally, with some guidance from one of the researchers, they 
convinced themselves of the procedure to use: 'We have to take 18% of 
the weight because what we are doing is reducing the amount of roast, not 
reducing the cost. Then we take 14% of the usable part.' 

Whereas Judy understood the concept involved in the problem imme- 
diately, the students started by looking for an algebraic solution without 
understanding the concept. They first performed the calculations suggested 
by the first part of the problem. Then they continued with the next sen- 
tence, and in doing so they sought to reduce the price and not the weight. 
The students were able to deal procedurally with taking percentages of a 
number, but they did not understand (without guidance) the concept behind 
the procedure (i.e., removing fat and bones reduces the amount of usable 
meat but not the price paid). 

We attribute the differences in conceptual understanding between the 
individuals in everyday work contexts and the students to a lack of experi- 
ence on the part of students in dealing with these concepts in problematic 
situations where mathematics is used as a tool rather than an object. We 
observed that the workers were able to understand the problems within the 
context and had the conceptual understanding to solve the problems within 
that context. 

2.2.3. Flexibility in Dealing with Constraints 
Problems that occurred in each of the everyday situations that we exam- 
ined were filled with constraints. We observed noticeable differences in 
the ways that workers in these contexts and the students were able to deal 
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You are a manager in a small restaurant. Each Friday you have to decide what wilt be cooked 
during the period of the next week (from Tuesday to Saturday and Monday in the following week) 
and send a suitable order to the commissary shop. Today is Friday, January 14 and by looking at 
the catering book and taking into consideration possible trends, you found out that for each day 
you will need the following amount of meat (in pounds): 

Tue Wed Thu Fri Sat Mon 
1/18 1119 1/20 1/21 1/22 1/24 

N e e d e d  25 25 30 20 10 20 

The commissary shop offers you good quality and very cheap meat but they deliver their goods 
only four times a week: on Monday, Wednesday, Thursday, and Friday. You can purchase things 
in advance and keep them in storage but the meat freezer capacity is only 55 pounds. So on 
Friday, January 14, you have to plan very carefully how much meat has to be delivered each 
delivery day to cover your needs. Meat comes frozen so it needs one day to be put aside and 
defrosted. 

Plan the delivery schedule for the coming week: 

Mort Tue Wed Thu Fri Sat  
1117 1/18 1/19 1/20 1/21 1122 

Meat to 
be no no 
delivered delivery delivery 
in pounds 

Figure 3. The order problem. 

with these constraints. 

The restaurantmanager's approach. A problem that occurred in the restau- 
rant management context is what we call the Order Problem (Prus-Wisniowska, 
1993). One of the many responsibilities of the restaurant manager was to 
order necessary food and supplies while considering the constraints of 
delivery, storage space, and efficiency. Figure 3 shows the problem that 
the restaurant manager faced in ordering meat for each week. In deal- 
ing with all the constraints, the restaurant manager chose to minimize the 
number of delivery days and maximize the amount of meat in the freezer. 
Another priority was to schedule all deliveries at the beginning of the week 
since the end of the week is often hectic with many functions at the restau- 
rant scheduled on Thursday and Friday. Furthermore, Friday is the day she 
does inventory and plans deliveries for the next week; she preferred not be 
bothered with additional things like meat deliveries. Thus, the problem of 
ordering and scheduling deliveries was a real problem for the restaurant 
manager and she dealt with all the constraints through optimization and 
efficiency. 
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The students' approach. Two pairs of secondary students worked on this 
problem. One pair consisted of second-year students from an advanced 
algebra course and the other students were second-year students in a geom- 
etry course. Both pairs produced minimal order solutions: For each delivery 
day they decided to order only the amount of meat that would cover the 
needs until the next delivery day. For example, on Monday they decided to 
have 50 pounds delivered (25 pounds for both Tuesday and Wednesday), 
on Wednesday, 30 pounds to cover Thursday's needs. 

When we questioned the students about the possibilities of other solu- 
tions, each pair reorganized their order schedule so that one less delivery 
day was needed; one pair eliminated delivery on Friday and the other 
eliminated delivery on Thursday. Neither pair seemed to consider that a 
delivery could be for more than 55 pounds (the capacity of the freezer) 
since each day some meat had to be taken out of the freezer to defrost 
for the next day. Both pairs struggled to keep track of all the constraints 
involved in the problem and appeared unable to consider all the constraints 
in formulating their solutions. 

The carpet layers' and students' approaches. The carpet laying context 
contains a variety of constraints: (a) floor covering materials come in 
specified sizes (e.g., most carpet is 12' wide, most tile is 1' by 1'), (b) 
carpet pieces are rectangular, (c) carpet in a room (and usually throughout 
a building) must have the nap (the dense, fuzzy surface on carpet formed 
by fibers from the underlying material) running in the same direction, 
(d) consideration of seam placement is very important because of traffic 
patterns and the type of carpet being installed, (e) some carpets have 
patterns that must match at the seams, (f) tile and wood pieces must be laid 
to be lengthwise and widthwise symmetrical about the center of the room, 
and (g) fill pieces for both tile and base must be six inches wide or more 
to stay glued in place. Some particular situations have more constraints, 
such as a post in the middle of a room that is being carpeted (Masingila, 
1992a). 

The ninth-grade general mathematics students who worked problems 
from the carpet laying context often had difficulty dealing with the con- 
straints involved in the problems. For example, in a problem involving 
the installation of tile, the students struggled to figure out a way to install 
the tile so that the constraints about lengthwise and widthwise symmetry 
and fill pieces being at least six inches wide were fulfilled (see Masingila, 
1992a, for more discussion about the students' problem-solving work). 

The students were also not as flexible as the experienced workers in 
seeing more than one way to solve a problem. In a pentagonal-shaped 
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room that needed carpeting, the students were able to see only one way 
(without guidance) to install carpet. The estimator, on the other hand, was 
able to visualize how the carpet would be laid if it were installed with the 
nap running in the direction of the maximum length of the room and with 
the nap running in the direction of the maximum width of the room. By 
having more than one solution, he was able to weigh cost efficiency against 
seam placement and make a decision while considering these constraints 
(Masingila, 1992a, 1992b). 

Our interpretation of this difference in flexibility on the part of the 
students and the workers is that the students, for the most part, have not 
been exposed to problems with realistic constraints that must be considered 
and addressed in order to find solutions (Masingila, 1993b). Although there 
are many exercises in school textbooks that are set in these contexts, the 
exercises are typically devoid of realistic constraints and, as a result, do 
not require students to engage in the type of problem solving required in 
the everyday contexts (Masingila & Lester, 1992). 

3. INTERPLAY BETWEEN MATHEMATICS IN AND OUT OF 
SCHOOL 

Saxe (1991) has delineated a 'research framework for gaining insight into 
the interplay between sociocultural and cognitive developmental process- 
es through the analysis of practice participation' (p. 13). The theoretical 
underpinnings of the framework are based on both Piaget and Vygotsky, 
but the framework moves beyond them in considering this interplay. Saxe 
explains: 

The framework shares the underlying constructivist assumptions of the Piagetian and 
Vygotskian formulations, and, with respect to core constructivist assumptions, the model 
... is consistent with both approaches. However, the framework.., targets a level of analysis 
that is not addressed by either of these formulations. Unlike the Piagetian approach, my 
concern is to treat cognitive development on a level of analysis in which activity-in- 
sociocultural context is a critical focus and cognitive developmental processes are analyzed 
with reference to these contexted activities. Unlike the Vygotskian writings, which do 
not develop core developmental and sociocultural theoretical constructs with reference to 
systematic analysis of core domains of knowledge, the present approach is concerned with 
a systematic analysis of mathematical cognition that integrates cognitive developmental 
and sociohistorical perspectives. (pp. 13-14). 

Although Saxe's framework is a method for studying the interplay 
between sociocultural and cognitive developmental processes, we propose 
that it may be helpful in working towards connecting in-school and out-of- 
school mathematics learning and practice. Thus, we discuss his framework 
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with illustrations from our own research, suggest ways to make this inter- 
play between in-school and out-of-school contexts more deliberate, and 
briefly discuss a current research project that will examine this interplay. 

Saxe's (1991) framework consists of three analytic components: (a) 
goals that emerge during activities, (b) cognitive forms and functions con- 
structed to accomplish those goals, and (c) interplay among the various 
cognitive forms. Goals are 'emergent phenomena, shifting and taking new 
form as individuals use their knowledge and skills alone and in inter- 
action with others to organize their immediate contexts' (p. 17). Forms 
are 'historically elaborated constructions like number systems, currency 
systems, and social conventions.' As these forms are 'acquired and used 
by individuals to accomplish various cognitive functions' (e.g., counting, 
measuring), they become cognitive forms (p. 19). Interplay among the var- 
ious cognitive forms occurs as individuals, 'in order to accomplish goals 
in one setting . . . .  appropriate and specialize cognitive forms linked' to 
another (p. 22). 

3.1. Emerging Goals 

Saxe outlines four parameters that influence the emergence of goals: (a) 
the goal structure of activities, (b) social interactions, (c) conventions and 
artifacts, and (d) an individual's prior understandings. Figure 4 illustrates 
this four-parameter model. We will use examples from our own research 
to illustrate these parameters. 

The goal structure of an activity consists of the tasks that must be 
accomplished in the activity. For example, in order to run a store a retailer 
must buy and reprice items for sale. A principal concern for the retailer is 
to sell an item for as much money as possible while selling as many of the 
item as possible. Thus, mathematical goals that emerge in marking items 
up and down are guided by this economic concern. 

Social interactions that occur during activities may also influence the 
emerging goals. In the carpet laying context, installers worked with helpers 
in a master-apprentice relationship. The discussion and interaction that 
occurred between installers and helpers often allowed helpers to engage in 
activities they would not have been able to unassisted (Masingila, 1992a). 

Saxe (1991) writes of conventions and artifacts as 'cultural forms that 
have emerged over the course of social history, such as ... the Oksapmin 
indigenous body-part counting system and ... a particular currency system' 
(p. 18). Sometimes individuals within a culture develop a set of conventions 
that may be unique to their particular situation. For example, the restaurant 
manager developed a notation system for keeping track of the restaurant's 
inventory. In counting items for inventory purposes she used different units 
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Figure 4. Four-parameter model (Saxe, 1991, p. 17). 

for different items (e.g., pound, 5 pound, box, case, pack, each). These units 
were usually the same as the units used for delivery purposes. 

However, she adopted a different unit for French fries. French fries 
were only delivered in full cases, where 1 case = 10 boxes and 1 box = 10 
pounds of French fries. The restaurant manager found it difficult to operate 
with case as the unit for French fries since the restaurant was rather small 
and 10 pounds of French fries would often be more than was needed for a 
particular meal. So she decided to use zero to denote a case less than half 
full; a zero indicated to her not that there were no French fries, but rather 
that it would soon be time to order more. 

After using this convention for some time, the restaurant manager found 
it, too, was inconvenient because sometimes five boxes of French fries 
sufficed for one week; other times it did not, and so the distinction between 
zero and one became critical. In the end, the restaurant manager decided to 
change her notation to using box as the unit. Even though the French fries 
continued to be delivered in cases, she reported each case as ten boxes and 
so from this time on her inventory indicated the amount of French fries 
with an accuracy of  one box. Thus, the convention used by the restaurant 
manager influenced emerging mathematical goals of activities associated 
with the inventory. 

The prior understandings that 'individuals bring to bear on cultural prac- 
tices both constrain and enable the goals they construct in practices' (Saxe, 



192 JOANNA O. MASINGILA ET AL. 

1991, p. 18). In solving the carpet problem that involved converting from 
square feet to square yards, the students' prior understandings about area as 
a formula, dependent upon the geometric shape appeared to constrain their 
goals. However, for another problem that involved a pentagonal-shaped 
room to be carpeted, one student knew from personal experience that the 
room had to be treated as a rectangle and this enabled him to construct 
goals that were different from students who tried to determine how to lay 
carpet in a five-sided room (Masingila, 1992a). 

3.2. Form-Function Shifts 

The second analytic component of Saxe's (1991) research framework is 
the dynamic in the 'shifting relations between cultural forms and cognitive 
functions as they are interwoven with the socially textured goals linked to 
practice participation' (p. 19). He describes how the cultural form of body 
counting shifted in function as individuals' levels of economic participation 
changed. 

This phenomenon also occurred in the carpet laying context as the 
helpers gained experience through participating in the practice of installing 
floor coverings. For example, one convention that was present in this 
context was an algorithm for laying tile. The algorithm was an agreed-upon 
procedure for laying tile so that the tile was lengthwise and widthwise 
symmetrical about the center of the room and that fill (partial) pieces 
were at least six inches wide (Masingila, 1992a). However, as the helper 
participated in the tiling process and, as was sometimes the case, became 
an installer, the procedure (form) became a cognitive tool (function) to 
be used for making decisions when complicating factors compounded the 
installation. 

3.3. Interplay Among Various Cognitive Forms 

In studying Oksapmin schoolchildren, Saxe (1985) found evidence that the 
children used out-of-school cognitive forms to bring to bear on in-school 
problems. Other researchers have determined that persons in out-of-school 
contexts may use knowledge gained in school to address problems they 
encounter (Acioly & Schliemann, 1986). Thus, there can be interplay 
between cognitive forms that may be appropriated and specialized in one 
setting and their use in another. 

Saxe (1991) has specified a generalized portrayal (see Figure 5) of how 
cognitive developmental and sociocultural processes are 'interwoven with 
one another in complex ways' (p. 186). Saxe notes: 

As the figure shows, in our daily lives, we are engaged with multiple practices. With- 
in practices, goals emerge that must be accomplished, avoided, or reckoned within the 
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Figure 5. Expansion of four-parameter model (Saxe, 1991, p. 185). 

achieving of larger objectives. Across practices, the understandings we generate in one 
may be appropriated and transformed to structure and restructure goals in another. (p. 186). 

3.4. Linking the Framework to Classroom Practice 

As mentioned previously, although Saxe's intent was to outline a frame- 
work for conducting research to better understand the interplay among 
various cognitive forms through practice, we propose that the framework 
may be useful in thinking about ways to bring about more and deliberate 
interplay between developmental  processes in different settings. The ideas 
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in our discussion below are not direct implications from Saxe's work; 
rather, they are our attempt to connect in-school and out-of-school mathe- 
matics practice by using his ideas and terminology. 

We have discussed ways in which mathematics learning and practice 
often differ in school and everyday contexts. However, individuals do make 
use of knowledge in one context that was situated in another context when 
they view the problem situations as being similar (Stigler & Baranes, 1988). 
We suggest that if we, as teachers: (a) can create situations where students 
experience their mathematics learning and practice in school as similar 
to mathematics learning and practice out of school, and (b) encourage 
students to participate in activities out of school in which the mathematics 
learning and practice may be similar to their mathematics learning and 
practice in school, then these experiences can inform each other. 

3.4.1. Connecting In-school with Out-of-school Experiences 
We propose that there are at least two goals for mathematics classroom 
instruction: (a) to prepare students to deal with novel problems (both real- 
istic and otherwise), and (b) to help students acquire the concepts and 
skills that are useful to solve many of the sorts of routine dilemmas that 
people encounter in life. To achieve (b), it is important that students work 
with concepts and procedures that they can generalize. In out-of-school 
mathematics practice, persons may generalize procedures within a context 
but may not be able to generalize to another context since problems tend 
to be context specific. Furthermore, generalization is not usually a goal 
in out-of-school mathematics practice. However, knowing and using stu- 
dents' out-of-school mathematics practice is important in school situations 
because it provides contexts in which students can make connections. Con- 
nection making is essential in constructing mathematical knowledge but at 
present is often absent in classrooms. 

In order to create in-school experiences similar to out-of-school experi- 
ences, first, the goal structures of activities must be similar for in-school and 
out-of-school activities from which students may construct similar mathe- 
matical knowledge. This means that the curricula include a wide variety of 
problem situations that engage students in mathematizing, which 'embod- 
ies action and refers to the experience of creating and using mathematical 
ideas' (MiUroy, 1992, p. 10). Problems are embedded in situations that are 
realistic, and mathematics practice can be structured in relation to these 
problematic situations. We are not suggesting that realistic contexts are 
used only for applications of mathematical content, but that the learning 
of mathematical content occurs through the students' mathematization of 
realistic problems; reality does not only serve as the application area but 
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Figure 6. Pentagonal room. 

also as the source for learning (Treffers, 1993, p. 89). It also means that 
mathematics is a tool to be used and that procedures and processes are 
learned as they are needed in the midst of accomplishing emerging goals. 

To illustrate how this might be done we use the following problem from 
the carpet laying context. 

1. Find the measurements of this room. The diagram is drawn in a scale 
of 1/4 inch = i foot. 
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2. Find the most cost-efficient way to carpet this room given the following 
constraints: 

�9 carpet pieces are rectangular and 12 feet wide; 

�9 the nap of different carpet pieces must all run in the same direction; 

�9 seams should be placed out of normal traffic patterns whenever 
possible; 

�9 two inches must be added to the length and width measurements 
to allow for trimming and three inches must be added to the mea- 
surement of a dimension if the carpet must extend into a doorway. 
(Masingila, 1995: pp. 164-165.) 

While engaging in solving this problem, the goals that emerge for the 
students are similar to the goals that emerged for the carpet layers when they 
encountered this situation (Masingila, 1992a): measuring for a purpose, 
visualizing different arrangements for the carpet, optimizing. We propose 
that a problem like this could be used to engage students in mathematizing 
the reality (the carpeting problem) and then mathematizing mathematics 
(Freudenthal, 1968). Students can develop a deeper understanding of area 
through their work in (a) decomposing the figure to find the area of regions, 
and (b) decomposing the dimensions and area of a carpet piece in order to 
decide how much carpet is needed to fill the remaining region after one 12- 
ft wide piece is placed. (For more discussion of this problem and solutions 
by a carpet estimator and secondary students, see Masingila, 1995). 

Second, social interactions are an essential part of this classroom math- 
ematics practice. In working individually and collectively to accomplish 
emerging goals, mathematical knowledge is developed within a meaning- 
ful context and cognitive development occurs as students work together 
with peers and teacher to negotiate shared meanings. As Saxe (1991) noted, 
social interaction is a key influence on the emerging goals of an activity. 

Third, in-school activities should make use of cultural artifacts and 
conventions that students can use to interpret problems and make sense 
of them. Saxe and Guberman (1992) used gold-painted base ten blocks as 
'gold doubloons' in Treasure Hunt, a game they used with third and fourth 
grade students that served as a basis for 'both the analysis of children's 
construction of cognitive environments in practices and a conceptualiza- 
tion of children's learning' (p. 3). Students should also be encouraged to 
generate conventions that may be helpful to them in the course of accom- 
plishing their emerging goals. For example, students may invent notation 
to indicate when objects are the same size and shape, in the course of work- 
ing in a measurement context, before they have formalized the concept of 
congruence. 
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Finally, teachers can build on students' prior understandings. All stu- 
dents bring to school mathematical knowledge acquired in other con- 
texts. This knowledge is often hidden and unused by students in school as 
they learn to use the mathematical procedures that teachers demonstrate 
and evaluate (Masingila, 1993a). If teachers engage students in conversa- 
tion about their everyday experiences, listen to them, and encourage and 
observe their informal methods of mathematizing, they can learn much 
about students' prior understandings. Similarly, teachers can encourage 
students to bring to bear their prior understandings by having students: (a) 
create their own problem situations, (b) solve problems in more than one 
way and share their solution methods with each other (Lester, 1989), and 
(c) focus on semantics rather than syntax. 

3.4.2. Connecting Out-of-school with In-school Experiences 
Besides creating experiences in school that may complement out-of-school 
mathematics learning and practice, teachers can guide students in reflecting 
on how in-school learning and practice are used out of school. In a study 
examining middle school students' ideas about their out-of-school mathe- 
matics practice, Masingila (1994) observed that with encouraged reflection 
students were able to note a number of ways that they used mathemat- 
ics outside of school. Sixth- and eighth-grade students were interviewed 
before and after keeping a log for a week in which they recorded their use 
of mathematics. Although students reported ways they used mathematics 
they classified as 'non-school math,' they also indicated many instances 
where they used knowledge they categorized as 'school math.' 

We suggest that an important aspect of connecting in-school and out- 
of-school mathematics experiences is to encourage students to be aware of 
their mathematics learning and practice outside of school. This involves 
having students discuss their out-of-school experiences and what mathe- 
matics concepts and processes they used in those experiences. Additional- 
ly, teachers can have students reflect on how their in-school mathematical 
experiences influence this learning and practice. Teachers can also ask 
students to think of out-of-school experiences that are similar in some 
aspects to mathematical problem situations they have encountered in the 
classroom. Students and teachers can have a good discussion concerning 
similarities and differences between these situations that can help students 
to see the value of mathematics practice in both contexts. We believe that 
part of helping students become mathematically powerful outside school 
is to help them be aware of how their in-school mathematics practice and 
learning can be useful to them in their out-of-school mathematics practice. 
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In both in-school and out-of-school experiences, students participating 
in mathematics practice will become engaged with novel mathematics 
goals that require form-function shifts. Teachers who observe these gradual 
and complex shifts, gain valuable assessment information about students 
and can serve to facilitate the process of students acquiring mathematical 
knowledge to use as cognitive tools. 

4. CONCLUDING REMARKS 

Mathematics learning and practice in school and out of school differ in 
some significant ways. Some of these differences may be inherent because 
a concept is learned and used differently in school than out of school. 
However, we believe that many of the differences can be narrowed by 
creating experiences that engage students in doing mathematics in school 
in ways similar to mathematics learning and practice outside of school. 
The framework Saxe (1991) outlined for examining the interplay between 
sociocultural and cognitive developmental processes targets cultural prac- 
tices as important contexts for study. Our discussion has used ideas and 
terminology from Saxe's framework to propose how more and deliberate 
interplay can be encouraged between these developmental processes by 
focusing on mathematics learning and practice in everyday contexts as 
starting points. We believe that by connecting in-school and out-of-school 
mathematics experiences, student learning and practice in both of these 
situations can be enhanced. 

There are obviously a lot of issues that we have not addressed in our 
discussion of connecting in-school and out-of-school experiences, includ- 
ing implications for curricula, teacher education, assessment. A question 
that we are struggling with and trying to address currently is the following: 
Can all mathematics that should be taught in schools be taught by building 
on and formalizing out-of-school mathematics practice and learning? Cer- 
tainly realistic mathematics education as a theory (Streefland, 1993) and 
as it is being put into form in the Netherlands provides some insight into 
answering this question. 

One way that we are trying to address this question is through a study 
currently underway, in which the first author is examining the everyday 
mathematics practice and learning of middle school students through activ- 
ity sampling, field observations, logs, and interviews. Treffers (1993) notes 
that realistic 'learning strands start with the informal context bound work- 
ing methods of children, in their personal reality' (p. 102). We contend 
that it is important to examine not only children's context bound working 
methods in school settings, but also in out-of-school situations so that one 
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may gain insight into children's out-of-school mathematics practice and 
learning and be able to connect that to their in-school mathematics practice 
and learning. We believe this research will address a need in the research 
knowledge base that has not yet been investigated: 'Even though that field 
[mathematics education] calls for relevance of mathematics learned to 
everyday settings, there has been remarkedly little ethnographic investiga- 
tion of mathematical activities by children in settings outside classrooms' 
(Pea, 1991, p. 490). 
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