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C O N D O R C E T ' S  P A R A D O X *  

1. INTRODUCTION 

Voting systems can produce many results that seem to be paradoxical. Some 
of the more noted paradoxes can be found in Fishburn (1974) and Niemi and 
Riker (1976). None of these paradoxes has received as much attention as the 
paradox attributed to Condorcet (1785). To give some background on how 
Condorcet's paradox can result, consider an example of an election on three 

alternatives {A, B, C} with n voters. We assume that each voter's preferences 
on the alternatives can be represented by a linear ranking on the alternatives. 

That is, no voter is indifferent between any pair of alternatives. We also 

assume throughout that all voters cast votes in agreement with their prefer- 
ences and that their preferences are independent of  the preferences of  other 

voters. 
There are six possible preference rankings on the three alternatives. When 

A > B denotes a voter preference forA over B these six orders are: 

A > B >  . 3 3 C . n l , P l ,  

B > A > C :  3 3 n3,p3, 

B > C >  A:n],pas,  

A > C > B : n ~ , p ~  

C > A > B : n ~ , p  a 

C > B > A : n ~ , p S 6  

where p~ is the proportion of the population with the ith linear ranking rep- 
resenting their preferences on the alternatives. Similarly, n~ is tlhe number of  
actual voters with the ith linear ranking representing their preferences. Let p3 

be the six dimensional vector of  p~'s with ~6= ~ p~ = 1. For an election with 
3 an n voter turnout ~6=~ ni = n. For the linear preference rankings, a given 

set of  ni's is referred to as a voter profile. 
Condorcet's paradox occurs when we obtain cycles in group preference 

when pairwise comparisons are made on the basis of  simple majority voting. 
For example, with a three voter turnout we could have n~ = 1, n4 a = 1 and 
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ns a = 1. In this example A > sB, B > sC and C >  sA where A > sB denotes 
group simple majority preference for A over B. As a result, we find that there 
is no alternative capable of  defeating all other candidates on the basis of  pair- 
wise simple majority elections. If  n~ = 1, n: 3 = 1, n~ = 1, we find that A is the 
Condorcet winner or simple majority winner since A > sC and A > sB. This 
form of the paradox has received the most attention in the literature. This 
paradox has also been referred to as 'cyclical majorities', Teffect Condorcet', 
'Arrow's Paradox', and simply 'the paradox of  voting'. To avoid confusion 
with other paradoxes of  voting, and to give credit to the individual who was 

reported to be the first to discover the paradox, we use the name 'Condorcet's 
paradox' throughout the study. In particular, we specify the form of the 
paradox described above as the no-winner form of Condorcet's paradox. 

A second form of  Condorcet's paradox is the majority cycle paradox. To 

observe this form of  Condorcet's paradox we must consider more than three 
alternatives. For four alternatives {A, B, C, D} there are 24 linear preference 
orders given by: 

A > B > C > D :  4 4 nx ,p l  C > A > B > D :  4 4 /'/13, P13 

A > B > D >  . 4 4 C. n2,p2 C > A  > D > B :  4 4 n 1 4 , P 1 4  

4 4 A > C > B > D : n 4 ,  p 4 C > B > A > D : n l s , P l s  

4 4 A > C > D > B : n 4 , p  4 C > B > D > A : n 1 6 , P I 6  

A > D > B > C :  4 4 4 4 ns, ps C > D > A > B : n 1 7 , p I 7  

A > D > C > B :  4 4 n6,P6 C > D > B > A :  4 4 /'/18, P18  

B > A > C > D : n 4 ,  p 4 D>A>B>C:nlg,P194 4 

4 4 B > A > D > C : n 4 , p ~  D > A > C > B : n 2 o , P 2 o  

4 4 B > C > A > D : n 9 , P 9  D > B > A > C :  4 4 B21,P21 
4 4 4 4 B > C > D > A : n l o , P l o  D > B > C > A : n 2 2 , p 2 2  

B > D > A > C : n ~ I , p ~ I  D > C > A > B :  4 4 n 2 3 ,  P23 

4 4 4 4 B > D > C > A : n l 2 , P I 2  D > C > B > A : n 2 4 , P 2 4 .  

As in the three alternative cases Z 24 p4 ~= ~ p~ = 1 where is the 24 dimensional 
vector of  p~'s associated with the linear preference orders listed above and 

24 ~ i = l  n~ = n. 
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Suppose n 4 = 1 ,  n 4 = 1  and ns 4 = 1 .  Then, the no-winner form of 

Condorcet's paradox does not exist since A > sB, A > sC and A > sD. How- 
ever, a cycle still exists since B > sC, C> sD and D > sB. In this situation we 
have the majority cycle form of Condorcet's paradox. That is, we have a 
Condorcet winner but a majority cycle exists on some set of alternatives 
that does not contain the Condorcet winner. Obviously, if the no-winner 
paradox results then the majority cycle form of the paradox also exists. If 
the majority cycle form of Condorcet's paradox does not hold, then the 
simple majority relation on the pairs of alternatives is transitive. 

The situation in which there are only two candidates can be considered as 
a special case. While there can be no majority cycle on the candidates in the 
two altemative cases, a simplified form of Condorcet's paradox can occur. 
One possibility is that due to ties, there may be no majority rule winner when 
there are an even number of votes. Another possibility is that when absten- 
tions are allowed, the elected majority candidate may be different than the 
overall majority candidate of the population. 

As was noted above, the discovery of this paradox is credited to Condorcet 
(1785), The paradox has had an interesting history of  rediscovery by indi- 
viduals such as C. L. Dodgson [Lewis Carrol] (discussed in Black (1958), 
Huntington (1938) and in a series of articles by Black (1948a, 1948b, 1948c, 
1948d, 1949a, 1949b, 1949c). Thorough reviews of the history of  Condorcet's 
paradox can be found in Granger (1956), Black (1958) and Rfl~er (1961). In 
the time since Riker's (1961) study, a great deal of work has been published 
that relates to Condorcet's paradox. Studies have been concerned with the 
relationship between Condorcet's paradox and factors related to societies 
such as social homogeneity [Jamison and Luce (1972), Fishburn (1973c), 
Abrams (1976), and Fishburn and Gehrlein (1980a)] and voter antagonism 
[Kuga and Nagatani (1974)]. Other studies have examined the relationship 
between Condorcet's parado x and logrolling [Bernholz (1973, 1974), Koehler 
(1975), Sullivan (1976)]. Another area of interest has been the relationship 
between Arrow's Possibility Theorem [Arrow (1963)] and Condoreet's 
paradox [Campbell and TuUock (1965), TuUock (1967) and TuUock and 
Campbell (1970)]. Argument both for and against the use of majority rule 
decisions to determine winners can be found in Tullock (1959),Downs (1961) 
and Sen (1970). A number of studies have been concerned with the propensity 
of simple voting systems to elect the Condorcet winner when there is one 
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[Paris (1975), Ludwin (1976), Chamberlin and Cohen (1968), Gehrlein 
(1981d) and Fishburn and Gehdein (1982)]. Craven (1971)and Rosenthal 
(1975) consider variations of  majority rule which attempt to reduce the 
probability of  Condorcet's paradox. The current study concerns itself with 

the simplest of all questions about Condorcet's paradox, specifically, "How 
likely is the paradox to occur?" 

The discussion of  the likelihood of  Condorcet's paradox takes place on 
two levels. The first level is to consider how often the paradox has occurred 
in practice. The second level addresses analytical representations for the 
probability of  the paradox. When addressing this second level, Williamson 
and Sargent (1967) point out that a distinction must be made between 
developing representations for the probability of  the paradox and finding 
conditions which require that the paradox cannot occur. The latter has 
been studied extensively and a general discussion of  the topic can be found 
in Sen (1970) and Fishburn (1973a). The current study considers actual 
occurrences of Condorcet's paradox and analytical representations for the 
likelihood of the paradox. 

The remainder of  the paper is organized as follows. In Section 2, a review 
is presented of studies which analyze cases where the paradox of  voting have 
occurred or may have occurred. All remaining sections are generally related 
to analytical representations for the probability of  Condorcet's paradox. 
Section 3 is devoted to studies which have been concerned with specific 
forms of analytical representations for the probability of  the paradox.'In this 
section attention is restricted to a finite number of voters with linear orders 
for preferences. Section 4 considers approximations that have been developed 
for the probability of the paradox. Section 5 concerns itself with the prob- 
ability of  the paradox when voters have linear orders for preferences and the 
number of voters is large (approaching infinity). Section 6 considers work 
that has been done on recursion relations for the probability of Condorcet's 
paradox. That is, for a given number of alternatives and voters the paradox 
probability can sometimes be expressed in terms of the probability of the 
paradox with fewer alternatives Or fewer voters. 

Section 7 considers work which concerns itself with the general behavior 
of  representations for the probability of the paradox. The behavior of  import- 
ance is the determination of how the probability of the paradox changes as 
we increase the number of  alternatives or the number of  voters. The final 



CONDORCET'S  PARADOX 165 

section is devoted to the consideration of  representations for the probability 

of Condorcet's paradox as we remove the strict restriction of linear prefer- 
ence rankings. Specifically, we consider the case where abstentions are 

allowed and where preferences other than linearly ordered preferences can 

represent voters' preferences. 

2. ACTUAL OCCURRENCES OF CONDORCET'S  PARADOX 

Actual observations of  either form of  Condorcet's paradox are difficult to 
find. This difficulty results from the complexity of  the voting system that 

would be required to observe the paradox. One procedure to observe the 
paradox would be to require voters to use majority voting on all parts of  
candidates. Another procedure would be to require all voters to rank all 
candidates in order of preference. Under the ranking procedure we would 

have to assume that rankings on pairs of  candidates would remain the same 
as their relative ranking on the overall set of  candidates. Ac, tual election 
results for elections meeting either of  these conditions are scarc, e. Marz et al. 

(1973) consider the number of  pairwise comparisons that must be made to 
be assured that the Condorcet winner is found if there is one. 

Some studies have been conducted to determine if the preferences of  
individuals in a group lead to either form of  Condorcet's paradox. Most 
studies of  this type have proceeded by obtaining the linear preference rank- 
ings on the items under consideration. Jamison (1975) considered both forms 

of Condorcet's paradox while examining the preferences of  two groups of  
individuals on three sets of objects. The two groups consisted of a set of  

67 graduate students and a set of  42 undergraduate students. Each subject 

was required to rank order (no ties permitted) preferences on 9 possible 
presidential candidates, 12 types of  soup, and 11 European cities which 

could be toured. 
For each of  the six special cases in Jamison's (1975) experiment, the 

preference rankings that were obtained became the basis of  a computer 

simulation experiment. The simulation analysis was performed in the same 
fashion for each of the six cases. For each number of  individuals, n, with 
n = {3, 5 . . . . .  15}, select n individuals at random, without replacement, 
from the respondents. For a predetermined number of  alternatives, m, with 
m = {3,4, 5, 6}, randomly select a set ofm alternatives. Reduce the preference 
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rankings for the n individuals by moving all alternatives not in the chosen 

subset. For the n individuals and m alternatives, determine if the no-winner 
form of Condorcet's paradox exists and determine if the majority cycle form 

of Condorcet's paradox exists. Repeat the prbcess 4,500 times and deter- 
mine the proportion of time that each form of Condorcet's paradox results. 

Over all six cases that were considered, the probability of  the no.winner 
form of the paradox generally ranges between 0.02 and 0.15 while the 
majority cycles form of the paradox generally ranges between 0.02 and 0.40. 
The general trends in the simulation results suggested that the probability of  
observing either form of Condorcet's paradox is minimized when there are 
five voters. For all numbers of alternatives considered, the probability of  
observing either form of the paradox tended to decrease monotonically as 
the number of  voters was increased or decreased from five. 

Niemi (1970) examined voting results from university elections in which 
individuals were elected to committees. In these results, voters were not 
required to vote for all candidates. Voters were required to rank only as 
many candidates as they wished. All unranked candidates were assumed to 
be tied with each other at the bottom of each individual's preference order. 
That is, if an individual responded with A > B > C in a five-candidate elec- 
tion, then the remaining two candidates would be assumed to be tied with 

each other and each would be ranked below C. 

Using these preference assumptions, Niemi (1970) considered' actual 

election results for 22 elections. These elections were held on three to 36 

candidates with the number of  voters ranging from 81 to 463. With this 
modification in the assumption of linear preferences, ties could now exist 
in pairwise comparisons. There were 18 elections with six or fewer candidates. 
Of the 18 elections, there was one strict occurrence of  majority cycles form 

of the paradox and three occurrences of the majority cycles form of the 

paradox which involved ties. In all four of these elections, there would have 
been no strict Condorcet winner. That is, there was no candidate that could 
defeat all remaining candidates in majority voting when ties are not con- 
sidered a victory. The results suggest that the majority cycles form of the 
paradox tends to become more likely as the number of  candidates involved 
in the election increases. 

Gehrlein and Bonwit (1981) obtained the pairwise preference comparisons 
of  juveniles for time spent in various activities: with their family, reading, 
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watching television, in church, and with friends. The 154 subjects were given 

the option of not responding on any of the 15 pairs presented to them. 
During the test, 19 subjects gave responses that contained cyclic preferences 

in their individual preference ranking. These 19 subjects were removed from 
consideration. The pairwise responses of the remaining 135 subjects gave a 

clearly transitive result on the basis of majority comparison. 
Dobra and TuUock (1981) considered the results of  a departmental elec- 

tion for a new chairman at a university. Pairwise Comparisons were deduced 

from 1 to 10 scale measurement that voters gave to each of 37 candidates. 
Since an individual voter could give the same score to two candidates, ties 

were assumed in the preference rankings. On one criterion, six voters found a 
clear Condorcet winner. On a second criterion, four voters found a candidate 
that could not be defeated by another candidate on the basis of  pairwise 
comparison, but this candidate did tie with three other candidates when 
compared to them. 

Riker (1958) examined congressional voting results for the Committee 
of the Whole on the Agricultural Appropriation Act of  1953. In the original 
bill, $250 million was to be provided to the Soil Conservation Service. Four 

amendments were put forth to modify the appropriation to $142,410,000; 
$100 million; $200 million; and $225 million. Because of the nature of  the 

process used in voting on the amendments, it cannot be deFmitely determined 

that the majority preferences of the group contained a majority cycle. How- 
ever, Riker (1958) argues convincingly that some of the preferences on 

budgeted amounts that are given in the amendments could have been involved 
in a majority cycle. That cycle may well have included the winning option, 

which was the original bill. Riker (1958) estimated that the House of Rep- 

resentatives and Senate may have voting results which contain majority voting 
cycles in more than 10 percent of the cases when two or more amendments 
are considered with the original bill. By the rules of the House of Represen- 

tatives, no more than four amendments may be considered at one time, along 
with the original bill (five alternatives for monetary bills as described above). 

Blydenburgh (1971) examined congressional voting results on two major 
revenue bills when roll-call voting was used to vote on amendments to the 
proposed bills. By requesting the imposition of the closed rule, the Ways 
and Means Committee can prevent the addition of amendments to bills from 
the floor. Since this request is usually made, few observations of multiple 
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alternative elections are observed in major revenue bills. The Revenue Acts 
of 1932 and 1938 were both voted on without the imposition of the closed 
rule. Three amendments were attached to the Revenue Act of 1932 and four 
amendments were attached to the Revenue Act of 1938. Blydenbugh (1971) 
uses the roll-call results recorded on the votes and attempted to reconstruct 
the preferences of the voters on various forms of taxation. The results of  

voting on the 1932 Revenue Act suggest that majority preference probably 
cycles on three available forms of taxation that were considered (Excise Tax, 
Sales Tax and Income Tax). 

The results of voting on the 1938 Revenue Act resulted in a comparison 
of the original act, the act with the deletion of a corporate tax, and the act 

with the addition of an excise tax on pork. By reconstructing likely prefer- 
ences on the basis of the roll-call votes on the amendments, the majority 
preference relation did not cycle. 

Bowen (1972) examined roll-call votes from bills considered by the 
United States Senate. Only those bills were considered which had one or 
more amendments attached to them. For the one amendment case, the bills 
considered allowed for three alternatives: the original bill, the amendment 
bill, and the status quo (neither). Two amendment bills have five alternatives: 
the original bill, the bill with the first amendment, the bill with the second 
amendment, the bill with both amendments, and the status quo. 

Based upon the roll-call vote, Bowen (1972)made some assumptions to 
find estimates of the p~n probabilities for the m alternative cases. For bills 
which contained amendments between 1958 and 1966, 98 had a probability 
of no Condorcet winner that was not significantly different than zero. There 
were 13 which had a probability of no Condorcet winner that was signifi- 
cantly different than zero. Significance was determined with the probability 
of a type-one error equal to 0.05. 

The notable cases showing a high probability of exhibiting the no-winner 
form of Condorcet's paradox are the Wheat Act of 1960 (3 amendments 
with probability 0.940), Housing Act of 1960 (3 amendments with prob- 
ability 0.460), Food and Agriculture Act of 1962 (9 amendments with 
probability 0.965), the Economic Opportunity Amendments of 1965 (16 
amendments with probability 0.630), and the Alternate Crops Act of 1966 
(5 amendments with probability 0.390). The results generally suggest that it 
is very unlikely that the no-winner form of Condorcet's paradox occurs with 
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two o r  fewer amendments, or with five or fewer alternatives in Senate voting. 
The probability is more likely, but still small when more alternatives are 
considered. 

Weisberg and Niemi (1972) consider elections held in the House of Rep- 

resentatives and the Senate. Their analysis generally follows the format of 
Bowen's (1972) study. The major difference in the two studies concerns the 
assumptions made in estimating the p ~  values. Weisberg and Niemi (1972) 
use a more sophisticated model to deduce their version of the PlV's from the 
roll-call vote results. Their results generally produce substantially lower esti- 

mates for the probability of the no-winner form of Condorcet's paradox. For 

example, Weisberg and Niemi estimate the probability of no-Condorcet 

winner to be 0.198 for the Wheat Act of 1960. 

3. ANALYTICAL REPRESENTATIONS FOR F I N I T E  VOTERS 
WITH LINEAR ORDERED PREFERENCE 

To describe analytical representations for the probability of Condorcet's 
paradox we can just as well consider the probability that the paradox does 

not exist. For the no-winner form of Condorcet's paradox, let: P(m,n,p ra) 
be the probability that there is a Condorcet winner for m alternatives with 
n voters and the m ! dimensional vector of  probabilities, pro, attached to the 
linearly ordered preference relations. Similarly, let pt(m, n,p ra) be the 

probability of a transitive simple majority relation for m alternatives with 
n voters and probability vector pm associated with the m ! linear preference 

orders. It is generally assumed that voters act independently and that they 
vote according to their true preferences. Unless it is stated to the contrary, 
n is assumed to be odd and the election proceeds by taking voters with 
replacement after their preferences are noted. 

It is apparent that P(m, n, pra) and pt(m, n, prn) will depend on m, n and 

pro. Calculated values for these probabilities frequently make some simplify- 
ing assumptions about pro. The most common assumptions are: 

Impartial Culture Condition (IC) - Under this condition, each of 
the m ! linear preference orders are assumed to be equally likely 
sop~ n = l/m! f o r / =  1 , 2 , . . .  ,m! .  
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Impartial Anonymous Culture Condition (IA C) - Under this con- 
dition, m is fixed and all combinations, with repetition of orders 
allowed, of n linear orders are assumed to be equally likely. This 
condition cannot be described for any fixed pro. 

Dual Culture Condition (DC) - Under this condition, we require 
pm = p~n when the ith and ]th linear preference orders are the 
duals of one another. The dual of an order is obtained by reversing 
all preferences on pairs in that order. 

Let P(m, n, IC), P(m, n, IAC) and P(m, n, DC) define P(m, n, pra) where 
pm meets the conditions of impartial culture, impartial anonymous culture, 
and dual culture respectively. Def'me pt(m,n,  IC), pt(m,n,  IAC) and 
pt(m, n, DC) in a similar fashion. Many studies were conducted to find 
computer simulation estimates for P(m, n, IC) and pt(m, n, IC). These simu- 
lation studies were conducted by Campbell and Tullock (1965), Klahr (1966), 
WiUiamson and Sargent (1967), Pomeranz and Weft (1970). Buckley and 
Westen (1979) present simulation estimates of P(m, n, IC) for even values 
of n. Some complexities that arise for the case of even n will be developed in 
detail in Section 7. Computer enumeration was used to fred P(m, n, IC) for 
m and n up to seven by Sevcik (1969). 

The results of these simulation studies give a good general idea of the likeli- 
hood of Condorcet's paradox under the condition of impartial culture. Nat- 
urally, exact calculations for the probability of Condorcet's paradox are more 
appealing than simulation estimates. A number of approaches were developed 
to obtain exact analytical representations for P(m, n,pm). These studies 
included Campbell and Tullock (1966), Garman and Kamien (1968), Niemi and 
Weisberg (1968), Hansen and Prince (1973), and DeMeyer and Plott (1970). 

The most tractable representation for P(m,n,p m) for fixed m equal to 
three or four is found in Gehrlein and Fishburn (1976b) where it is shown 
~at 

(t95 "-]- p 6 )alp3a2p 4a3(p l -}- p2 )a4 .a t- _}.]" 
p(3, n,p3) = ~3 n! i+ (p2 + p4)alpla~p6a3(p3 + ps)a, 

al[a2!a3!a4! | [+  (Pl-F'Pa)alpsa2p2a3(p4 + P6) a" 

where the superscript on the p~ values have been removed to simplify notation 
and where ~3 is a triple sum with indicies al, a2 and a 3 and limits 
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0 ~< al ~< (n -- 1)/2 

O<~a2<~(n-- 1)/2-- al 

0 <<.a3<~(n-- 1 ) / 2 -  al 

with a4 ------ n - -  t/1 - -  (/2-- a3- 

The representation for P(4, n, p4)  is given in terms of the probability that 
a specific alternative is the Condorcet winner. Let PA(4, n, p4) be the prob- 
ability that alternative A is the Condorcet winner. Then 

aij 
pA(4, n,p4) = ~,3~4n! ~, Pij 

i=1,2,3,4 aft! 
where "/= s, 6 

PlS = P410+ p42+  P146 + P148 + P~2 + p44 

P 16 = p415 "{- p4 P2s = p41 + p41. 

P26 = p4 + p~ Pas = p 4 3 +  P~, 

Pa6 = /943 q- P414 P45 = P419 -t- P~O 

and y4 is a four summation function with indices als,a2s, a3s and a4s and 
limits 

O<als~<al  O~<a2s<a2 

0 ~< aas <~ Min {as; (n -- 1)/2 - -  a l s  - -  a2s } 

0 ~<a4s ~< Min {a4; (n - 1)/2-- als-- a2s-- aas}. 

Here ai6 = a I - -  als and Min {x; z} is the minimum of the two wtlues x and z. 
Representations for e B ( 4 , n , p 4 ) , e c ( a , n , p  4) and PD(4,  n , p  4) are 

not really needed since they can be calculated by the representation for 
PA (4, n, p4) with a suitable change in subscript for the p4's. That is, to find 
Pn(4, n, p4) use the representation given above but interchange p~ values for 
pairs of linear orders that are identical except that A and B are interchanged. 
Specifically, we would interchange values for p~ and p~, for p~ and p4, for 
p3 4 and p~, and so on. Then we simply use the fact that 

P(4, n,p 4) = PA(4, n,p4)+ PB(4, n,p4)+ Pc(4, n, p4)+ 

+ co (4  , n, p4). 
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Studies have also been conducted to consider representations fo r / (m,  n, p4) 
for fixed n. These studies have been restricted to the condition of impartial 
culture. Gehrlein and Fishburn (1979a) use a variation of a representation 
developed by DeMeyer and Plott (1970) and May (1971) to show that 

P(m,3, IC) = ~,2 (m--  I - - m l ) ! ( m "  l - -m2)!  
m!(m--  1 - - m l - - m 2 ) ! ( m l +  m2+ 1) 

where ~2 is a double sum with indices ml and m2 and limits 

O < m ~ < m - -  1 O < m 2 < m -  1 - m ~ .  

Similarly, we Fred a relationship for P(m, 5, IC) is given by 

P(m, 5, IC) = ~6 b4!(m -- 1 --b4)!bs!(m -- 1 --bs)!b6l(m -- 1 --b6)! 
bl !b2 !ba !b,2 !bla !b2a !m,! (m!)2 x 

x a(m*, a l, a=) 

where ~6 is a six summation function with indices bl,  b2, b3, b~2, b~a and b2a 

and limits 
O <~bl <~m-- 1 

O<~b2 <~m - 1 -  bl 

O<~ba <~m-- 1-- bl--  b2 

O <~ bl2 <~ m - 1-- bl--  b2-- ba 

0 <~ bla <~ m -- 1 -- bx -- b2-- b3-- b12 

0 <~b23<~m-- 1-- bl-- b2-- b3-- b12-- bla 
with 

b4 = bl + b~2 + bla bs = b2 + b12 + b23 

b6 = b3 + bla + b23 

m* = m--b1  ~ b 2 - b a - b 1 2 - b l a - b 2 3  

al 
Q(m*,al,a2) = ~, a l ! ( m -  1 - m * - o t ) !  

affio (al--  ot)!(m-- m*)!(t~ + a2+ 1) " 

Gehrlein and Fishburn (1979a) also developed similar representations for 
/ (m,  7, IC) a n d / ( m ,  9, IC). Computationally efficient forms fo r / ( 3 ,  n, IC) 
and / ( 5 ,  n, IC) that do not have an elegant form were also developed. These 
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relations were then used to generate P(m, n, IC) values for odd n up to 35 

for m equal to 3 and 5, for odd m up to 449 for n equal to 3 and odd m up 

to 39 for n equal to 5. Other calculated values for odd n up t o 4 9  and odd 
m up to 25 are shown as five digit entries in Table I. Entries for even rn are 

not listed since they are directly obtainable as a linear combination of the 
P(m i, n, IC) for all odd m i less than m. This linear combination relation will 

be developed in detail in Section 6. Gillett (1977) calculated the probability 
of a unique Condorcet winner for three alternatives under impartial culture 
with an even number of voters for n up to 20. Gillett (1979) calculates 
P (3 ,n ,p  3) for some interesting p3 other than impartial culture. Gillett 
(1980b) used simulation in an attempt to find the p3 which minimize 
P(3, n, p3) for various n and conjectured that P(3, n, p3) is minimized by 

pl a = pa4 = ps 3 = �89 or p~ = p~ = p6 a = ~. Buckley (1975) proved Gillett's" 
conjecture true for the special case of n equal to three. 

A study by Gehrlein and Fishburn (1976a) developed an analytical rep- 
resentation for the probability of a Condorcet winner under the impartial 

anonymous culture condition for three and four alternatives with odd n 

15 (n + 3) 2 
e(3,  n, IAC) - 

16 (n + 2)(n + 4) 
and 

7n 2 + 42n + 71 
e(4 ,  n, IAC) = 

8 (n + 2)(n + 4) " 

The development of  representations for pt(m, n, pro) remains open. Other 

than a solution for pt(4, o% IC) that will be given in Section 5, the only rep- 

resentation for pt(m,n, pm) is given by DeMeyer and Plott (1980). This 

representation involves a 24 summation function which makes it generally 
intractable for use, even with a high-speed computer. DeMeyer and Plott used 

their representation to calculate some values of pt(4,  n, p4) under the assump- 
ton of impartial culture. Due to the complexity of their representation, the 
only results obtained were pt(4, 3, IC) = 0.8298 and pt(4, 5, IC) = 0.7896. 

4. APPROXIMATIONS FORP(m,n ,p  m) 

All of the analytical representations for P(m,n,p ra) described in the last 
chapter become very difficult computationally for all but relatively small 
values of  m and n. This leaves open the question of how we might obtain values 
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for P(m, n, pro) if m and n are not relatively small. One approach would be 

to resort to computer simulation. A second approach, the development of 
approximations, is the topic of the current section. 

If  we limit attention to the restriction of the impartial culture condition, 

Gehrlein and Fishburn (1979a) give an approximation for P(m, n, IC) as 

9.33 
e(rn,n, I f )  - + (0.63) tm-3~2 + 

m + 9.53 

83.23 
ha [1 + (0.55) <m- 1)'2] 

rn + 154.6 
n -  1 + 0.9 (m- 1)/2 

This approximation was developed to predict all known values of  P(rn, n, IC) 
to within 0.5 percent accuracy for all known exact values of P(m, n, IC)with 

m less than 50. This approximation was used to generate the three decimal 
place entries in Table I. 

The development of an approximation for P(m, n, pro) for general pm 
becomes difficult simply due to the fact that there are m! dimensions to 
pro. As a result, attention to an approximation for P(m,n,p m) has been 

limited to m equal to three. All studies considering the general problem have 
suggested that we appeal to the limiting behavior of P(m, n,p m) to avoid 
the combinatorial aspects of calculation. A number of studies have addressed 
this issue, including Garman and Kamien (1968), Niemi and Weisberg (1968), 
DeMeyer and Plott (1970), Weisberg and Niemi (1973) and Gillett (1980a). 
However, it was May (1971) who spelled out the procedure for obtaining the 
limiting behavior of P(m, n, pro) to use as an approximation. To obtain May's 
approximation, define the following variables: 

xl = p ~ + p a - - p ~ + P ~ - - P ~ - - P 6 3  a2 = nx2 

x2 = p ~ - - P ~ + P ~ - - P 4 3 + p s  a - p ~  al = nxl 

x~ = --p~--p~--p~ + p~ + p] + p~ a3 = nxa 

Q~ = n[1-(ai/n)2], i = 1 ,2 ,3  

bH = b22 = ba3 = 1 

b12 = b2x = p~_p~_.a~,a  t,4"a~a~,s +pa6 
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b2a = ba2 -- -- Pal + v2"a _ t'a"3 _ ~'4~3 + pa s _ p~ 

bla = b31 = -- p~-- P~ + p~ + p~--  p~ -- p~ 

rij = [Cov(aiaj)l/(QiQi), i , / =  1 ,2 ,3 ,  a n d i e j .  

~i = Xi(1 --Xff) -1/2" 

Using these definitions, we obtain estimates for the probability that each 
alternative (A, B, C) is the Condorcet winner as 

CA(3, n, p3) _ L(-- nl/21h, nl/21r3, - r13) 

PB(3 , n, pa) _ L(-- nl/27r2, nl/2rrl, - r12 ) 

P c ( 3 , n , p  3) "- L ( -  nl/2rr3,nX/27r2, - r23) 

where L(h, k , r )  is the bivariate normal probability with parameters h, k 
and r. By definition, the probability L(h, k,  r) is given by 

f-f  1 exp[ dx dy. 

This function is not generally integrable, but extensive tables of ~,alues of 
L(h, k, r) have been compiled. For example, see National Bureau of Standards 
(1959). May (1971) showed that the limit of accuracy of this approximation 
was of order 1In so that it becomes exact in the limit of n. The fact will be 
used extensively in the next section. 

Another approximation was developed by Gehrlein and Fishburn (1979a). 
Using a result of Bacon (1963), an approximation for P(m, n, IC) is found in 
the limit of voters (n -+ ~)  with 

[ ( m - 1 ) / 2 - - ( ~ k ~ . l ) [ O l ~ ) ] ( m - - 1  II'=-ol ( 1 - - 4 i 0  P(rn,oo, IC) --" m2 -ra§ 1+ ~=1 

where 0 = [sin -1 (1[3)]/1r. The problem of finding representations for the 
probability of Condorcet's paradox in the limit o fn  has received much atten- 
tion in the literature and is the topic of the next section. 

Finally, approximation methods have been used to find the probability of 
a tied majority election for two candidates with an even number of  votes 
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[Beck (1975), Margolis (1977) and Chamberlain and Rothschild (1981)]. To 

describe these results, let P(2, n, p) be the probability of a majority winner 
on two alternatives {A,B}  when there is a probability p of voter preference 
A > B and a probability 1 - p of voter preference B > A. 

Chamberlain and Rothschild (1981) show that for even n, 

P(2, n, �89 - 1 -- (lrn) -1/2 

and i fp  r �89 

P(2, n , p )  "- 1 - - P ( 2 , n , 1 ) e  nc 
where 

c = 2 log (2) + log (p) + log (1 -- p). 

More sophisticated forms for obtaining voter profiles are also considered 

in Chamberlain and Rothschild (1981), but they are not presented in the 
current study. 

5. ANALYTICAL REPRESENTATIONS FOR L I M I T I N G  CASE 
IN VOTERS WITH LINEAR PREFERENCE ORDERS 

All of  the work which deals with precise analytical representations for 
Condorcet's paradox has centered around the use of limiting distributions. 
Specifically, some sets of variables are defined and the specific probability 
we are seeking is found as a probability from a multivariate normal distri- 
bution on the defined variables as n goes to infinity. A good background in 
limiting distributions and multivariate normal distributions (;an be found 
in Johnson and Kotz (1972). The approximation developed for P ( 3 , n , p  3) 

in Section 4 follows this procedure. That is, the variables x~,x2 and x3 
were defined and PA(3, n, pa), PB(3, n, pa) and Pc(3,  n, p3) were described 
as a bivariate normal probability with parameters given in terms of the 

xi terms. 
The first representation of Condorcet's paradox for the linaiting case in 

voters was given by Guilbaud (1952). Guilbaud was concerned with the prob- 

ability that there was a Condorcet winner on three alternatives in the limit 
of voters under impartial culture. He stated, without proof, that 

P(3, ~,  IC) = 43- + ~rr sin -1 (~) 

which is evaluated as 0.91226. 
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We reiterate that May's approximation procedure becomes exact in the 
limit o f  n and can easily obtain Guilbaud's result. Using May's method with 
p~ = 6  ! f o r / =  1, 2, 3, 4, 5, 6, we find 

X l  = X2  : X3 = a l  = a 2  = at3 = 0 

Q~ = Q~ = Q2 = n 

b n  = b22 = b33 = 1 

b12 = b21 = bz3 = b32 = b13 = b31 = -  

Coy (ala2) = Coy (ala3) = Coy (a2a3) = --  n/3 

/ '12 ~-- r13  ~- r23  = - - ~  f f l  : i f2  = i f3  = 0 .  

Thus, 
/ ' (3,  0% 1C) = 3L(0, 0, ~). 

In the case that L(h, k, r) has the special form of  h and k equal to zero, 
we can appeal to Sheppard's Theorem of  Median Dichotomy [Kendall and 

Stuart (1963)] which states 

L(0, 0, r) = ~ + �89 sin -t  (r). 

Guilbaud's result now follows in a straightforward manner.  

May (1971) and Weisberg and Niemi (1973) both pointed out that the 

sign of  the ~q's will determine the value o f / ( 3 ,  0% p~). Consider the value of  
PA(3 ' 0% p3). Similar observation will hold by symmetry for PB(3, 0% p3) and 

Pc(3 ' 0% pS). Since we require n --> 0% May's results require that: 

(1) Iflrl>Oand~r3>O, thenPa(3,n,p 3) = L ( - ~ 1 7 6  = O. 

(2) I fna>Oandlr3<O, thenPa(3, n,p 3) = L ( - - ~ 1 7 6 1 7 6 1 7 6  1. 
(3) I f lr l<Oandlr3>O, thenPA(3, n ,p 3) = L(oo, oo , - r13 )  = 0. 
(4) I fn l<Oandlr3<O,  thenPa(3,n,p 3) = L(oo,--oo,--r13) = O. 

These results require that if  none of  the Ir/'s are zero, then the probability 
of  observing the no-winner form of  Condoreet 's paradix is either 0 or 1 for 
any p3 vector. Forms like that  shown in Guilbaud's result only exist i f  both  
of  the rr{s under consideration are zero. 

(5) If  rrx = 0 and rr3 = 0, then PA(3, oo, p3) = L(O, 0,--  r13 ) = ~ + 

�89 sin -1 (-- r13 ). 
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If  only one o f  the lri's imder consideration is zero, we appeal to additional 

information about L(h, k, r) [Srivastava and Kharti  (1979)]. Specifically, 

L ( 0 , -  0% r) = L(--  0% 0, r) = �89 Thus 

(6) I fTr l=OandTr3>O, thenPA(3,oo, p3) = L(0,  oo,--r13) = 0. 

(7) I fTr l=OandTra<O, thenPA(3,oo, p3 ) = L ( 0 , - - o o , - r 1 3 )  -- �89 

(8) If ~r 1 > 0 and 7r3 = 0, then PA(3,0% p3) = L ( -  0% 0, - -  r la)  = �89 

(9) If~rl <OandTra=O,  t h e n P A ( 3 , o ~ 1 7 6  = O. 

Since the nine specific situations for 71"1 and ~r 3 listed above cover all 

possible events, the determination of  P(3, ~o, p3) reduces to determining the 

signs of  the lr i values and finding rij if  the appropriate rri's are equal to zero. 

Gehrlein (1978) showed that lr 1 = 71"2 = 71"3 m -  0 i f 'and only i f p  3 meets the 

dual culture condition. Fishburn and Gehrlein (1980a) showed that  with 

the dual culture condit ion P(3, 0% DC) is given by 

P(3, 0% DC) = ~ + �89 -1 [2(pl  + P2--  P3)] 

+ sin -1 [2(pl + P3--  P2)] + sin -1 [2(P2 + P3--  PJ)]}. 

A further study by  Gehrlein (1981) found the analytical representation for 

four alternatives in the limit of  voters under dual culture as 

where 

f1 = 2 ~ 1 + P 2 +  

fz = 2 [ p I + p 2 +  

f3 = 2 [ P l + P 2  + 

f4 = 2 [ P 4 + P 6 +  

fs = 2 [P4+P6  + 

f6 = 2[]74 + P6 + 

f7 = 2 [ p 2 + P s +  

f8 = 2 [ p 2 + p s +  

f9 = 2[/02 + Ps + 

12 
P(4, 0% DC) : �89 + ~rr ~ sin -I (fi)  

i=1 

P3 + P4 + P5 + P 6 -  P 7 -  P8 + P9--  P n  --  P13 + Pls]  

P3 + P4 + PS + P6 - -  P7 - P8 --  P9 + P u  + Pla --  Pls ] 

P3 + P4 + P5 + P6 -}- P7 & Pa - P 9 - - P l l - - P l 3 - - P l 5 ]  

P7 & P8 + P9 + P u - - P l - - P 2  + Pa--Ps  + P13-- Pls]  

P7 + Pa + P9 + P n - - P ~ - - P 2 - - P a  + Ps--PI3 + Pls] 

P7 -}- P8 + P9 + P u  + Pl + P2-- Pa-- Ps--  Pla-- Pls] 

Pa + P n  & P13 & P15 + Pl  - -  P 3 -  P4--  P6 + PT-- P9] 

P8 + P u  + P13 + Pls - -  Pl  --  Pa - -  P4 + P6--  P7 + P9] 

P8 & P u  + P13 + P15-- Pl & P3 + P4- -P6- -PT- -P9]  . 
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f9 = 2[p2 + Ps + Ps + Pn + Pla + Pls-- Pl + Pa + P4-- P6-- PT-- P9] 

flo = 2[PI + P3 + P7 + P9 -k P13 + PlS + P2 -- P4 -- Ps -- P6 + Ps -- Pli] 

f n  = 2[pl + Pa+ PT+ P9+ Pla+ Pls--P2+ Pr  Pll] 

f12 = 2[pl + Pa+ PT+ Pg+ Pla+ Pis--P2--P4 + Ps+ P6--Ps--PI1].  

For further discussion, let q~g(r) describe a probability on a set of g 
variables from a multivariate normal distribution. The specific probability 
is that the g standardized variables are all positive. In addition, the terms in 
the correlation matrix for the multivariate normal distribution are all assumed 
to be equal to r. Niemi and Weisberg (1968) showed that the probability of  a 
Condorcet winner in the limit of voters under impartial culture is directly 
related to the r probabilities. The specific relationship that they found 
was that 

P(m, oo, IC) = m~m- t ( ] ) -  

Guilbaud's result follows directly from this general result. In an unrelated 
study, Ruben (1954) calculated values of ~g(]) for g up to 49. These values 
were used to calculate the P(m, 0% IC) values for odd m up to 49 in Table I. 

Using Niemi and Weisberg's representation for P(m, 0% IC), Gehrlein and 
Fishburn (1978a)extend Guilbaud's result to show 

/'(4, 0% IC) = �89 + 3/zr sin -1 (1) 

P(5, o% IC) = s + l~Ssinq(~)+ 15 (1/a 
sin -1 [ot/(1 + 2ot)] 

~4~" 2~ "---~ -o (1 -- ot2)l/2 dot. 

45 sin -1 
P(6, oo, IC) = ~ + ~--~ sin- '(])  + -|l/a 

lot/(1 + 2ot)] 
dot. 

All of the probabilities considered to this point have been conditional prob- 
abilities. That is, we have representations for the probability of Condorcet's 
paradox given a specific pm vector. Buckley (1975) introduced the concept of  
an unconditional probability of Condorcet's paradox. For this unconditional 
probability we require that there be a probability distribution over the pm 

vectors. The unconditional probability of the paradox is then the expected 
probability of Condorcet's paradox where the expectation is over all possible 
pm vectors. Specifically, let P(m, n, pro) be the unconditional probability that 
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there is a Condorcet winner, where we assume that all pm vectors are equally 

likely. Gehrlein (1981a) used May's (1981) results for a direct proof that 

P(3,0% p3) = is 16" 

In a follow-up study, Gehrlein (1981 b) proved that 

P(3, n, p3) = P(3, n, IAC) 

if all vectors are assumed to be equally likely to occur. 
Other results dealing with the limiting case of voters for P(m, n, IC) have 

been found. May (1971) proved that p(oo, 3, IC) = 0 and that P(~, 0% IC) = 
0. Bell (1978, 1981) extended May's result that p(oo, 0% IC) --= 0 and con- 
sidered the probability that k elements were in the.top cycle. That is, we 

know that there is no Condorcet winner. However, let k be the smallest 

integer such that we can find a set of k candidates that are in a cycle of 
length k and such that all of the candidates in the set defeat all remaining 

candidates on the basis of  majority rule. Bell (1978, 1981) proved that 
the probability that k is less than m goes to zero as m ~ oo and n ~ co 
Therefore, as m ~ oo and n ~ oo under impartial culture, the smallest k must 

equal m. 
An additional result of Gehrlein and Fishburn (1978a) deals with the 

probability of a transitive simple majority relation on four alternatives in the 

limit of voters under the condition of impartial culture. It is shown that 

pt(4 ' 0% I f )  = ~ + 6/Tr2f~/3 
COS -1 [- ~/(1 2a2)] 

---2)w 

Numerical integration shows that pt(4,  0% IC) is approximately equal to 

0.73946. It follows that, for four alternatives in the limit of voters under 
impartial culture, a Condorcet winner exists while we observe the cycles 
form of Condorcet's paradox with probability P(4, 0% IC) --pt(4, 0% IC) = 
0.08506. 

Blin (1973) proved that pt(m,o% I C ) ~  0 for large m. WiUiamson and 
Sargent (1967) showed that pt(m, 0% IC) was generally quite small for m at 
all large but showed that pt(m, 0% pra) increased dramatically as pra changed 
even slightly from the impartial culture vector. The specific change they con- 
sidered was to have the pm for one linear preference ranking increase while 
each of the other (m! -- 1 )p~ ' s  decreased equally. 
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6.  R E C U R S I O N  R E L A T I O N S  F O R P ( m , n , p  m) 

All work on recursion relations has been concerned with the probability of  a 

Condorcet winner. The recursion relations attempt to Fred representations for 
P(m, n ,p  m) in terms of smaller rn or n. The first published recursion of this 

type was given by May (1971) without proof. May's Theorem restricted 
attention to the impartial culture condition and states that 

P(4, n, IC) = 2P(3, n, IC) -- 1 

for odd n. Fishbum (1973b) published a simple proof of  May's Theorem. 
Gehdein and Fishburn (1976b)presented a result which generalizes this 

recursion relation result for all even m. May's theorem is a special case of  this 
general result. For even m and odd n, there are coefficients C m such that 

(ra - 2 ) / 2  

P(m, n, IC) = Cg + ~ Clnp(2i + 1, n, IC). 
i = l  

Therefore, for even m, P(m, n, IC) is expressible as a linear combination of 
P(m i, n, IC) for all odd m i less than m. Table II shows the C/n terms of the 

recursion relation for P(m, n, IC) for m up to 12. The coefficients for m up to 

24 can be found in Gehrlein and Fishburn (1976b). It was also shown that 
recursion relations of  the linear combination type do not exist for even n. 

These coefficients remain the same for recursion relations for P(m, n, IAC) 
with even m and odd n. 

T A B L E  II 

C/m coefficients of recursion relations for P(m, n, IC) 

,n cp  c ?  c ?  cp  cp  c~  

4 - - 1  2 

6 3 - -  5 3 

8 - -  17  2 8  - -  14  4 

10 155  - -  2 5 5  1 2 6  - -  3 0  5 

12 - - 2 0 7 3  3 4 1 0  - -  1 6 8 3  3 9 6  - -  55  

The notion of recursion relations for P(m, n, pro) based on smaller n was 
developed by Gillett (1978) for m equal to three and four. To develop these 
recursion relations we reintroduce the definition ofPa(rn , n, pro) as the prob- 
ability that alternative A is the Condorcet winner. For three alternatives we 
drop the superscripts from the p~'s for convenience and find for odd n that 
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Pa(3,n,p 3) = Pa(3,n -- 1,p  3) + 

- -  I k - -  l - - C  1 (n -- 1)! (Ps + P6) c' (Pl + P2) k-c~ 
+ E  • c1=0 c 2 = 0  CltC2!(k--Cl)!(k--C2) t 

k - C  t C 2 X [(PI + P2 + P3)pC~p~ -c~ + (Pl + P2 + P4)Pa P4 ] + 

k ( n - -  1)!(ps +p6)C~p~-C~p~-C~(Pl + P 2 )  C~+1 + Z  
c ,  =o C1 ! (k  - C~ )! (k  - C~ )! CI ! 

where k = (n --  1)/2. 
Similarly, when n is even PA(3, n, p3) is the probability that A is the 

unique Condorcet winner and 

PA(3, n,p a) = "PA(3, n -- 1 ,p3) _ 

l,-1 k - ~ c ~  (n -- 1)!(ps +p6)C~(Pl -t-P2) k-c2+l 
- ~  ,., • 

c,=o c ~ = o  C~!C2!(k--C1)!(k--C2 + 1)! 

k-C l 12 2 X [(p4+ps+p6)pC2pk4-C~+(paq-psq-p6)p3 P4 ]--  

- -  ( P 3  -t-/9 4 -t- P5  -1- P6) X 

k (n -- 1)!(ps +p6)Ctp~-C~p~4-Cl(Pl + P 2 )  c~+1 

c ,=o  C l ! ( g  - C l ) ! ( g  - C l ) ! ( c ~  + 1)! 

By interchanging subscripts on the p3 vector, as described in Section 3, we 
can obtain recursion relations for PB(3, n,P 3) and Pc(3, n,Pa). The overall 
recursion relation for P(3, n,p 3) in terms of  probabilities on n -  1 voters 

is then the sum of  the representations for Pa(3,n,pa), PB(3,n,p a) and 

e c ( 3 ,  n,  p3).  
Gillett (1978) also develops representations for recursion relations for 

P(4, n, p4) in terms of P(4, n -- 1, p4). The recursion relation for four alterna- 

tives becomes quite cumbersome and is not included in the current study. 

7. G E N E R A L  B E H A V I O R  OF P(m,n,p m) AND pt(m,n, pm) 

In Section 3, it became apparent that direct calculation ofP(rn ,  n, IC )and  
particularly pt(m, n, IC) can become very difficult. As a result, effort has 
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has made to attempt to at least describe the general behavior of these prob- 

abilities. Of particular interest is the way that these probabilities change 

as m and n increase. Major progress has only been made in this area by 

restricting attention to the impartial culture condition. 

In this section, we will concern ourselves with the difficulties that can 

arise when n is even. For even n, Buckley and Westen (1979) define three 

types of Condorcet winners for a set X = {x2, x l ,  x z , . . . ,  Xra}. 

Strong Winner - A candidate xl is a strong winner if Xl > sxj 
for all xj in X with i 4=/'. 

Semi-Strong Winner - A candidate xi is a semi-strong winner if 

xi ~>s xj for all xj in X with i ~e] and x i > sXj for some/. 

Weak Winner - A candidate x i is a weak winner ifxi ~>s xs for all 
xj i nX w i t h i n ~ .  

Here A ~>s B denotes that the number of preference orders with A ranked 
over B is greater than or equal to the number of orders with B ranked over A 

(allows a tie). 
In all discussion to this point, P(m, n, pro)has referred to the probability 

of a strong winner. Let pS(m, n, pro) and pW(m, n, pro) refer respectively to 

the probability of a semi-strong winner and weak winner for m candidates 

with n voters. For odd n, all Condorcet winners must be strong winners since 

ties cannot exist. 

Kelly (1974) began the investigation of how pW(m, n, IC) changed in m 

and n. Two of  the main results were 

THEOREM 1. pW (m, n + 1, IC) > pW (m, n, IC) for odd n and m >1 3. 

THEOREM 2. pW (m, n, IC) > pW (m, n + 1, IC) for even n and m >t 3. 

Kelley (1974) then formalized two conjectures based on the work of Black 
(1948a, 1958). 

CONJECTURE 1. pW(m, n, IC) > p W ( m  + 1, n, IC) for m ~> 2 and n = 3 or 
n~>5. 
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CONJECTURE 2. PW(m,n,  IC)>PW(m,n  + 2, IC) for m ) 3  and n = 1 or 
n ) 3 .  

Fishburn, Gehrlein and Maskin (1979a, b)made some progress on these two 
Conjectures for odd n. 

THEOREM 3. P(m, 3, IC) > P(m + 1,3, IC) for all m >1 2. 
1 

THEOREM 4. P(3, n, IC) > P(3, n + 2, IC) for all odd n. 

THEOREM 5. P(3,n,  IC) >P(4,  n, IC) foroddn >1 3. 

THEOREM 6. P(3, n, IC) > P(5, n, IC) for odd n >1 3. 

THEOREM 7. P(4, n, IC) > P(4, n + 2, IC) for all odd n. 

Also, for even n 

THEOREM 8. PW(3, n, IC) >pw(3,  n + 2, IC)for large even n. 

Buckley and Westen (1979) obtained some results about strong winners. 

THEOREM 9. P(m, n, IC) >P(m,  n + 1, IC)for odd n and m >>-~ 3. 

THEOREM 10. P(rn, n + 1, IC) > P(m, n, IC) for even n and m >~ 3. 

The proofs of Theorems 9 and 10 can be generalized from the impartial 
culture result to any pra vector for m equal to 3 or 4 by appealiLng to Gfllett's 
(1978) recursion relations in Section 6. Buckley and Westen (1979) then 
extended the conjectures given by Kelly (1974) to the other forms of winners: 

CONJECTURE 3. pS(m, n + 1, IC) > pS(m, n, IC) for odd n. 

CONJECTURE 4. pS(m, n, IC) > pS(m, n + 1, IC) for even n. 

CONJECTURE 5. pS(m, n, IC) > pS(m, n + 2, IC). 

CONJECTURE 6. PS(m, n, IC) > pS(m + 1, n, IC). 

CONJECTURE 7. P(m, n, IC) > P(m, n + 2, IC). 

CONJECTURE 8. P(m, n, IC) > P(m + 1, n, IC). 
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A final conjecture that is related to this area is due to Fishburn (1976). To 
describe this conjecture, we need a definition for the specific case of n voters 
on n alternatives. Let P*(n, n, IC) be a conditional probability of a strong 
winner under the impartial culture condition. The conditional statement is 
that each of the n voters has a different candidate ranked first in their linear 
preference ranking. The conjecture can then be stated as 

CONJECTURE 9. P(n, n, IC) > P*(n, n, IC). 

Fishburn, Gehrlein and Maskin (1979a, b) also developed some general 
relationships that hold up between Conjectures 1 and 2. These relationships 
were 

THEOREM 11. I f  P(5, n, IC) > P(6, n, IC) then P(4, n, IC) > P(5, n, IC) for 
odd n >~ 3. 

THEOREM 12. P(3, n, IC) > P(6, n, IC) i f  and only i f  P(4, n, IC) > P(5, n, 
IC) for odd n >1 3. 

THEOREM 13. l fP(6 ,  n, IC) >P(6,  n + 2, IC) then P(5, n, IC) >P(5,  n + 2, 
IC) for odd n >I 1. 

THEOREM 14. f f  P(6, n, IC) >P(6,  n + 2, IC) then P(5, n, IC) >P(6,  n, IC) 
for odd n >1 3. 

Other relationships of this type were devdoped by Gehrlein (1981c). For 
example: 

THEOREM 15. P(3, n, IC) 2 >P(4,  n, IC)for odd n >1 1. 

THEOREM 16. P(4, n, IC) >P(3,  n, IC) 3 for odd n >~ 1. 

THEOREM 17. f f  P(5, n, IC) ~< 0.780625 then P(5, n, IC) > P(6, n, IC) for 
odd n >~ 1. 

THEOREM 18. f f  P(5, n, IC) ~< 0.799 then P(3, n, IC) > P(7, n, IC) for odd 
n~>l .  
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THEOREM 19. I f  P(7, n, IC) ~< 0.75 then P(4, n, IC) >P(5 ,  n, IC) for odd 

n~>l.  

THEOREM 20. I f  P(6, n, IC) > P(6, n + 2, IC) for all odd n then P(3, n, 
IC) > P(7, n, IC). 

THEOREM21. I f  P(6,n, IC)>P(6,  n + 2 ,  IC) for all odd n then P(7,n, 
IC) > P(8, n, IC) implies that' P(5, n, IC) > P(7, n, IC). 

THEOREM 22. P(m, 0% IC) > m/(2(m -- 1))P(m -- 1,0% IC)for all m > 1. 

Kelley's (1974) original study in the area of the general behavior of the 
probability of Condorcet's paradox made the most progress in considering 
the probability of a transitive majority relation. It was shown that 

THEOREM 23. pt(m, n, IC) > pt(m + 1, n, IC) for n >~ 3 and m >t 2. 

THEOREM 24. pt(m, n, IC) > pt(m, n + 1, IC) for odd n and m >~ 3. 

THEOREM 25. pt(m, n + 1, IC) > pt(m, n, IC) for even n and m >t 3. 

THEOREM 26. pt(m, n, IC) > pt(m, n + 2, IC) for all n and m ~>~ 3. 

In fact, Theorem 4 follows directly from Theorem 26 since P(3, n, IC)= 
pt(3,  n, IC). 

Let Pq(m, n, IC) be the probability that the majority rule relation is a weak 
order for n voters on m alternatives under the impartial culture condition. 
Kelly (1974) proved that 

THEOREM 27. Pq(m, n, IC) > Pq(m + 1, n, IC) for n >1 3 and m >~ 2. 

THEOREM 28. Pq(m, n, IC) > Pq(m, n + 1, IC) for odd n and m >1 3. 
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THEOREM 29. Pa(m, n + 1, IC) > Pa(m, n, IC) for even n and rn >f 3. 

THEOREM 30. Pa(m, n, IC) > Pq(m, n + 2, IC) for all n and m >~ 3. 

8. CONDORCET'S  PARADOX WITH OTHER 
PREFERENCE FORMATS 

There are two basic lines of  research that have considered variations from the 
standard format of  linear ordered preferences that have been considered to this 
point. One approach has been to consider the impact of  allowing abstentions. 
The other approach has been to consider voter preferences that are not essen- 

tially represented by linear rankings. We shall consider these two approaches 
in order. 

Gehdein and Fishburn (1978b) consider the effect of  abstentions on the 
existence of  majority winners for two candidate elections for several different 

situations. In general, assume that for candidates A and B we have A as the 

majority winner for a population of  n possible voters. If  voters do not 

necessarily vote, it may well be true that B turns out to be the majority 
winner for the sample subset of  potential voters who actually vote. Let A be 

defined as the global Condorcet winner since it represents the preferences of  
the population. Then let B be the local Condorcet winner since it represents 
the preferences of  the sample. 

To discuss the possibility that the global and local Condorcet winners are 
the same, we must be concerned with 

el - the number of voters with A > B who vote, 
e2 - the number of  voters with A > B who abstain, 
e3 - the number of  voters with B > A who vote, 
e4 - the number of voters with B > A  who abstain, 

where ~4 i = l  ei = n .  
Let Pr(2, n, e*) be the probability that the global and local Condorcet 

winners coincide with two candidates with n potential voters where e* denotes 
the likelihood that various ei's will obtain. We assume n is odd and that ties 
are broken randomly when there are an even number of  actual voters. 
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When e* takes on a variation of impartial anonymous culture which assumes 

that all combinations of ei's to be equally likely, we get Pr(2, n, IAC*). For 
all n, Gehrlein and Fishburn (1978b) show that pr(2, n, IAC*) is independent 
of n with 

pr(2,n,  IAC*) = 3. 

To consider a different situation, let Pr(2, n, p, XA, )~B) denote the prob- 
ability that the global and local Condorcet winners coincide for two candidates 
with n potential voters where p is the probability of a voter having a preference 
A > B, )~A is the probability that a voter who prefers A will vote and )~B is the 
probability that a voter who prefers B will vote. It is shown that for odd n 

er(2 ,n , �89  �89 �89 = 
and that 

e'(2, 0% �89 x, x) = 1/~ cos -1 ( -  ~1/2). 

Gehrlein and Fishburn (1978b) presents some other relations for P(2, n,p,  
ha, Xn) and gives some values for P(2, n, �89 k, X) for various n and ;k. 

Gehrlein and Fishburn (1978a, 1979b) consider the probability of the 
coincidence of the local and global Condorcet winners in three candidate 
elections. Let P~(3, n, p, IC) denote the coincidence probability for n voters 
with preferences meeting the impartial culture condition. Let p be the prob- 
ability that any potential voter actually votes. The value o fp  is constant over 
preference rankings. It is shown that 

er(3 ' o% IC) = ~6 + 3 {sin_l(pl/2) + sin_l (~) + 
4rr 

+ sin_l(pl/2/3 } + 3 41r ----i {[sin-1 (~)] 2 + [sin-1 (pl/2)]2 _ 

-- [sin-1 (p'/2/3)1 =}. 

Table III gives pr(3, 0% p, IC) values for p = 0.1(0.2)0.9. 

TABLE III 

Values of pr(3, =, p, IC) 

p pr(3, *% p, IC) 

0.1 0.386449 
0.3 0.482587 
0.5 0.564 283 
0.7 0.650 084 
0.9 0.763 094 
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May (1970) started investigating the probability of  a Condorcet winner 

when preferences could vary from linear preference rankings. Let P(m, n, RC) 

be the probability of a Condorcet winner in a random culture. Random 
culture refers to a situation in which the direction of preference on each pair 
is determined at random for each voter. Then, P(m, n, RC) is independent 

of  n with 

P(m, n, RC) = m2 -(m-l}. 

The probability of  Condorcet's paradox for three candidates with all 

possible voter preference structures allowed has been considered by Fishburn 

and Gehrlein (1980b) and Gehrlein and Fishburn (1981). To describe the 

more general situation, we must define voter indifference between candidates 
A and B, A ~ B, as neither A > B nor B > A. For three candidates, there are 
five relevant classes of  preference rankings on the candidates. These are 
defmed in Table IV. 

TABLE IV 
Types of preference relations on three alternatives 

Number of Orders Probability 
Class of this type Type of Relation in Class 

1 6 A ~ B , A > C , B > C  qt 
2 6 A > B , B > C , A > C  q2 
3 6 A . . . . B , B ~ C , A > C  q3 
4 6 A > B , B > C , A ~ C  q4 
5 2 A > B , B > C , C > A  qs 

From Table IV we see that there are two orders in Class 5 which represent 
cyclic preference for an individual. Class 1 represents all the individual prefer- 

ence structures of  individuals which can be represented by weak orders with 
two equivalent classes. The case of  total individual indifference between 
candidates (.4 ~ B, B ~ C, A ~ C) is ignored since individuals of  this type 
will have no impact on the existence of a Condorcet winner. It follows that 

Y-'~=l qi <~ 1. 
Fishburn and Gehrlein (1980b) consider the probability that there is a 

Condorcet winner in the limit of  voters under the condition of permutation 
invariance, P(3, oo, PI). The condition of permutation invariance assumes 
that all preference orders within the same class are equally likely. Before 
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continuing, we recall the definition of ~brn(r ) from Section 5. That is, cbm(r ) 
is the multivariate normal orthant probability of the m-variate normal distri- 
bution when all correlation terms equal r. It is shown that 

P(3,o% PI) = 3qb2(pl ) 
where 

ql + q2 --q4 - -  3qs 
Pl -- 

2ql + 3q2 + qa + 2q4 + 3qs 

Gehrlein and Fishbum (1980a) then show that 
3 

P(3, =, PI) = ~ + ~ sin-l(p,) .  

Guilbaud's (1952) result is obtained from this representation with q2 = 1. 
Also, when ql = 1, we have Pl = �89 and P(3, 0% PI) = 1. This result fits with 
the finding of Inada (1964) that when voters have dichotmous preferences, 
there must be a majority winner. 

Fishburn and Gehrlein (1980b) extended these results to the four and five 
candidate case for the limiting case in voters under a variation of the permu- 
tation invariance condition. Assume that all voters preferences are represented 
by a weak order. Let q(m, i) be the probability that a voter has preferences 
which represent a weak order with m + 1 - i  equivalence classes. Then we 
define P(m, n, PI*) as the probability that there is a Condorcet winner when 
all voters' preferences are weak orders and where all weak orders with the 
same number of equivalence classes are equally likely. Then 

P(4, 0% PI*) = 4~a(P2) 

P(5, ~, PI*) = 5~4(p3) 
where 

14q(4, 1) + 14q(4, 2) + 12q(4, 3) 

P2 = 42q(4, 1:) + 35q(4, 2) + 24q(4, 3) 

50q(5, 1) + 50q(5, 2) + 48q(5, 3) + 40q(5, 4) 

Pa = 150q(5, 1) + 135q(5, 2) + 114q(5, 3) + 80q(5,4) " 

Using the trivariate extension of Sheppard's Theorem [KendaU and Stuart 
(1963)], it can be shown that 

P(4, ~,  PI*) = �89 + 3/rr sin -1 (P2). 

A closed form representation of this type does not exist for P(5, ~,  PI*). 
Numerical values of q~4(r) can be obtained for various r from Steck (1962) 
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and others. Using a general representation for ~4(r) developed by Gehrlein 
(1979), it can be shown that 

P(5, ~176 PI*) = ~ q- (4~)  sin-1 (p3) + 

P 3 - Z  ~ ] 

Tullock and Campbell (1970) used computer simulation to consider the 
probability of the no-winner form of Condorcet's paradox for a different set 
of assumptions on voters' preferences. In that study, alternatives were defined 
by a vector of  attribute values in g-dimensional space. That is, each alternative 
had value which was determined by the level of each of g attributes that 
defined it. Let A~ denote the g-dimensional vector def'ming alternative i. 
Similarly, voters were given ideal points in the same space. Let Vf denote the 
g-dimensional vector defining voter j 's  ideal point. 

For a set of  mA~ and nVf vectors, the preference rankings on the alterna- 
tives are determined for each individual by using Euclidean distance to 
measure how close alternative points are to the ideal points. For voter j, the 
most preferred candidate, i, minimizes the sum of  the squared differences on 
attributes between Vf and A~. The next most preferred alternative is the 
second closest A~ to Vf, and so on. 

For a set of random A~ and Vf vectors, the preference rankings on the 
alternatives were obtained for each voter. It was then determined as to 
whether there was a Condorcet winner among the candidates. This process 
was repeated 1,000 times for each g of 2, 3, 5; m of 3, 4, 5, 6; and odd n 
ranging up to 25. 

The results suggest that the probability of the no-winner form of 
Condorcet's paradox increases as the number of  dimensions in the attribute 
space increases. The probability also tends to increase as the number of 
candidates increases. In addition, the probability tends to be smaller for 19 
or more voters than for three or five voters. The probability of the no- 
winner form of Condorcet's paradox ranges from 0.01 to 0.12 with these 
assumptions. 

NOTE 

* This research was supported by a grant from the National Science Foundation to the 
University of Delaware. 
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