
Artificial Intelligence Review (1987) 1,255-273

Artificial i n t e l l i g e n c e a n d software
e n g i n e e r i n g : a tutorial introduction to
their re la t ionship

L. Ford
Department of Computer Science, University of Exeter, Exeter
EX4 4PT, UK

Abstract This article is a tutorial introduction to artificial intelligence for
software engineers, and a similar introduction to software engineering for
artificial intelligence workers. Software engineering and artificial intelli-
gence are compared and contrasted in terms of the problems they attempt
to solve, the methods they employ, and the tools and techniques that are
used. It is argued that a fusion of the two disciplines will be needed for
many new software demands. The evidence for this is examined briefly
and some of the steps that are needed for an alliance of the two disciplines
are mentioned.

I n t r o d u c t i o n

This tutorial aims to provide an introduction to software engineering (SE) for those
readers with primari ly an artificial intelligence (AI) background, and a similar
introduction to AI for professional software engineers. Both AI and SE are disci-
plines of Computer Science and as such have some common themes. These are
explored, as are some of their essential differences. The two respective communi-
ties of software developers often appear to follow divergent paths, perhaps through
a misunders tanding of what each is trying to achieve or through a professional
jealousy and mistrust, but in either case it is not a healthy situation for Computer
Science as a whole which will, I believe, come to rely on a fusion of the two
disciplines to realize its full potential in a satisfactory way.

AI has developed models, notations, techniques, and a methodology that could
be useful to SE, while the latter has provided both formal and informal methods
that could contribute to the development of AI software. (It should be ment ioned
that some formal methods of SE, in particular program proving, do not yet lend
themselves to the construction of large-scale practical software, whereas SE's
informal methods that embody sound methodological principles, such as the
collection known as Structured Programming, are in general use in SE and could
arguably be used in the development of some systems labelled 'expert ' .)

Each, therefore, potentially has something to offer the other that I hope the
enquiring reader will not be too biased to ignore.

255

256 L. Ford

Computer Science is the study of computing machinery as well as the general
process of computation, and the nature of the underlying machinery - - the
hardware - - has played an important role in SE and could play an even more crucial
part in the realization of 'intelligent' machine behaviour. The topic is not, however,
covered here. The interested reader is referred to Bishop (1986) who provides a
comprehensive overview of new architectures and machines.

The next section compares the problems addressed by AI and SE. Following on
from this the nature of AI and SE solutions are examined to bring out their critical
differences. The development methodologies of the two disciplines are then looked
at, in some detail. The tools, techniques, and languages of AI and SE are also briefly
surveyed. Finally some speculations on future trends, that presage an alliance of
the two disciplines, are given.

Problems addressed by AI a n d SE

There are no hard and fast definitions of AI or SE problems such that a given
problem can be categorized as belonging exclusively to the province of one or other
discipline. Both disciplines are concerned with methodologies, tools, and tech-
niques that can serve to provide solutions to many of the same or similar problems.

A common claim for AI is that it addresses problems which, hitherto, have only
been solvable by intelligent humans. There are a number of difficulties with this
definition, not least being that it suggests a constant movement of 'solved' AI
problems to some other discipline, perhaps SE. Thus problems solved before the
advent of AI, such as the first invoicing program are, on this reckoning, prehistoric
ancestors of AI. And AI's current favourite offspring, the expert system, for which a
methodology, tools, and techniques have been laid down, presumably fails within
the province of software engineering. (Campbell (1984) suggests other problems
with this definition and explores the general problem of what is and is not AI.)

Although there are no accepted definitions of AI most would agree, without
invalidating the earlier observation, that the two disciplines can address the same
problems, that an SE treatment of some problems is more appropriate than an AI
one, and vice versa. This raises the question of how problems can be characterized
to enable the appropriate development discipline to be determined.

Data in the real world are rarely reliable - - that is they are rarely complete,
consistent, without error, and unmasked by extraneous data. For some problems it
is feasible and advantageous to remove extraneous data prior to input to a computer
program. Thus a clerk receiving an order for goods from a client could, when
completing a computer order input form, ignore the client's request far urgent
delivery (since a condition of the system may be that all orders are to be processed
in the same way irrespective of delivery requirements). The clerk could also
attempt to ensure that the client's data were complete, by entering information in
all essential fields of the input form. This would allow a computer input program to
validate the data in a relatively simple and systematic way such that programs
subsequently processing validated data can assume them to be reliable. Another
feature of the data received by the clerk is that they vary over time; the data received

Artificial intelligence and software engineering 257

by the input program, however, vary by place. Thus the clerk must be capable of
dealing with time-varying situations, e.g. each utterance by the client presents a
new situation that has to be dealt with, whereas a program validating input data
prepared by a clerk needs only to examine the pre-defined places on an order
transaction to find the data it requires. Data in the latter form are said to be static;
time-varying data are dynamic.

Let us now imagine a computer system replacing the function of the clerk. It must
cope with unreliable and dynamic data. Such a system is bounded and can be pre-
specified only to the extent to which these requirements can be pre-defined. As the
sensitivity to a client increases, however, the complexity of defining all the possi-
bilities of unreliability and event sequences also increases - - and not linearly. This
gives rise to the combinatorial explosion of possible situations and increasingly
reduces the possibility of pre-specifying them. The space of possible solutions to
these situations can be of such size that it becomes more convenient to consider
solution methods rather than particular solutions for each situation. That is, the
task of providing a solution to such a problem is more manageable when emphasis
is placed on the way a solution can be found rather than what a solution comprises.

The methods and tools of software engineering are suited to problems that can be
characterized as having reliable, static data for which the problem solution space is
small. Problems with unreliable and dynamic data usually imply a much larger
solution space; AI techniques have been developed to deal with this situation. To
repeat, however, there is no reason why either discipline should not tackle the
problems that, on the above account, seem more suited for solution by the other. SE
can, for example, deal with large solution spaces which can be factored, and AI is
able to provide solutions to problems with reliable, static data and small solution
spaces. It will become evident in the following sections, however, that SE has
fashioned its methods and tools to suit the problems that have been characterized
for it above, while AI, in the process of undertaking a similar exercise, has largely
ignored the possibility of refining its tools to meet characteristic SE problems.

The problems addressed by software engineers cover those applications asso-
ciated with data processing (DP). These include: order processing, invoicing, inven-
tory control, management accounting, etc. A feature of these applications is the
high volume of relatively few types of input data, and the static non time-varying
nature of the data. It is true that most existing applications are the result of a
software engineering process. It is also fair to say that few applications of AI can
properly be regarded as practical software. Most AI work, to date, is of an experi-
mental nature, often addressing small, paradigmatic problems in order to increase
the stock of knowledge about intelligence. The most promising fruits yielded by AI
work, with respect to practical applicability, are expert systems. These systems
attempt to exhibit expert performance in difficult problem domains, e.g. diagnosis,
planning, and design. There are systems in regular use which help to configure
computers, aid in chip design, and diagnose circuit faults. Although production
of systems like these is increasing there are many problems associated with
their development and acceptance which will become apparent later in this
article.

258 L. Ford

The n a t u r e ol so lu t i ons

The nature of AI solutions to problems is usually distinctive from SE solutions.
Consider two types of problem-- in terpre ta t ion and diagnosis-- that have been
tackled in one form or another by software engineers and AI practitioners.

Interpretation problems involve data analysis to support some subsequent pro-
cessing. This type of problem is prevalent in DP systems where analysis of order
transactions may lead to product ion of invoices or sales reports. A number of
features of such transactions provide the key to distinguishing an AI interpretation
problem from those found in software engineered DP systems. In the latter, trans-
actions are well-defined, assumed to be correct after validation checks, and are not
contradictory in the sense that one transaction is inconsistent with another. As
such, a program processing them can have a completely specified transaction
record definition that will cater for all input. AI interpretation problems, on the
other hand, e.g. DENDRAL (Buchanan and Feigenbaum, 1978), need to find consis-
tent, correct, and rigorously complete interpretations of data that themselves are
not complete, perhaps contradictory, and noisy, i.e. containing extraneous data.
Whereas the SE solution to an interpretation problem can be regarded as correct
(since the details of a transaction map exactly onto its record definition) an AI
solution can usually only be regarded as adequate or inadequate because assump-
tions will have to be made by the program about the meaning of the data.

Input validation components of SE systems can loosely be regarded as examples
of solutions to diagnosis p rob lems- - they find fault with data. The fault-finding,
however, is strictly limited to detecting faults without providing a reason for them.
The definition of a fault is also well-defined, perhaps expressed in terms of ranges
of valid values. The most celebrated AI diagnosis program, MYCIN (Shortliffe,
1976), diagnoses the infectious disease bacteraemia and selects an appropriate
antibiotic therapy for it. There are a number of difficulties with this problem that a
solution must address. First, there are the problems associated with interpretation
of data, all of which may not be available. In addition some symptoms may be
masked by others. A major point is that the causes of the 'fault ' , and hence
diagnosis of the disease, are not completely understood from a medical point of
view. This means that a program solution has to cope with an incomplete specifica-
tion of the problem. Thus the solution contains statements of the form:

A suggests B;
C and D tend to rule out E;

which clearly reflect incompleteness. The solution could not, therefore, be regarded
as static, in the way many SE solutions are, with respect to their specification, but
rather dynamic and susceptible to improvement as medical knowledge increases.
The AI solution is thus not amenable to definition in abstract terms. Rather it needs
its solution statements to be of the types above which are heuristic. As a conse-
quence of this it is unlikely that a solution to one AI problem can be carried across
to form the basis of the solution to another and similar problem. The context-
sensitivity of its statements, as shown above, prohibit this. However, numerous

Artificial intelligence and software engineering 259

software packages for accounting, invoicing and so on, demonstrate the possibility
of having context-free solutions to SE problems.

The fact that solutions to SE problems are invariably cast in abstract terms has
important consequences for their implementation. It permits a problem to be
regarded as consisting of a number of sub-problems, each of which can largely be
considered in isolation from the others. It also facilitates the use of repetitive
constructs, or repeat statements, in a solution that are so desirable for many DP
problems. An SE solution can thus have a structure that closely resembles the
structure of the problem it is to solve.

AI problems are rarely conducive to the 'divide and conquer' treatment men-
tioned above; the solution space is often not factorable because of the interaction
among 'conceptual ' sub-problems. AI solutions, therefore, have to prune the search
space of solutions 'on the fly', rather than have it done for them in advance by the
programmer as with conventional programs. In general, AI programs prune the
search space by using factual and heuristic knowledge about the domain, e.g.
the rule forms above, and these require an inferential processing mechanism rather
than the repetitive one of SE solutions.

It has already been suggested that many SE solutions take large volumes of data as
input and manipulate them in subsequent processing. The effective manipulation
of data is evident in many SE solutions which have well-defined interfaces to
databases. AI programs are usually more concerned with smaller input volumes
with data couched in a symbolic form, e.g. natural language. Symbol manipulation
is thus a feature of the input components of AI solutions, and indeed of other
components, since knowledge is itself primarily expressed in symbolic form. It is,
however, interesting to note the comment of Doyle (1985) that "the gut feeling of
experienced applications developers that LISP, PROLOG, and fancy AI representa-
tional languages are irrelevant is right--strictly speaking, as far as the end result is
concerned" since it suggests that an AI solution could be reformulated as a conven-
tional algorithm recognizable, as such, by a software engineer. It is during the
formulation stage of a solution that the AI programmer needs to express infor-
mation symbolically since at this stage he is unable to understand the problem
sufficiently to enable him to think of it in abstract terms.

M e t h o d s

Before any comparison of the methods of SE and AI are made distinctions should be
drawn between the different methods that are used within each discipline.

In SE there is a difference between the formal methods that are taught to students
of Computer Science and those that are used to build practical large-scale systems.
In addition, students who develop their own experimental software will not
usually need to apply all the stages of development associated with practical
software because some stages, e.g. those that envisage interaction with a client, may
not be appropriate.

In AI a distinction is drawn between the methods used to develop experimental
software and those used to develop practical AI software.

260 L. Ford

The main SE method for developing practical software is first described. (This
section can be omitted by the software engineer without any undue loss of conti-
nuity.) This is followed by a description of the experimental method for AI software
with some additional notes on the production of practical AI software. (Even AI
practitioners may wish to read this since it provides some background to the
present debate on AI methodology and the way in which it differs from the formal
and informal methods of SE (see Partridge and Wilks (1987) for a recent contribu-
tion to the debate).

Software development lifecycle

Nowadays conventional software that has practical application is mainly the result
of a software development life cycle (SDLC) that consists of a number of sequential
stages, each with its own specific end product. Although many different versions of
the SDLC are used by the SE community, some as products, others as an informally
agreed set of methodologies or philosophies, they nevertheless broadly subscribe to
the idea of sequential stages of development, each of which provides input to the
next stage. So although the stages presented in the SDLC that follows may differ
from one organization to another, or from a large project to a small one, they are,
nevertheless, to be found in one form or another in the majority of, if not all, system
development projects. The names of the stages may be different, and the boundaries
between them may alter, but the set of tasks contained within them should remain
the same.

The particular SDLC suggested here was formulated by King (1984). It consists of
seven stages:

1 feasibility study,
2 requirements definition,
3 system specification,
4 system design,
5 program design and development,
6 system test,
7 implementation and production.

A glance at this list suggests an orderly progression from one stage to another,
perhaps involving many people with different roles and skills, and the question
arises whether the overhead involved in managing the SDLC is worthwhile. Most
DP projects needing more than six man-months effort, however, are probably in
need of it. For smaller projects though, it is often possible, with the right mix of
people and skills, to condense the SDLC.

Whatever SDLC scheme is used, the people involved, whether managers, end-
users, or programmers, are all engaged in the activity of SE.

The objective of the first stage of the full SDLC is to demonstrate that the
proposed system, in its as yet ill-defined form, is practical. Because the feasibility
study is usually, through necessity, carried out before full financial approval has
been gained, and there is the possibility that it may indicate the impracticality of

Artificial intelligence and software engineering 261

the proposed system, it is often the shortest and least expensive stage of the SDLC.
,Its importance, however, is crucial. The history of SE is littered with systems that
have failed at the final production stage through inadequate attention to it. Ini-
tiation of the feasibility study usually comes from the user department, or organiz-
ation, which provides a brief description of the issue to be resolved. Output from it
should contain: a brief description of the proposed system; a characterization of the
system type, e.g. batch or on-line, file or database; possible hardware and software
types; a cost-benefit analysis; and a tentative project plan.

The requirements definition stage elaborates the proposed system, from the
feasibility study to an accurate and complete set of user requirements. Where
appropriate a detailed analysis of the existing equivalent system, manual or auto-
mated, is necessary for this. Output from this stage, usually in document form,
would provide:

- -an analysis of the current system,
- -a set of user requirements,
- -a summary of the proposed system,
--cost, resource, and time estimates.

The aim of the system specification stage is to define a system that meets the
formulated user requirements. Translation of user requirements, to a specification,
involves defining system data requirements in detail. This is done by refining the
data information from the previous stage and by using structure charts and data
flow diagrams. A system data dictionary containing all data elements and their
relationships provides the formal expression of this information. Where databases
are already being used by the client any necessary interfaces to them will need
consideration. The specification document will also provide a description of the
system in technical terms, network and telecommunication requirements, a
description of system controls, e.g. for data and process security and recovery, a
revised cost-benefit analysis (which would of course highlight any significant
deviation from the one produced at the feasibility stage), and a further refinement to
the resource plan. At the end of this stage it is customary to have a full review by
interested parties, e.g. users, controllers, auditors, and operations staff.

King (1984) states: "the objective of the system design stage is to produce a
detailed, technical, logical definition of the final system, so that the final set of
programs can be produced from that definition" and uses the term 'logical defini-
tion' to indicate what the system does rather than how the system does it. A useful
framework with which to append this detail is a hierarchical structure of the system
of the type shown in Fig. 1 below.

The design stage, in practice, will only take the structure down to level 4: the next
stage refines level 4 to level 7. The process of producing such a structure is
variously called; top-down design, functional decomposition, and structured
design. These terms were borrowed from programming methodology in recognition
of the fact that system design and program design activities each have a need to
manage the complexity of a problem through abstraction. Indeed two notations for
program refinement--Jackson diagrams and Warnier-Orr diagrams--have each

262 L. Ford

More Abstract Levels of
Abstraction

4

"'SYSTEM 1

I s°BSZST I I I SUBScYSTEM I

I
STATEMENTS

More Detailed PROGRAM LANGUAGE 7

been used at the system design as well as the program design and development
stage. As well as the convenience of separating various concerns, the intention of
top-down design is to enable the designer to satisfy himself that each new level of
abstraction is a solution to the level above it. Clearly this averts the possibility of
the results from the labour-intensive activity at level 7 failing to meet the require-
ments envisaged at level 1. Apart from providing a detailed system description
based on the hierarchic framework, the system design stage will also refine the
system controls and revise the cost-benefit analysis from the previous stage. In
addition, it may recommend various design alternatives for review, and program
design techniques and standards to be used at the next stage. Finally it should
provide a preliminary system test plan.

The program design and development stage provides the flesh for levels 5-7
shown in Fig. 1. It involves not only programming, i.e. designing, developing, and
testing program solutions, but also, in collaboration with users and other depart-
ments, preparing user and operator manuals, and providing documentation. Var-
ious techniques are available to the programmer which enable him to derive a
solution, the two most common are Jackson Design Methodology (JDM) and
Warnier-Orr Design Methodology. Each is based on the premise that a program
structure can be derived directly from the structure of the data that a program will

Artificial intelligence and software engineering 263

process. A feature of JDM is the clear procedure--a programmer must follow the
same five steps for each program design. This helps to produce consistent design
structures, understandable to others as well as the programmers who create them.

Individual program testing and link testing (sometimes called integration testing)
are completed prior to the next stage--system testing. Whereas program and link
testing may be designed and undertaken by program authors, hence by people who
are intimate with a program's working, system testing is undertaken firstly, on
behalf of senior development staff who should have no knowledge of individual
programs (usually referred to as black-box testing), and secondly, on behalf of users,
i.e. the user acceptance test. This latter test is not to determine whether the user's
requirements have changed since the inception of the project, but to find out
whether the system meets the requirements that were originally agreed with the
user.

The final stage, implementation and production, involves preparing users and
operators for the installation of the system. Once installed it would be comforting to
believe that the system would settle into a stable period of production. Nothing
could be further from the truth. It is most likely that errors will be found in the
system--either errors of logic or errors resulting from misunderstanding--and that
user requirements, sensitive as they are to external and uncontrollable situations,
will not change. Maintenance of computer systems (including enhancement) is
reckoned to be the major part of the total system life cycle cost. The SDLC has
evolved over the years in recognition of this, and much of the documentation
produced during the first six stages is designed to meet post-implementation
requirements, as much as the initial development activity.

AI methodology

AI has yet to evolve a methodology suited to the production of practical software,
largely because most AI software has been of an experimental nature, and thus not
developed in a disciplined way to satisfy the needs of users, managers, and others
one stage downstream in the lifecycle, but also because it has been unable to draw
from the methodological foundations provided by SE. These latter have been
fashioned to accord with the nature of SE problems that were presented earlier--
namely, that problems are bounded and can be completely specified--and are not
easily adapted to meet the messier problems of AI.

The first three stages of the SDLC present particular problems to AI. How can a
system be specified in such a way that it leads to the systematic development of a
solution when the nature of AI problems is a lack of specificity? Recall that AI
problems were characterized as having to deal with a very large number of different
situations, not all of which could be predicted. The requirements definition for
problems of this sort could not be provided with the desired precision. Conse-
quently it becomes impossible to undertake a feasibility study with any confidence
since the study itself relies largely on envisaging the practicality of the require-
ments definition and system specification stages.

264 L. Ford

How then is AI software developed? First, a distinction must be drawn between
experimental software, developed primarily to investigate the problems of imple-
menting machine intelligence or to test some thesis of human intelligence, and the
software developed with practical day-to-day usage in mind. Partridge (1986) has
described a run-understand-debug-edit (RUDE) paradigm to describe the former
(although he suggests that there is a need to develop some disciplined version of it
to support the possibility of practical AI software). RUDE recognizes the impossi-
bility of providing a complete specification before programming commences and
has, as a first stage, the running of a machine-executable specification that is a first
approximation to the solution of a poorly understood problem. From the run, major
inadequacies are uncovered in the understand and debug stages which are followed
by an edit stage to provide a closer approximation. The cycle is recommenced and
iterated until an adequate solution is found. Such a scheme may remind the
software engineer of the halcyon days of twenty years ago when programs were
designed very informally with no user or manager in sight. There is, however, one
crucial difference. The AI worker is forced into this solution, or something like it,
because of the nature of the problem he is tackling, whereas the software engineer,
or programmer as he was then called, first created, not an approximation to the
solution but, a complete solution which, with some debugging, met his original
design concept.

A scheme rather like the RUDE cycle is witnessed in the early stages of SDLC.
Rapid prototyping, as it is called, is a process of speedily providing a performance-
mode description of user requirements and goes some way to forming a system
specification. Its main use, however, is restricted to one-off applications which
need not be integrated with current systems. Most expert systems, some examples
of which can be regarded as practical software, are also rarely integrated with other
systems. Development of these systems provides the basis of an AI methodology
with some similarities to SDLC.

An expert system must have the following properties (Waterman, 1986): exper-
tise, symbolic reasoning, depth, and self-knowledge. Expertise means the system
should exhibit expert performance, have a high level of skill, and be reasonably
robust. Symbolic reasoning is required to deal with knowledge, expressed as
symbols, so the large solution spaces which characterize AI problems can be
pruned. An expert system has depth in the sense that it operates effectively in a
narrow domain containing difficult problems. The knowledge itself, however, is
frequently not deep and contains 'compiled' or surface forms of deeper knowledge.
This lack of depth is a common criticism of current expert systems since it
effectively precludes them from justifying their decisions and indeed justifying the
particular knowledge contained within them. (Software engineers may be
interested to learn that pioneering AI work tackled the breadth problem by imple-
menting general problem solving programs. This work was largely unsuccessful
although it had the merit of emphasizing the enormous difficulty in producing
common-sense behaviour that you or I would take for granted.) Self-knowledge is
important to an expert system because it enables a system to reason with its own
operation in order to check the plausibility of its conclusions. Furthermore, this

Artificial intelligence and software engineering 265

self-knowledge can be used to provide the end-user with an explanation of what a
system is doing and why which, since an expert system is prone to making mistakes
like a human expert, is crucial to their acceptance. Expert advice, whether emanat-
ing from a human or computer system, need not be taken after all.

Given the desire of a user organization to employ an expert system in some role, a
feasibility study can be undertaken to examine the practicality of producing such a
system provided there is some historical evidence for developing an expert system
in a similar domain. Without this, a feasibility study would have little credibility
because the practicality of developing the system relies heavily on the possibility of
(a) being able to acquire specific domain knowledge, and (b) that the knowledge,
when acquired, can be formulated so it is amenable to symbolic reasoning. Prior
success with the domain would count as a strong indicator of feasibility. No
previous success would label the project as experimental.

The first main task of building an expert system, once the domain has been
identified and concerns about the feasibility of the project have been satisfied, is
knowledge engineering. Initially this involves selection of hardware and tools to
support a cyclic process of knowledge acquisition about the domain, its represen-
tation, and verification. Knowledge acquisition is the process of building the
knowledge content of an expert system. Knowledge can be acquired from a variety
of sources, e.g. books, films, current computer applications and their data, and from
human experts. Eliciting knowledge from a human expert can be invaluable since
he is a user of the heuristic type of knowledge which these systems typically need
to employ. There are, however, a number of problems associated with the elici-
tation process. An expert 's time may be at a premium or he may be unwilling to
pass on his expertise. And even a co-operating expert may have difficulty intros-
pecting his own mental processes to be in a position to articulate his problem-
solving strategies. Elicitation is, thus, fraught with problems not least of which is
the absence of an accepted methodology for it. Knowledge engineers, who are in
some senses AI's equivalent to system analysts/designers of software engineering,
help the expert to make his knowledge explicit, by observing and asking about his
problem-solving protocols for case studies that have arisen in the past. Following
this, the knowledge engineer may represent what has been gleaned to formulate an
incomplete base of knowledge in a prototype system. Whereas the software
engineer has well-defined and understood data and control structures with which
he represents information about data and processes, the knowledge engineer has a
variety of representation schemes and control possibilities at his disposal, many of
which have a short history and may not be well understood. He must nevertheless
choose from them to develop a first prototype. Old and new case data are then
presented to the prototype to see how it performs, with the expert providing
criticism that can be used to refine the knowledge base. It has been argued that the
process described above misuses the expert 's capabilities because what it requires
of h im- - articulation of the rules, definitions, and hypotheses in the domain-- is not
what he is accustomed to doing. What he should be used for is what he is good at,
namely generating or scrutinizing examples. Given a database of case histories, a
technique has been derived for inducing rules from them. These automatically

266 L. Ford

induced rules can form the basis of a knowledge base although this recent tech-
nique is not widely used either because construction of the database poses prob-
lems or because of prior commitment by the knowledge engineeer to a particular
tool/product which does not have this capability.

It was stated earlier that an expert system contains much more than a knowledge
base. The knowledge engineer will have to choose a method of inference which is
appropriate to the domain knowledge. Building an inference mechanism is neces-
sary if a suitable one does not exist with the tools and environment being used. The
software engineer may need to be reminded at this point that knowledge is rarely
represented in the same way that he represents his data and processes, and hence
amenable to interpretation or execution routirfely, but rather it is expressed in a
symbolic form, e.g. if A and B are true then the probability of C being true is 0.3, that
requires a specifically tailored mechanism to interpret it. An explanation capability
is another component of the expert system which can rarely be taken from the shelf,
this too needs to be designed and implemented to accord with the knowledge
representation scheme to be used.

Validation of a conventional system can be achieved through a series of tests, as
previously described. Results from these can be labelled right or wrong with respect
to specifications and requirements definitions. But results from expert systems and
indeed all AI systems are examples of behaviour based on judgemental factors. It
could be argued that the only way to assess the correctness of judgments is exercise
of the same faculty. Thus a particular behaviour is judged to be correct or incorrect.
But who is to make the judgement? This is a question whose answer depends on the
use to be made of the system: if the system is to replace human experts then it
would be appropriate for those same experts to judge it. If on the other hand the
system is to be used only in an advisory capacity then it is for the user to determine
the extent to which he is prepared to surrender his own judgement in deference to
it. Many systems may well fall between these two extremes and it then becomes a
difficult matter to assess what is appropriate.

Some form of objective verification of the system, prior to operational use, should
in any case be undertaken. Sell (1985) has suggested five basic requirements for
validation:

--consistency,
--completeness,
- -soundness,
--precision,
--usabili ty.

A consistent expert system should produce similar results for similar problems.
Results, therefore, should not vary unduly from one problem to another where the
major features of the problems are the same. In particular, two problems which are
alike apart from superfluous data should have the same result. A system can be
complete in two senses although it can be difficult to check either. In the semantic
sense a system can be regarded as complete if it covers all problems in the domain
and can derive everything that is derivable from the given data--it is thus

Artificial intelligence and software engineering 267

concerned with the bounds of a domain and its meaning. Formal completeness, on
the other hand, is concerned with the capability of the system to identify and
successfully discriminate all factors that have a bearing on all problems in the
domain. Informally, it is concerned with the syntactic structure of the knowledge
base rather than its meaning. Soundness complements semantic completeness.
Whereas the latter requires that everything true is derivable, soundness requires
that everything derivable is true. Precision is a quality that can be ascribed to
systems that make judgements to a certain level of confidence. The greater degree of
accuracy in the level of confidence, the greater precision a system has. Usability is
of prime concern to end-users and is not to be confused with user-friendliness. Its
concern is that interactions between system and user should proceed as intended
by the system developer. For example, users should not be confronted by requests
for input that are ambiguous or cannot be answered (because the system has made
an invalid assumption).

A set of integrated tools to aid in the validation process of expert systems is not
yet available--ad hoc methods are the order of the day. It must be appreciated,
however, that the process of verification, using the validation checks above, repre-
sents a discipline that can only inform on what must always be a subjective matter.

Tools, techniques, l a n g u a g e s

This section provides a brief description of some of the tools and techniques that
support SDLC and AI practice, and mentions some of the common languages used.
It should not be assumed that the SDLC tools are in wide use: although they are
increasingly being embraced, many organizations still rely on ad hoc methods.

Most good SDLC packages describe procedures for estimating the project costs
and schedules that are needed for the feasibility stage. Some are based on historical
evidence of relative sizes of the various SDLC stages, and require as input some
indication of the scale of the project (e.g. from small and straightforward to large
and complex); others are based on user-supplied estimates on the number of source
programming statements to be developed and provide expected man-months of
effort. Each organization will, of course, interpret results in the light of its past
experience.

The tools and techniques needed at the requirements definition stage are mainly
for documentation purposes and include aids such as PSL/PSA developed at
Michigan University for creating an initial system dictionary. Many DP systems
will need to integrate with current commercial practices and techniques of business
systems analysis, e.g. IBM's BSP, which can be used to help define the main
functions of an organization. Two well-known products/techniques which can be
used at this stage to functionally decompose the system are Yourdon's structured
analysis and design (Yourdon, 1982) and Softech's Structured Analysis and Design
Techniques (SADT).

Structure charts, such as HIPO, can be used at the next stage to provide a
framework for the system specification. Further elaboration of the data dictionary is

268 L. Ford

needed at this stage, for which the same tool that served in the requirements
definition stage, e.g. PSL/PSA, can be used.

Jackson and Warnier-Orr diagrams are useful for providing the top-down hierar-
chical structure needed at the system design stage. Alternatives for equipment and
proprietary software such as DBMSs may need to be evaluated at this stage, and
King (1984) suggests a Kepner-Tregoe Decision Analysis Matrix to help bring
objectivity to the process.

There are many products available to help in the program design and develop-
ment stage. Most of them support structured design along the lines of JDM, briefly
described below. There are five steps to JDM:

1 draw the data structure;
2 identify correspondences between the data structures;
3 form the program structure;
4 list and allocate the executable operations;
5 write schematic logic.

In the first step, input/output data are depicted as a series of hierarchical structures.
Their processing relationships are expressed in the next step which forms the basis
for the program structure. This provides two things. Firstly, processes are decom-
posed to smaller ones; and secondly, their executional dependence is defined. In
the fourth step each of the small processes is allocated fairly primitive data
handling descriptions, e.g. read customer record. Finally, this is elaborated in JDM's
own version of structured English which can be preprocessed to generate COBOL
code or used manually to provide statements in other programming languages.

Test harnesses exist that provide an environment for the testing stage. These
facilitate the testing of individual programs or the system as a whole with pre-
established test data. One difficulty at this stage, however, is to ensure that all
possible solution paths are tried. Some test data generators are now available
which, when given a detailed program-level logical design, can generate the mini~
mum set of test data to ensure that every path and condition is tried. Doing this does
not, of course, guarantee that a program is correct since not all permutations of data
values are tested. As Dijkstra astutely observed, testing can demonstrate the pres~
ence of errors but never their absence. In addition, such tests are not automatically
checked against the requirements definition. Users therefore need to satisfy them-
selves manually that results are in accord.

At the implementation and production stage most organizations have developed
their own standards for installation and production procedures.

There are several hundred programming languages used by software engineers.
The more important ones have been summarized by Barron (1984) and are men-
tioned below to give the AI worker a feel for them. COBOL which dates back to the
1950s is the most common and successful of the commercial languages. It has good
file handling facilities and a clear separation of data from procedures. The language
was introduced before the advent of the structured programming movement and it
lacks structuring facilities. The enormous commitment to the language, however,

Artificial intelligence and software engineering 269

has resulted in amendments to the language over the years to improve it. FORTRAN
and ALGOL 60 are the pre-eminent languages for scientific work. Each emphasizes
numerical calculation and the use of arrays. Of the general purpose languages PL/I
and Pascal are the most popular. Pascal has gained widespread approval for its ease
of portability (Pascal compilers are implemented in Pascal, thus easing its port-
ability) and good structuring facilities~.BASIC and APL have been dominant as
examples of interactive languages although LOGO and FORTH are comparatively
recent languages that are beginning to challenge them. CORAL 66 and RTL/2 are
real-time languages suited to responding to external signals arriving in an
unpredictable manner. These languages are not dissimilar to the ones that support
concurrent programming such as Modula and Concurrent Pascal. Ada, however, is
the language that promises to be most widely used for such work, supported, as it
is, by the US Department of Defense. Finally, of the system programming languages,
C is at the forefront. It combines features associated with high-level languages such
as Pascal with efficient hardware access facilities that were previously the province
of assembly languages.

Some mention must be made of fourth generation environments (4GE) that are
now becoming popular and which represent the possibility of a bridge between SE
and AI.

There are five generations of computer languages:

1 machine code,
2 assembler,
3 high level, e.g. COBOL, Pascal,
4 4GL, e.g. Oracle,
5 5GL, e.g. declarative and object-oriented languages.

The fifth is used mainly in AI, and the second and third primarily in SE. It is the
fourth level which has been introduced. A 4GE, which has as a component a 4GL,
recognizes the need to separate four levels of concern, namely users, screens,
applications, and databases. In the past these have often been bundled together. For
example, a user requirement has resulted in a single application with data and
screen layouts embedded, and thus inextricably tied to it. The economics of
software development and enhancement suggest that a decoupling of these will
reduce programmer effort and hence cost. A 4GE may consist of a data dictionary; a
screen painter that allows interactive screen design; a report generator; a dialogue
specifier (really no more than a control flow between non-procedural information
within a 4GE); an administrative aid for cataloguing programs; a program develop-
ment guidance system; and a query facility. Many of these features have been on the
SE scene for some time but they are now being fully integrated into an application
development environment. It is, perhaps, the emergence of relational databases,
which allow disparate data to be linked relatively simply, which has been the
cornerstone for these new developments.

The idea of an integrated environment, often linked to particular hardware, is a
feature of AI applications development. These environments usually have good
windowing facilities and pointing devices such as the mouse. There are now two

270 L. Ford

dozen or more products which aid the process of knowledge engineering, with most
emphasis placed on representing and manipulating knowledge.

An environment, for example Knowledge Craft from Carnegie Group Inc., usually
offers programmers a choice of knowledge representation techniques and control
strategies. It also has database management, knowledge base editors, three program-
ming regimes (logic, rule-based, and object-oriented), and a programmers' work-
bench that features an icon oriented interface with windows to view internal
processes and graphically displayed knowledge (usually in tree notation). AI
workers are now accustomed to having such sophisticated tools, but they are
expensive and for bit-mapped display are only for the single user.

Harmon and King (1985) have categorized a number of tools. The categorization
serves to give the software engineer some idea of the flexible approach which AI
workers can bring to software development. First, are a variety of formalisms in
which knowledge can be represented, including frames (which allow contextual
information to be incrementally added to declarative knowledge), IF-THEN rules
which specify the conditions under which a consequent is true or should be
actioned, and objects (which correspond to entities in the real world). Knowledge
can be further refined with certainty factors. For example, an IF-THEN rule could have
probabilities associated with one or more of its conditions being true (since the
truth of them may not be determined absolutely) and the rule itself may have a
certainty factor associated with it because much knowledge is judgemental.
Another feature of these tools concerns the way in which new facts are generated by
inference. AI uses two techniques from formal logic in this respect substantially.
Modus ponens, which states that if A is true, and if the implication A ~ B is true,
then B is true; and resolution, which underpins implementation of logic as a
programming language in the form of PROLOG. A variety of inference control
strategies are available to the AI worker. These include backward chaining (which
considers a conclusion and then attempts to establish the truth of its premises,
which in turn usually necessitates considering other conclusions}, forward chain-
ing (which draws conclusions based on the premises which are currently con-
sidered to be true), and depth-first and breadth-first search. Products can be
distinguished further by the extent to which they help the knowledge engineer
build the knowledge base; their explanation capabilities; display options; and their
ability to take data from sources, e.g. sensors, instruments, databases, and indeed
other programs implemented in various languages.

The two most popular AI programming languages, LISP and PROLOG, have been
integrated into some of these environments. LISP (LISt Processing language) dates
back to the late 1950s and has been prominent in AI work since then. It is a
functional language, which evaluates functions rather than performing a sequence
of steps, and assigns values to variables. Data structures of LISP are, as the name
suggest, lists. Elements of lists may be symbols or lists; the language thus relies
heavily on recursion. Whereas LISP is based on the lambda calculus, PROLOG its
nearest rival in terms of popularity, is based on the predicate calculus. A PROLOG
program cqnsists of facts and rules of inference expressed in a predicate (or
relationship} formalism. (PROLOG is in fact a relational calculus and a program can

Artificial intelligence and software engineering 271

be regarded as a database of extensional (factual) and intensional (rule) information
that can be queried in a way not dissimilar to a conventional database.) Although
PROLOG is regarded as a declarative language, as opposed to a procedural
language, e.g. Pascal, on some occasions it is necessary to provide control infor-
mation for the desired interpretation or for reasons of efficiency.

Future developments

Although there are many software problems which could be labelled as AI or SE,
and for which the methods and tools of each discipline are appropriate, there is
nevertheless an increasing demand for AI systems to have elements of SE and vice
versa.

'User-friendliness' has been coined to denote the sensitivity a system has to the
needs of its user community. To provide this sensitivity a system may need to allow
natural language input and output. If it is to sustain an acceptable dialogue it will
need to have a model of the user (which indicates, for example, a user's knowledge
of the system he is communicating with) and knowledge of the system--the back
end. Natural language understanding, user modelling, and system knowledge
modelling, are topics in AI which are receiving substantial attention in the research
and development of Intelligent Front Ends to interactive AI software such as expert
systems, and also to conventional software systems such as statistical packages,
control systems, and DBMSs. This work heralds the emergence of conventional
software 'enveloped' by a layer of AI software. There is evidence for other SE
systems having an 'injection' of AI to improve performance and efficiency. Speech
recognition has traditionally been the preserve of algorithmic processing of syntac-
tic data, but semantic information about the meaning rather than the form of
utterances is being explored for an advance in overall performance. AI represen-
tation and inference techniques are being applied to improve it.

Conversely, AI is in need of good data modelling and data processing capabilities
if it is to address the major computational problems of the commercial and scien-
tific world. These capabilities are, of course, already evident in conventional
systems and it seems clear that AI systems need to incorporate them in order to
address other than stand-alone problems with small data processing requirements.

There is, therefore, some evidence and a case for the emergence of 'hybrid'
systems, i.e. systems composed of AI and SE elements. This poses two problems.
Firstly, how can the software be integrated, and secondly, what are the method-
ological implications for the development of new systems?

It is already possible to integrate software developed in Pascal, with an AI
language such as PROLOG: some implementations of PROLOG allow calls to be
made to compiled routines of Pascal, C, assembly code, etc. But the data passing
mechanisms are, as yet, crude and inhibiting. This channel of communication
needs to be wider and more flexible in terms of the data types that are allowed. We
expect more investigation of the uses of DBMSs in these hybrid systems and for
data abstraction techniques to be used to permit greater freedom of common data
definition.

272 L. Ford

Once this first problem has been overcome the methodological implications for
developing hybrid systems need to be addressed for substantial systems. The move
to rapid prototyping by software engineers and its consequent involvement of users
at an early stage of development is not dissimilar in character to the method
employed in AI. It thus becomes possible to imagine an incremental development
of hybrid systems with each increment representing an elaboration of a require-
ments definition (in SE terms) and a closer approximation to a solution in AI terms.
The details of such a liaison of the two disciplines will obviously need to be
carefully considered by both communit ies , but it does appear to be a pre-requisite
of orderly development of hybrid systems.

Extreme problems of AI and SE for which no hybridization is necessary can also
benefit from a methodological point of view with the applicat ion of techniques
from the other discipline. Research projects are examining the possibility of using
knowledge-based systems to help in the control and elaboration of various stages of
the SDLC. In addit ion the verification techniques of formal SE are being examined
for their usefulness in the validation process of expert systems.

These activities and needs of the user communi ty presage a closer relationship
between the two disciplines. In order for this to take place AI workers need a better
understanding of SE, and software engineers a better understanding of AI. It is
hoped that this tutorial has helped in some way to provide that understanding and
will encourage practitioners of both disciplines to explore further for themselves.

Acknowledgments

A number of issues addressed in this tutorial were explored during a course on the
relationship of AI and SE. I thank students on the course for their contribution to
my understanding.

In addition I wish to thank Derek Partridge for many useful comments on an
earlier draft.

References

Barron, D.W. (1984) Programming Languages: coherent design for simplicity, In: The Computer
Users Yearbook, Volume 1 (ed. R. Labbett) VNU Business Publications BV, London.

Bishop, P. (1986) Fifth Generation Computers--Concepts, Implementations and Uses. Ellis-
Horwood Ltd., Chichester.

Buchanan, B.G. & Feigenbaum, E.A. (1978) DENDRAL and meta-DENDRAL: their applications
dimension, Artificial Intelligence, 11, 5-24.

Campbell, J.A. (1984) Three uncertainties of AI. In: Artificial Intelligence: Human Effects (eds
M. Yazdani & A. Narayanan) Ellis-Horwood Ltd, Chichester.

Doyle, J. (1985) Expert systems and the myth of symbolic reasoning. In: IEEE Transactions on
Software Engineering. Vol SE-11, 11, 1386-1390.

King, D. (1984) Current Practices in Software Development. Yourdon Press, New York.
Partridge, D. (1986) Engineering artificial intelligence software, Artificial Intelligence Review, 1,

27--41.
Partridge, D. & Wilks, Y. (1987) Does AI have a methodology which is different from software

engineering?. Artificial Intelligence Review, 1,111-120.

Artificial intelligence a nd software engineering 273

Sell, P.S. (1985) Expert Systems--A Practical Introduction. Macmillan, Basingstoke.
Shortliffe, E.H. (1976) Computer-Based Medical Consultations: MYCIN. Elsevier, Amsterdam.
Waterman, D.A. (1986) A Guide to Expert Systems. Addison-Wesley, New York.
Yourdon, E. (1982) Managing the System Life Cycle: a Software Development Methodology

Overview. Yourdon Press, New York.

Further Reading

This tutorial does little more than sketch some similarities, differences, and points of contact
between AI and SE. The reader is recommended to consult some of the texts below for a more
comprehensive understanding of the relationship between the two disciplines.

Sommerville, I. (1985) Software Engineering. Addison-Wesley, New York. (A fairly formal but
readable introduction to Software Engineering.)

King, D. (1984) Current Practices in Software Development. Yourdon Press, New York. (A good
guide to the tools and techniques of SDLC used.)

Charniak, E. & McDermott, D. (1985) An Introduction to Artificial Intelligence. Addison-Wesley,
New York. (A formal and comprehensive introduction to AI.)

Harmon, P. & King, D. (1984} AI in Business: Expert Systems. John Wiley & Co, Chichester. (A
useful guide to the tools and techniques used in the development of practical AI software.}

Partridge, D. (1986) Artificial Intelligence: Applications in the Future of Software Engineering,
Ellis Horwood Ltd, Chichester. (A thought-provoking treatment of the problems and potential
for generating practical AI software.)

Rich, C. & Waters, R.C. (eds) (1986) Readings in Artificial Intelligence and Software Engineering.
Morgan Kaufmann, Los Altos, California. (A collection of papers which represent the some-
what limited view that 'the ultimate goal of AI applied to SE is automatic programming'.
Nevertheless, some interesting ideas on the possibility of AI tools and techniques easing the
task of the Software Engineer.)

