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Computer-aided imaging systems are now widely used in cytogenetic laboratories to reduce the 
tedium and labour-intensiveness of traditional methods of chromosome analysis. Automatic 
chromosome classification is an essential component of such systems, and we review here the 
statistical techniques that have contributed towards it. Although completely error-free classifi- 
cation has not been, nor is ever likely to be, achieved, error rates have been reduced to levels 
that are acceptable for many routine purposes. Further reductions are likely to be achieved 
through advances in basic biology rather than in statistical methodology. Nevertheless, the sub- 
ject remains of interest to those involved in statistical classification, because of its intrinsic chal- 
lenges and because of the large body of existing results with which to compare new approaches. 
Also, the existence of very large databases of correctly-classified chromosomes provides a valu- 
able resource for empirical investigations of the statistical properties of classifiers. 
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1. Introduction 

The importance of chromosome abnormalities in human 
disease has become widely recognized over the past 30 
years. They are present in perhaps 20% of  all concep- 
tions, in 50% of  early spontaneous abortions, in 10% of  
mentally retarded individuals and in many, perhaps most, 
cancers (Speed et al. 1976, Bond and Chandley 1983). 
i'hey may occur either in all the cells of  the body, that is 
as constitutional abnormalities, or only in certain specific 
cell lines. The former can either be inherited from a parent 
or arise as a new mutation during formation of the sperm or 
egg, whereas the latter result from a mutation occurring at 
any time from conception to old age, often as a con- 
sequence of  exposure to environmental hazards. Some are 
abnormalities of number, with one or more entire chromo- 
somes additional to or missing from the normal comple- 
ment; others are of  structure, with pieces of  some 
chromosomes missing (deletions), turned back-to-front 
(inversions) or shifted on to another chromosome (trans- 
locations). Because of  this complexity, chromosome analy- 
sis has evolved into a specialized discipline with widespread 
applications in both research and clinical practice, includ- 
ing prenatal screening, genetic counselling, oncology, radia- 
tion dosimetry and toxicology. 
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The need for automation arises from the fact that the 
'traditional' (i.e. manual) methods of analysis are tedious 
and labour-intensive. Because chromosomes are fre- 
quently lost or obscured during preparation, several cells 
must usually be analysed until the observer is satisfied as 
to their chromosome constitution, or 'karyotype'.  How- 
ever, cells at the stage of division (metaphase) when the 
chromosomes are most easily analysed are relatively 
sparse, so that finding the required number may take 
time. If  a hard copy is needed, the cell is first photo- 
graphed, then the individual chromosomes are cut out 
and pasted together in pairs in a standard format known 
as a 'karyogram' (Fig. 1). An experienced operator takes 
about an hour to carry out a typical analysis requiring, 
say, 15 metaphase cells to be found and to have their chromo- 
somes counted and 5 cells to be fully karyotyped, and a 
further 30 minutes for each karyogram produced. Within 
the last 10 years computers have become sufficiently cheap 
and fast to make full or partial automation of several stages 
in this process a practical prospect. Today, there are about a 
dozen companies marketing automated or semi-automated 
metaphase-finding and/or karyotyping systems, of which 
several hundred are in use throughout the world. 

Our present purpose is to provide a comprehensive over- 
view of  the methods used by computer-aided systems to 
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in the state of contraction or density of staining (Section 3). 
In Section 4 we review what we refer to as 'context-free' 
methods of classification, in which individual chromo- 
somes are classified independently of each other. We take 
into account the fact that the normal human karyotype 
consists of an ordered set of 22 pairs of autosomes and a 
pair of sex chromosomes leads to so-called 'context- 
dependent' classifiers (Section 5). Widening the context 
further, we then consider the problem of how best to infer 
the common underlying karyotype of a population of 
cells, given that the karyotype of any individual cell may 
be subject to error ('multiple-cell' karyotyping, Section 6). 
In Section 7 we review a number of more specialized appli- 
cations of automated chromosome analysis, including aber- 
ration scoring for radiation dosimetry, and the particular 
problems and opportunities involved in the analysis of the 
very long overlapping chromosomes characteristic of pro- 
phase and prometaphase cells. Finally, in Section 8 we 
attempt to summarize the progress made to date, and the 
prospects for future progress in this field. 

Fig. 1. G-banded metaphase cell and karyogram 

classify human chromosomes fixed on slides. We shall 
therefore not be concerned with other aspects of automa- 
tion, such as slide preparation and metaphase-finding, nor 
with the extensive literature on the techniques of flow cyto- 
metry (for further references on these topics, see for exam- 
ple Fantes and Green, 1989; Martin et aI., 1989; Vrolijk 
et al., 1989; Korthof and Carothers, 1991). As will be 
seen, the complete armoury of statistical classification 
methods has been applied to this problem at various 
times, and it therefore provides an excellent exemplar for 
comparative studies of different approaches. Further- 
more, the widespread routine use of automation in cyto- 
genetic laboratories in recent years has led to the 
existence of exceptionally large databases of correctly 
classified chromosomes, making it possible, for example, 
to explore empirically the asymptotic behaviour of classi- 
fiers. This review is based largely on the bibliography pro- 
vided by Lundsteen and Piper (1989), together with other 
and more recent references from our personal collections. 

We start by reviewing methods of extracting features 
from processed images for input into statistical classifiers 
(Section 2). We then consider techniques for normalizing 
feature measurements to allow for the potentially large dif- 
ferences between cells and between specimens, for example 

2. Image processing and feature extraction 

In the early days, chromosomes were stained uniformly and 
as a result could be distinguished only on the basis of size 
and shape. Seven size-shape groups, denoted by the letters 
A - G  inclusive, were defined at a conference in Denver, 
Colorado (Denver Conference, 1960). These so-called 
Denver groups are still useful for some purposes. How- 
ever, nowadays most routine karyotyping is carried out 
on Giemsa-stained chromosomes. These appear as dark 
(absorption) images on a light background and have a 
characteristic pattern of light and dark bands unique to 
each type of chromosome, and are referred to as G-band- 
ing (Fig. 1). Automated image processing follows the usual 
steps of scanning, digitization, thresholding, segmentation 
and feature extraction. Since none of these, apart from 
the latter, is of present concern, the reader interested in 
technical details is referred to Rutovitz et al. (1978), Piper 
et aI. (1980), Nickolls et al. (1981), van Vliet et al. (1990). 

The features used for classification are related to size, 
shape and banding pattern. To represent the latter, the first 
step is to estimate the medial axis of the chromosome, then 
to generate a profile by taking the integrated density at right 
angles to the axis at each point (Fig. 2) (Hilditch, 1969; 
Groen et al., 1976; Piper et al., 1980; Piper and Granum, 
1989). Another profile can be generated by taking the abso- 
lute differences of the density profile. A shape profile can be 
obtained in similar fashion by computing the width, or some 
transformation of it, at right angles to the medial axis (Piper 
and Granum, 1989). This is particularly useful for identify- 
ing the position of the centromere, which usually corre- 
sponds to a point of minimum width. Various methods 
have been proposed for extracting features from profiles. 
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Fig. 2. (a) Segmented chromosome; (b) medial axis and normal 
chords; (e) profile of density normal to the medial axis 

Caspersson et al. (1971) produced a global description of 
the density profile by means of a Fourier decomposition, 
of which the first eight or so harmonics were found to be 
useful for discrimination. However, this approach does 
not permit identification of local features such as missing, 
additional or displaced bands. It also encounters difficul- 
ties in handling differential contraction of chromosomes, 
and the resulting effects on the fundamental frequency 
and all higher harmonics. Granlund represented profiles 
as a mixture of several Gaussian distributions each charac- 
terized by height, width and position (Granlund, 1971; 
1974; 1976). The procedure is limited by the fact that bands 
are not intrinsically Gaussian in nature, and may show 
extreme kurtosis or other distortions. Lundsteen and 
Granum (1975) reduced each profile to a sequence of num- 
bers representing the position of each peak, its density and 
the density difference between it and the adjacent valley. By 
producing ideograms of 'artificial' chromosomes based 
only on these data, and presenting them for visual classifi- 
cation, they were able to show that these band transition 
(BT) sequences contained all the essential discriminatory 
information present in the original profile. Granum et al. 
(1981) derived a set of global features by taking a product 
between the density profile, f ( x ) ,  and each of a series of 
weighting functions, wi(x) (i = 1 , . . . , K )  (see Fig. 3), to 
give 

feature i =  f ( x )  wi(x) dx (i = 1 , . . . ,  K)  

+1 

wdd 1 wdd2 

i:/ 
wdd3 wdd4 

Fig. 3. Weighting functions used to extract features of the density 
profile according to the method of Granum et al. (1981) 

where the wi(x) can be either symmetric (polarity- 
independent) or asymmetric (polarity-dependent). Groen 
et al. (1989) proposed a local band descriptor based on 
two-dimensional Laplace filtering of the image, followed 
by determination of the position of certain key bands (for 
instance the largest, the darkest, the first on the p-terminal, 
etc.). Granum and Thomason (1990) represented the pro- 
files from chromosomes of the same class by means of a 
Markov network in which the probability of a particular 
transition from a band or feature to its neighbour was equa- 
ted to the frequency with which it occurred in a learning set. 
An unknown profile could then be fitted to the Markov net- 
work of each chromosome class in turn by dynamic pro- 
gramming, and a measure of goodness-of-fit obtained by 
taking the appropriate product of transition probabilities. 
Errington and Graham (1993) input the banding profile 
directly to a multilayer perceptron neural network, and 
thereby avoided the need to extract intuitively-defined 
features from it. 

Piper and co-workers proposed that features be grouped 
according to how much a priori information is needed to 
measure them (Piper et al., 1980; Piper and Granum, 
1989). Level 1 features can be measured directly from the 
chromosome image (e.g. area, density, convex hull peri- 
meter); level 2 features require the medial axis (e.g. 
length, 'even-valued' functions of the density profile); level 3 
features require both the medial axis and the correct polar- 
ity (e.g. 'odd-valued' functions of the density profile); 
finally, level 4 features require not only the medial axis 
and polarity, but also the position of the centromere (e.g. 
the ratio of short arm to long arm, the centromeric index, 
for length, area or density). Clearly, the lower the level of 
features on which a classifier is based the more sensitive it 
will be to errors at higher levels of processing. 

3. Feature normalization 

There are large variations in the appearance of cells, even 
from the same slide, because of differential contraction 
and intensity of staining and because some chromosomes 
may be unrecognizable, or missing from, or additional to, 
the normal complement. Typically, for example, chromo- 
somes of the same class may vary in size by a factor of 
2-3 between different metaphases (for comparison, 
chromosomes of different class within a metaphase differ 
in size by a ratio of 5 : 1). Since these differences are not 
directly relevant to chromosome classification, their effects 
must be removed from feature measurements by appropri- 
ate normalization. Given the correct identities of individual 
chromosomes, the problem is trivial since appropriate cor- 
rection factors can be applied to produce the desired mean 
feature values. However, an automatic system faces a 
chicken-and-egg situation in which normalization cannot 
be correctly applied until chromosomes have been 
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correctly classified and vice versa. Hilditch and Rutovitz 
(1972) therefore proposed an iterative procedure in which 
a crude normalization is first applied, followed by a tenta- 
tive classification, followed by a refined normalization 
and so forth until (normally) convergence. For size 
measurements, Piper and Granum (1989) adopted the 
simpler approach of normalizing by a multiplicative trans- 
formation, based on setting the median-sized chromosome 
in each cell to a value of 1000, claiming that the normalized 
measurements should be little affected by missing or addi- 
tional chromosomes or by undetected composites of two 
or more chromosomes. They standardized other measure- 
ments by applying a linear transformation: 

g = A, + 8,Sj 

where f/j, f/j denote respectively the transformed and 
untransformed values of feature i on the j th  chromosome, 
and A; and B~ denote cell-specific constants chosen to give 
a predetermined mean and standard deviation to the trans- 
formed features. The latter approach may be regarded as 
unprincipled, in contrast to size normalization which 
depends on prior knowledge that chromosomes within the 
same metaphase have the same degree of contraction. We 
suspect that a better understanding of the causes of varia- 
tion in feature measurements would lead to more sensible 
and powerful normalization strategies. Granum (1982) 
showed that normalization generally improved classifier 
performance. For further discussion see Ledley et al. 
(1972) and Moore (1975). 

4. Context-free classification 

If individual chromosomes are considered as independent 
objects, without regard to their context as components of 
a karyotype, then the problem of assigning them to classes 
becomes a familiar one of statistical discrimination and is 
covered by many standard texts (see for example Choi 
1986 for an excellent overview). Suppose we denote the 
feature vector of the ith chromosome from the j th  cell by 
xq, then the posterior probability that it belongs to class 
Ck is, by Bayes' theorem, 

Pr(C k [ xij  ) (3( P r ( x i j  I Ck)  e r ( fk )  

Assigning each chromosome to the class for which this 
probability is maximized is an optimal decision rule, in 
the sense of minimizing the probability of error. How- 
ever, this assumes that the two quantities on the right- 
hand side are known, or can be estimated without error. 
Since this is in fact not the case, the rule is not necessarily 
optimal but is assumed to be nearly so. The prior probabil- 
ity Pr(Ck) is usually known from the context. Thus, all 
autosomes occur with equal frequency in the normal karyo- 
type, but the expected frequencies of the sex chromosomes 
depend on what is known of the sex of the subject. For 
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example in prenatal screening, where the sex is not known 
a priori, one might assume prior probabilities of 2/46, 1.5/46 
and 0.5/46 for each autosome, and the X and Y chromo- 
somes respectively. Another complication concerns how 
to deal with structurally abnormal or grossly mis- 
measured chromosomes. The obvious solution is to have 
a 'reject' class with a posteriori probability fixed at a value 
such that the fraction of normal chromosomes assigned to 
it is less than some small predetermined amount (Paton, 
1969). Essentially, then, the problem of assigning chromo- 
somes to classes reduces to that of estimating the likeli- 
hood Pr(xqlCg). Most often, this has been done by 
assuming a multivariate Gaussian distribution for xij, that 
is that 

Pr(xij l Ck) 

: (27f)-n/2 [ Vk [ 1/2 exp [-l(xij --  pk) T Vk -1 (Xij --  P'k)] 

where n is the number of features and #k, Vk, representing 
respectively the mean feature vector and covariance matrix 
for chromosomes of class Ck, must be estimated from a 
learning set of correctly-classified chromosomes (Lundsteen 
et al., 1986). A difficulty with this approach concerns the 
large number of parameters involved. With 24 classes and 
n features the full model has 12n(n + 3) parameters, and 
requires an appropriately large training set. Several work- 
ers have therefore considered ways of reducing the com- 
plexity, either by discarding features that are so highly 
correlated with others that they contribute little to effective 
discrimination, or by simplifying the covariance matrices in 
various ways (Granum, 1982; Kirby et al., 1991; Theobald 
and Kirby 1994). Piper (1987) showed that, with moderate- 
sized training sets, it was possible to achieve great simplifi- 
cation without loss of accuracy by ignoring all off-diagonal 
terms in the covariance matrices, i.e. by effectively treating 
the features as independent within each class. This was a 
somewhat surprising result, since the absolute magnitudes 
of the feature correlations were generally quite large. He 
also developed a method of selecting features based on a 
combination of the discriminating power of each feature 
taken in isolation, together with its lack of correlation 
with the set of features already selected. The method was 
simple to compute and appeared to work well particu- 
larly, as might be predicted, with the zero-covariance clas- 
sifier model. Subsequently, he showed that considerable 
improvements in accuracy could be achieved using the 
full covariance matrices, but only if the size of the training 
set was about 10 times the total number of parameters in 
the model (Piper, 1992). This implies, for example, that 
with 24 features a training set of about 75 000 chromo- 
somes would be needed to realize the potential of a fully- 
parametrized model. He also presented some results on 
the estimation of error rates which can be summarized as 
follows. Let ER(N) represent the estimated error rate 
obtained by resubstituting the training set, of size N, into 
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the classifier that was trained on it. Let ET(N) represent the 
estimated error rate obtained by submitting an independent 
test set, also of size N, to the same classifier. Then it can be 
inferred from Piper's results that the quantity 

1ER(N) + �89 

is an approximately unbiased estimate of the asymptotic 
error rates ER(oc) and ET(ec) (which are of course 
equal). Although this is no more than an empirical observa- 
tion, it has previously been noted in an altogether different 
context by Toussaint and Sharpe (1975), and we therefore 
conjecture that it may be true under very general condi- 
tions. If so it would provide an obvious and straight- 
forward method for unbiased estimation of the 
asymptotic error rates from a finite sample of any size. 
However, a formal proof is lacking. This is an example of 
the usefulness of the very large data sets available from 
automated chromosome analysis in providing insights 
into the properties of multi-class, multi-feature classifiers. 

Other approaches have also been investigated. Rutovitz 
et al. (1978), working with a feature vector comprising 
size and centromeric index only, used a kernel-density 
method to estimate the likelihood function for each class. 
They replaced each point in the feature space of the learn- 
ing set by a multivariate Gaussian spread function. How- 
ever, this is computationally feasible only for small 
feature vectors. A group at Leuven used a classifier based 
on fuzzy subset theory, the outcome of which was a numeri- 
cal measure of the similarity of an unknown chromosome 
to a known class (Vanderheydt et al., 1979). The Athena 
system adopted a non-parametric approach in which 
features were assumed to be distributed independently of 
each other and the marginal feature distributions were esti- 
mated from histograms derived from the learning set (van 
Vliet et al., 1989), so that 

M 
Pr(xij I Ck) = I ~  hkm(Xijm) 

rn=l 

where hkm(X) denotes the empirically derived relative fre- 
quency of value x of the mth feature for class Ck, and Xijm 
denotes the ruth component of xij. Shepherd et al. (1988) 
found that a decision-tree method gave consistently higher 
misclassification rates than a simple linear classifier, 
although it was much faster and required less memory. 
Kirby and Theobald (1993) investigated the performance 
of various 'two-stage' procedures, in which a single feature 
was first used to eliminate some candidate classes, before 
applying all features for a final classification. They 
reported greatly reduced overall allocation times, with a 
negligible penalty in terms of increased misclassification 
rates. Errington and Graham (1993) used a multilayer per- 
ceptron neural network, taking as inputs the chromosome 
size and centromeric index, and a coarsely quantized rep- 
resentation of the banding profile. They found that the 

performance compared favourably with that of a standard 
parametric classifier. The advantage of a neural network is 
that it reduces the need for intuitively defined features. 
However, networks perform best if their architecture and 
various controlling parameters are 'customized' for particu- 
lar applications, so that in practice they may be no easier to 
implement than any other type of classifier. 

5. Context-dependent classification 

It seems intuitively obvious that misclassification error 
rates could be reduced by taking into account the fact 
that the normal human karyotype consists of 22 pairs of 
autosomes and a pair of sex chromosomes. In particular, 
human karyotypers rely strongly on between-chromosome 
comparison, and this has been shown to reduce error rates 
by at least an order of magnitude in manual karyotyping 
(Lundsteen et al., 1976). Also, unpublished experiments at 
this laboratory have shown that when chromosomes are 
initially forced into homologous pairs using knowledge of 
their correct classes, and the pairs are then classified auto- 
matically, the error rates are typically approximately 
halved. This contextual knowledge constitutes a constraint 
that penalizes, say, the allocation of three chromosomes to 
one class and one to another. A method of allowing for 
such a constraint would be to incorporate it formally into 
a parametric model. For example, the likelihood for assign- 
ing to a particular class three chromosomes, each having 
two features, could be obtained from a multivariate 
Gaussian model with dispersion matrix of the form: 

~1 Cll Cll b12 C12 C12 

Cll ~1 Cll C12 b12 c12 

Cll Cll ~1 Cl2 c12 bl2 

b12 C12 C12 V2 C22 C22 

C12 b12 c12 c22 ~2 c22 

c12 c12 b12 c22 c22 ~2 

where v 1 denotes the variance of feature 1 (assumed equal 
for all homologues of this class), v 2 the variance of feature 
2 (likewise), b12 the covariance between features 1 and 2 on 
the same chromosome, Cll the covariance between homo- 
logues for feature 1, c22 the covariance between homo- 
logues for feature 2 and q2 the covariance between 
feature 1 and feature 2 on different (homologous) chromo- 
somes. Parameters of type Cxx are therefore additional to 
those required for the independent assignment model, and 
presumably the size of the required training set would 
have to be increased accordingly. 

In principle, for a complete karyotype of 46 chromo- 
somes, an optimal (maximum likelihood) solution could 
be found by computing the likelihood for each of the 
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Table 1. Percentage error rates for three classifiers on each of three data sets 

Copenhagen Edinburgh Philadelphia 

Context-independent ML classification 6.5 18.3 22.8 
Rearrangement classifier RC3 5.7 16.4 20.6 
Transportation procedure 4.4 15.5 19.9 

46!/223 possible allocations to 23 pairs (Slot, 1979). Clearly 
this is far too many to be practical, though in reality the 
number of alternative allocations of a particular chromo- 
some is much less than 23. Also there may be many alterna- 
tive solutions with likelihoods close to the global maximum, 
any of which may be equally useful. Such considerations 
have led several researchers to seek practical though sub- 
optimal solutions. Habbema (1976) proposed an exhaustive- 
search approach for those classes that were particularly 
prone to confusion, for example chromosomes 4 and 5, or 
X and 7. Others have implemented what are essentially 
relaxation methods (Rosenfeld, 1978), attempting to per- 
mute the class assignments iteratively and in parallel to 
arrive at a 'best' solution. For example, Rutovitz (1977) 
described a method based on a Bayesian classifier for pro- 
ducing a shift from a class with too many chromosomes 
to one with too few in a Denver classification of homo- 
geneously stained chromosomes. The cost of moving a 
chromosome from a class G to another H was defined as 
the negative of the maximum probability of any chromo- 
some assigned to G being a member of H. A shift was 
usually implemented as a cascade, a chromosome being 
moved from class Cl to C2, another from C2 to C3 ..... 
another from C,_a to Cn. The cost of a cascade was the 
maximum of the costs of each individual move. Minimum- 
cost cascades, with costs below some threshold of plausi- 
bility, were chosen to correct the original karyotype in an 
iterative procedure which chose and implemented the low- 
est cost cascade first. Other 'rearrangement' classifiers 
were described and compared by Piper (1986) who con- 
cluded that the best overall performance was given by a ver- 
sion (designated RC3) of Rutovitz's method which included 
a penalty for 'implausible' assignments and in which the 
cost of allocating chromosome i, with feature vector xi, to 
class Ck was defined as 

C i k  = - -  log L(xi [ Ck) 

where L denotes the likelihood. However, a practical 
method of finding a globally optimal solution to the con- 
strained allocation problem was proposed by Tso and 
Graham (1983), who noted that it could be formulated as 
a special case of the well-known 'transportation' problem 
in linear programming. In its classical form, the problem 
is that of minimizing the total cost of sending items from 
a set of suppliers, each of whom has a certain number of 
items available, to a set of customers, each of whom 

demands a certain number, given the costs of sending an 
item from any supplier to any customer. In the present con- 
text, 'suppliers' correspond to chromosome classes, each of 
which in a normal cell has two 'labels' corresponding to 
'items', and 'customers' correspond to individual chromo- 
somes, each of which demands a single label in order to 
be allocated. With costs Cik (as for RC3) it can be shown 
that the solution to the transportation problem corre- 
sponds to the global maximum likelihood. Tso and 
Graham also showed how the method could be extended 
to cover situations in which some chromosomes were addi- 
tional to, or missing from, the normal complement. Sub- 
sequently, they and their co-workers devised a rapid and 
efficient algorithm for the special case of unit demands 
and compared the results with those of the RC3 classifier 
(Tso et al. 1991). They found that error rates using the 
transportation algorithm were indeed reduced, but by 
rather a small amount, as shown in Table 1. 

6. Multiple-cell karyotyping 

When, as is often the case, all the cells in a sample can be 
assumed to have an identical karyotype, then that karyo- 
type can be determined with great confidence by combin- 
ing information from several cells. The basic principle is 
that, although karyotyping errors are made in individual 
cells as a result of distorted, touching, overlapping or miss- 
ing chromosomes, such errors should be random and inde- 
pendent from one cell to another. Hence, a reliable 
composite can be built up from a sample of imperfect or 
incomplete cells, rather as one might reconstruct a scene 
from a number of random, independent and incomplete 
glimpses of it. An advantage of this approach is that it 
makes it possible to take from each cell only chromosomes 
that are well-segmented and undistorted. Granlund and 
co-workers used this principle to design a system to com- 
pare the characteristics of the set of chromosomes taken 
from many different cells and assigned to a particular class 
with those of a reference set of the same class, and hence to 
determine whether abnormalities of either number or struc- 
ture were likely to be present (Granlund, et al. 1976; 
Granlund, 1978). The theoretical properties of a multiple- 
cell karyotyping system were worked out by Carothers 
et al. (1983) who derived a necessary and sufficient condi- 
tion for consistent estimation of the correct number, t, of 
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chromosomes in a particular class, C, expressed as: 

Z PtJ [ln (Ptj) - ln(Pij)] > 0 (all i • t) 
J 

where 

Pij = Pr(j chromosomes are assigned to C [ i are 
actually present in C and all other classes 
have the normal complement) 

and showed that the condition was easily met in practice. 
By calculating how many cells would have to be examined 
in order to achieve target false-negative and false-positive 
rates for given levels of misclassification error in individual 
cells, they concluded that a fully-automatic system for 
detecting abnormalities of chromosome number or gross 
structural rearrangements was entirely feasible, even with 
the relatively low levels of accuracy currently achievable 
in individual cells. A practical system for multiple-cell karyo- 
typing was implemented by Lundsteen and co-workers at the 
Rigshospital in Copenhagen (Lundsteen et al., 1989). This 
required no special hardware but simply displayed the 
results of fully-automatic karyotyping of individual cells 
in the form of a spreadsheet, in which each column rep- 
resented the chromosomes from a different cell, and each 
row those assigned to a particular class. Chromosomes 
that could not be reliably assigned were placed in a 
'reject' class at the bottom of the column. The cytogeneti- 
cist could then inspect the display and rapidly decide 
whether any departures from the expected pattern were 
real or a result of processing error. An example is shown 
in Figure 1 of Lundsteen et al. (1989) where, although 
there is apparently a No. 1 chromosome missing from the 
third cell, it is easily seen that the other three cells have a 
normal complement of No. ls and also that the 'missing' 
chromosome is in the reject class at the bottom, almost cer- 
tainly as a result of being severely bent. It can then be con- 
fidently concluded that this cell line has a normal 
complement of No. 1 chromosomes. 

7. Special applications 

We here review a number of applications of chromosome 
analysis other than routine karyotyping in which the role 
of automation has been investigated. However, the total 
effort expended in these areas has been small compared 
with that devoted to karyotyping. 

7.1. Aberration scoring for genetic toxicology 

By 'aberration scoring' we mean the estimation of the fre- 
quency of particular chromosome abnormalities that occur 
randomly as the result of certain environmental influences. 
Examples are: chromosome rearrangements resulting from 
exposure to ionizing radiation (L6rch et al., 1989; Bayley 
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Fig. 4. Metaphase cell with dieentrie chromosome (arrowed) 

et al. 1991); chromosome breaks and gaps induced by 
chemical mutagens (Turner et al., 1993); and sister chroma- 
rid exchanges (SCEs) (Zack et al., 1977; Shafer et al. 1986; 
Garcia-Sagredo et al. 1994). Such aberrations occur ran- 
domly and uniformly throughout the genome and, in the 
first two cases instanced, are relatively rare. For example, 
the incidence of dicentric chromosomes (Fig. 4), which 
have two constrictions instead of the usual one and are 
characteristic of exposure to ionizing radiation, is approxi- 
mately one per 1000 metaphases (or 1 per 50 000 chromo- 
somes) in an unexposed individual. The frequency 
increases with acute dosage according to a linear-quadratic 
relationship. However, at the low doses at which no other 
biological effects are visible (say around 0.2Gy) the fre- 
quency may be increased by a factor of only 2-3 over back- 
ground levels. Reliable estimation of the dose therefore 
requires the analysis of many thousands of metaphases. 
The final outcome of such analyses is a frequency esti- 
mate, which is subject to various sources of uncertainty. 
Thus, in contrast to karyotyping, there is no absolute 
requirement for the machine analysis to be as near error- 
free as possible. The machine contribution to the uncer- 
tainty is a parameter that can be included in a cost-benefit 
analysis of a system. Typically, these systems function as 
pre-screeners, presenting potential aberrations to an opera- 
tor for visual review and rejection of false positives. The 
problem is to identify a particular structural feature of 
the chromosome (centromeres, in the case of dicentric 
example; or breaks in the case of chemical toxicology) 
with sufficient reliability that the rare cases of chromo- 
somes with an incorrect number of the characteristic 
feature can be identified. 
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In the example of dicentric chromosomes, two approaches 
have been used. The first was similar to karyotyping, in that 
an attempt was made to extract numerical features that dis- 
criminated between dicentric and normal chromosomes and 
that were invariant to the biological variability between meta- 
phases or between chromosomes (L6rch et al., 1989). A clas- 
sifier trained on a large set ofmetaphases was then used in the 
conventional fashion. The approach thus depended critically 
on an effective normalization procedure. The second method 
used a model of the expected number of centromeres per 
metaphase to train a centromere classifier within each meta- 
phase individually, and that was specific to that cell, thus 
avoiding the problem of inter-cell normalization (Piper and 
Sprey 1992). Because there was no human supervision of 
the analysis, the training was based on data which was pre- 
sumed, but not known for certain, to have a correct alloca- 
tion. Approaches to classification in the presence of 
'imperfect supervision' have been considered by Chhikara 
and McKeon (1984) and Krishnan (1988). 

Generally similar problems arise in scoring SCEs (Fig. 5), 
except that the background frequency is many orders of 
magnitude higher (about 6 per metaphase cell) so that 
visual review of the machine analysis is not cost-effective. 
Zack et al. (1977) used a Parzen-estimated classifier based 
on two features to determine the probability Psce that an 
observed apparent crossover event was a true SCE, and a 
similar classifier to estimate the probability Pc that the 
image region being analysed was a single chromosome 
(and not a chromosome cluster). Under the assumption 
that these decisions were independent, the joint probability 
of the event being a true SCE in a single chromosome was 
given by the product Psce Pc. The SCE frequency for the ceU 
was then estimated as the sum of the joint probabilities over 

Fig. 5. Metaphase chromosomes stained to show sister chromatid 
exchanges (SCEs) 

Fig. 6. Chromosomes at the prometaphase stage of cell division 

all detected events, normalized by the estimated proportion 
of the metaphase that consisted of fully segmented chromo- 
somes. More information on automation of aberration 
scoring can be found in a survey paper (Piper, 1991). 

7.2. Prometaphase chromosomes 

When a small chromosomal lesion is suspected, cytogeneti- 
cists typically extend their analysis to cells at the prometa- 
phase stage of cell division, where the chromosomes are 
much less contracted and many more bands are visible 
(Fig. 6). In fact, the trend of the last decade has been to 
use longer chromosomes, to the extent that the majority 
of the established databases are now atypical of best 
modern cytogenetic practice. High-accuracy classification 
of these materials has not been demonstrated. One prob- 
lem is that prometaphase cells tend to contain large num- 
bers of overlapping or severely bent chromosomes. 
Furthermore, the centromere is often not clearly visible as 
a distinct morphological feature. 

7.3 Other banding patterns and fluorescence 

Although G-banding is the most commonly-used pattern in 
the UK and US, other methods of differentially staining 
chromosomes are used for some purposes or in other coun- 
tries. An example is R-banding which produces a pattern 
approximately complementary to G-banding. The differ- 
ent banding methods do not normally affect the overall 
morphology of the chromosomes, and similar methods of 
classification can be used for all of them. However, there 
is considerable variation between laboratories even using 
the same banding method, so that classifiers must be 
trained on material from the same laboratory (Piper and 
Granum, 1989). Increasingly important for a variety of 



Computer-aided classification o f  human chromosomes: a review 169 

research and diagnostic purposes is the use of fluorescent 
staining techniques. These generally produce patterns 
resembling G- or R-banding, though often of lower con- 
trast, and the chromosomes remain morphologically simi- 
lar to those from conventionally stained preparations. 
Hence, the conventional classification techniques des- 
cribed above should work well, and what little data there 
is at present tends to confirm this. A genuine alternative 
is the work of Arndt-Jovin and Jovin (1990) who used 
two-channel total fluorescence to classify the chromo- 
somes by their position in a two-dimensional chart, in a 
manner closely resembling the techniques used for flow 
cytogenetics (Fantes and Green, 1986). 

8. Conclusions and future developments 

The development of automation for chromosome analysis 
has been a success both scientifically and commercially. 
Furthermore, the pattern recognition and classification 
problems have presented unique and fascinating challenges 
for imaging scientists and statisticians. These have included 
the definition and extraction of discriminating features, the 
development of appropriate statistical models of inter- and 
intra-cell variation, the effective use of contextual informa- 
tion and constraints, the reduction of computational com- 
plexity (becoming less important with increases in com- 
puting power), the question of how best to present results 
for interactive interpretation, and the potential insights 
into the asymptotic behaviour of classifiers obtainable 
from the very large data sets available. However, some 
cautionary words are also appropriate. The first is that, in 
spite of the expenditure of much effort and ingenuity in 
developing sophisticated statistical models, relatively simple- 
minded approaches often seem to have been almost as effec- 
tive. An example is the assumption of independence 
between features in a parametric model estimated from 
small training sets (Section 4). Also, the use of contextual 
information has to date produced only rather small reduc- 
tions in error rates. We suspect that this is largely because 
most errors result from poorly segmented or severely dis- 
torted chromosomes, which may be hard to interpret even 
by the human eye. If  this is so, then further progress is 
most likely to result from improvements at a more basic 
level of image processing (or of biology) than we have con- 
sidered here. A second reservation concerns the rapid pro- 
gress of genetical research which is constantly presenting 
new opportunities and, by implication, diminishing the sig- 
nificance of earlier developments. At present, for example, 
the use of fluorescent probes and 'painted' chromosomes 
is revolutionizing the ways in which chromosome abnor- 
malities are detected and analysed. The challenges for auto- 
mation are no less than before, but often very different. 
Fortunately, many lessons learnt from earlier experiences 
with automation can be adapted to the new technology. 

References 

Arndt-Jovin, D. J. and Jovin, T. M. (1990) Multivariate chromo- 
some analysis and complete karyotyping using dual labeling 
and fluorescence digital imaging microscopy. Cytometry, 11, 
80-93. 

Bayley, R., Carothers, A., Chen, X., Farrow, S., Gordon, J., Ji, L., 
Piper, J., Rutovitz, D., Stark, M. and Wald, N. (1991) Radia- 
tion dosimetry by automatic image analysis of dicentrie chro- 
mosomes. Mutation Research, 253, 223-235. 

Bond, D. J. and Chandley, A. (1983) Aneuploidy, Oxford Univer- 
sity Press. 

Carothers, A. D., Rutovitz, D. and Granum, E. (1983) An efficient 
multiple-cell approach to automatic aneuploidy screening. 
Analytical and Quantitative Cytology, 5, 194-200. 

Caspersson, T., Lomakka, G. and Moller, A. (1971) Compu- 
terised chromosome identification by aid the quinacrine mus- 
tard fluorescence technique. Heraditas, 67, 103-109. 

Chhikara, R. S. and McKeon, J. (1984) Linear discriminant analy- 
sis with misallocation in training samples. Journal of the 
American Statistical Association, 79, 899-906. 

Choi, S. C. (ed.) (1986) Statistical Methods of Discrimination and 
Classification: Advances in Theory and Applications. Perga- 
mon Press, New York. 

Denver Conference (1960) A proposed standard system of 
nomenclature of human mitotic chromosomes. Lancet, 1, 
1063-1065. 

Errington, P. A. and Graham, J. (1993) Application of artificial 
neural networks to chromosome classification. Cytometry, 
14, 627 639. 

Fantes, J. A. and Green, D. K. (1989) The flow cytometry 
approach to automated chromosome analysis. In Automa- 
tion of Cytogenetics, ed. C. Lundsteen and J. Piper, pp. 
103-111, Springer-Verlag, Berlin. 

Garcia-Sagredo, J. M., Piper, J., Rutovitz, D., Vaquero, J. J. and 
Vazquez, Y. (1994) Automatic scoring of sister chromatid 
exchanges by image analysis in a dose response experiment. 
Environmental and Molecular Mutagenesis, in press. 

Granlund, G. H. (1971) The use of distribution functions to 
describe integrated density profiles of human chromosomes. 
Journal of Theoretical Biology, 40, 573-589. 

Granlund, G. H. (1974) Statistical analysis of chromosome char- 
acteristics. Pattern Recognition, 6, 115-126. 

Granlund, G. H. (1976) Identification of human chromosomes by 
using integrated density profiles. IEEE Transactions on Bio- 
medical Engineering, 23, 182-192. 

Granlund, G. H. (1978) The structure of a system for multiple-cell 
karyotyping. Proceedings of the Fourth International Joint 
Conference on Pattern Recognition, Kyoto, Japan, 837-841. 

Granlund, G. H., Zack, G. W., Young, I. T. and Eden, M. (1976) 
A technique for multiple-cell chromosome karyotyping. Jour- 
nal of Histochemistry and Cytochemistry, 24, 160-167. 

Granum, E. (1982) Application of statistical and syntactical 
methods of analysis and classification to chromosome data. 
In NATO ASI Series No. C.81: Pattern Recognition Theory 
and Applications, ed. J. Kittler, pp. 373-398. Reidel, 
Dordrecht. 

Granum, E. and Thomason, M. G. (1990) Automatically inferred 
Markov network models for classification of chromosomal 
band pattern structures. Cytometry, 11, 26-39. 



170 Carothers and Piper 

Granum, E., Gerdes, T. and Lundsteen, C. (1981) Simple weighted 
density distributions, WDDs, for discrimination between G- 
banded chromosomes, Proceedings of the Fourth European 
Chromosome Analysis Workshop, Edinburgh. 

Groen, F. C. A., Verbeek, P. W., van Zee, G. A. and Oosterlinck, A. 
(1976) Some aspects concerning the computation of chromo- 
some profiles. Proceedings of the 3rd International Conference 
on Pattern Recognition, Coronado, California, 547-550. 

Groen, F. C. A., ten Kate, T. K., Smeulders, A. W. M. and Young, 
I, T. (1989) Human chromosome classification based on local 
band descriptors. Pattern Recognition Letters, 9, 211-222. 

Habbema, J. D. F. (1976) A discriminant analysis approach to 
the identification of human chromosomes. Biometrics, 32, 
919-928. 

Hilditch, C. J. (1969) Linear skeletons from square cupboards. In 
Machine Intelligence 4, ed. B. Meltzer and D. Michie, 
pp. 403-420. Edinburgh University Press. 

Hilditch, C. J. and Rutovitz, D. (1972) Normalisation of chromo- 
some measurements. Computers in Biology and Medicine, 2, 
167-179. 

Kirby, S. P. J. and Theobald, C. M. (1993) Some two-stage proce- 
dures for the calculation of discriminant scores in the 
automated allocation of human chromosomes. Pattern 
Recognition Letters, 14, 221-227. 

Kirby, S. P. J., Theobald, C. M., Piper, J. and Carothers, A. D. 
(1991) Some methods of combining class information for 
the classification of human chromosomes. Statistics in Medi- 
cine, 10, 141-149. 

Korthof, G. and Carothers, A. D. (1991) Tests of performance of 
four semi-automatic metaphase-finding and karyotyping sys- 
tems. Clinical Genetics, 40, 441-451. 

Krishnan, T. (1988) Efficiency of learning with imperfect super- 
vision. Pattern Recognition, 21, 183-188. 

Ledley, R. S., Lubs, H. A. and Ruddle, F. H. (1972) Introduction 
to chromosome analysis. Computers in Biology and Medicine, 
2, 107-128. 

L6rch, T., Wittler, C., Stephan, G. and Bille, J. (1989) An auto- 
mated chromosome aberration scoring system. In 
Automation of Cytogenetics, eds, C. Lundsteen and J. Piper, 
pp. 19-30. Springer-Verlag, Berlin. 

Lundsteen, C. and Granum, E. (1975)Description of chromosome 
banding patterns by band transition sequences. Clinical 
Genetics, 15, 418-429. 

Lundsteen, C. and Piper, J. (eds) (1989) Automation of Cyto- 
genetics. Springer-Verlag, Berlin. 

Lundsteen, C., Lind, A.-M. and Granum, E. (1976) Visual classi- 
fication of banded human chromosomes I. Karyotyping com- 
pared with classification of isolated chromosomes. Annals of 
Human Genetics, 40, 87-97. 

Lundsteen, C., Gerdes, T. and Maahr, J. (1986) Automatic classi- 
fication of chromosomes as part of a routine system for clini- 
cal analysis. Cytometry, 7, 1-7. 

Lundsteen, C., Gerdes, T. and Maahr, J. (1989) Cytogenetic 
analysis by automatic multiple cell karyotyping. In Automa- 
tion of Cytogenetics, eds, C. Lundsteen and J. Piper, pp. 
263-274. Springer-Verlag, Berlin. 

Martin, A. O., Shaunnessy, M., Sabrin, H., Maremont, S., Dyer, 
A., Cimino, M. C., Rissman, A., McKinney, R. D., Cohen, 
M. M., Jenkins, E. C., Kowal, D. and Simpson, J. L. (1989) 

Evaluation and development of a system for automated pre- 
paration of blood specimens for cytogenetic analysis. In 
Automation of Cytogenetics, eds, C. Lundsteen and J. Piper, 
pp. 149-173. Springer-Verlag, Berlin. 

Moore, D. H. (1975) Normalisation of chromosome measure- 
ments: a new method. Computers in Biology and Medicine, 
5, 21-28. 

Nickolls, P., Piper, J., Rutovitz, D., Chisholm, A., Johnstone, I. 
and Robertson, M. (1981) Pre-processing of images in an 
automated chromosome analysis system. Pattern Recogni- 
tion, 14, 219-229. 

Paton, K. (1969) Automatic chromosome identification by the 
maximum-likelihood method. Annals of Human Genetics, 
33, 177-184. 

Piper, J. (1986) Classification of chromosomes constrained by 
expected class size. Pattern Recognition Letters, 4, 391-395. 

Piper, J. (1987) The effect of zero feature correlation assumption 
on maximum likelihood based classification of chromo- 
somes. Signal Processing, 12, 49-57. 

Piper, J. (1991) Automated cytogenetics in the study of muta- 
genesis and cancer. In Advances in Mutagenesis Research 2, 
ed. G. Obe, pp. 127-153. Springer-Verlag, Berlin. 

Piper, J. (1992) Variability and bias in experimentally measured 
classifier error rates. Pattern Recognition Letters, 13, 685-692. 

Piper, J. and Granum, E. (1989) On fully automatic feature 
measurement for banded chromosome classification. Cyto- 
metry, 10, 242-255. 

Piper, J. and Sprey, J. (1992) Adaptive classifiers for dicentric 
chromosomes. Journal of Radiation Research, 33: Supple- 
ment, 159-170. 

Piper, J., Granum, E., Rutovitz, D. and Ruttledge, H. (1980) 
Automation of chromosome analysis. Signal Processing, 2, 
203-221. 

Rosenfeld, A. (1978) Relaxation methods in image processing and 
analysis. Proceedings of the Fourth International Joint Confer- 
ence on Pattern Recognition, Kyoto, Japan, pp. 181-185. 

Rutovitz, D. (1977) Chromosome classification and segmentation 
as exercises in knowing what to expect. In Machine Intelli- 
gence 8, eds, E. W. Elcock and D. Michie, pp. 455-472. Har- 
wood, London. 

Rutovitz, D., Green, D. K., Farrow, A. S. J. and Mason, D. C. 
(1978) Computer-assisted measurement in the cytogenetic 
laboratory. In Pattern Recognition, ed. B. G. Batchelor, pp. 
303-329. Plenum, London. 

Shafer, D. A., Mandelberg, K. I. and Falek, A. (1986) Computer 
automation of metaphase finding, sister chromatid exchange, 
and chromosome damage analysis. In Chemical Mutagens: 
Principles and Methods for their Detection, 10, ed. F. J. de 
Serres, pp. 357-380. Plenum Press, New York. 

Shepherd, B., Piper, J. and Rutovitz, R. (1988) Comparison of 
ACLS and classical linear methods in a biological applica- 
tion. In Machine Intelligence 11, ed. J. Richards, pp. 423- 
434. Oxford University Press. 

Slot, R. E. (1979) On the profit of taking into account the known 
number of objects per class in classification methods. IEEE 
Transactions on Information Theory, 25, 484-488. 

Speed, R. M., Johnston, A. W. and Evans, H. J. (1976) Chromo- 
some survey of total population of mentally subnormal in North- 
East of Scotland. Journal of Medical Genetics, 13, 295-306. 



Computer-aided classification o f  human chromosomes. a review 171 

Theobald, C. M. and Kirby, S. P. J. (1994) Discrimination using 
covariance selection models for the automated allocation of 
human chromosomes. Submitted. 

Toussaint, G. T. and Sharpe, P. M. (1975) An efficient method for 
estimating the probability of misclassification applied to a 
problem in medical diagnosis. Computers in Biology and 
Medicine, 4, 269-278. 

Tso, M. and Graham, J. (1983) The transportation problem as an 
aid to chromosome classification. Pattern Recognition 
Letters, 1,489-496. 

Tso, M., Kleinschmidt, P., Mitterreiter, I. and Graham, J. (1991) 
An efficient transportation algorithm for automatic chromo- 
some karyotyping. Pattern Recognition Letters, 12, 117-126. 

Turner, M., Austin, J., Allinson, M. and Thompson, P. (1993) 
Matching an elastic model of chromosomal shape to features 
on a self-organising map. Proceedings of the British Machine 
Vision Conference, Guildford, UK, 21-23 September 1993, 
pp. 499-508. 

Vanderheydt, L., Dom, F., Oosterlinck, A. and van den Berghe, H. 

(1979) An application of fuzzy subset theory to the classifica- 
tion of human chromosomes. In Proceedings of the IEEE 
Conference on Pattern Recognition and hnage Processing, 
Chicago, pp. 466-472. 

van Vliet, L. J., Young, I. T., ten Kate, T. K., Mayall, B., Groen, 
F. C. A. and Roos, R. (1989) Athena: a Macintosh-based 
interactive karyotyping system. In Automation of Cyto- 
genetics, eds, C. Lundsteen and J. Piper, pp. 47-66. 
Springer-Verlag, Berlin. 

van Vliet, L. J., Young, I. T. and Mayall, B. H. (1990) The Athena 
semi-automated karyotyping system. Cytometry, 11, 51-58. 

Vrolijk, J., Korthof, G., Vletter, G., van der Geest, C. R. G., 
Gerrese, G. W. and Pearson, P. L. (1989) An automated sys- 
tem for the culturing and harvesting of human chromosome 
specimens. In Automation of Cytogenetics, eds, C. Lundsteen 
and J. Piper, pp. 135-148. Springer-Verlag, Berlin. 

Zack, G. W., Rogers, W. E. and Latt, S. A. (1977) Automatic 
measurement of sister chromatid exchange frequency. 
Journal of Histochemistry and Cytochemistry, 25, 741-753. 


