
IMPACT OF TEMPERATURE AND PRECIPITATION VARIABILITY ON 

CROP MODEL PREDICTIONS 

SUSAN J. RIHA, DANIEL S. WILKS and PATRICK SIMOENS 
Department of Soil, Crop and Atmospheric Sciences, Bradfield Hall, Cornell University, lthaca, 

NY 14853, U.S.A. 

Abstract. Future climate changes, as well as differences in climates from one location to another, 
may involve changes in climatic variability as well as changes in means. In this study, a synthetic 
weather generator is used to systematically change the within-year variability of temperature and 
precipitation (and therefore also the interannual variability), without altering long-term mean values. 
For precipitation, both the magnitude and the qualitative nature of the variability are manipulated. 
The synthetic daily weather series serve as input to four crop simulation models. Crop growth is 
simulated for two locations and three soil types. Results indicate that average predicted yield decreases 
with increasing temperature variability where growing-season temperatures are below the optimum 
specified in the crop model for photosynethsis or biomass accumulation. However, increasing within- 
year variability of temperature has little impact on year-to-year variability of yield. The influence 
of changed precipitation variability on yield was mediated by the nature of the soil. The response 
on a droughtier soil was greatest when precipitation amounts were altered while keeping occurrence 
patterns unchanged. When increasing variability of precipitation was achieved through fewer but 
larger rain events, average yield on a soil with a large plant-available water capacity was more 
affected. This second difference is attributed to the manner in which plant water uptake is simulated. 
Failure to account for within-season changes in temperature and precipitation variability may cause 
serious errors in predicting crop-yield responses to future climate change when air temperatures 
deviate from crop optima and when soil water is likely to be depleted at depth. 

1. Introduction 

Air temperature and precipitation are major driving variables for crop simulation 
models. These models are usually developed and tested using data from several 
years and/or sites, and so implicitly respond both to changes in average temperature 
and precipitation, and to changes in within-season variability of temperature and 
precipitation. The sensitivity of these models to changes in average temperature (or 
precipitation) can be tested relatively easily, by adding (or multiplying) constant 
values to observed daily weather data. This approach has also been used to simulate 
effects of climate change on crop growth (e.g. Cohen, 1990; Nonhebel, 1993). 

However, crop model predictions may also be affected by changes in the vari- 
ability of temperature or precipitation, even if the means of these values change 
very little (Neild etaL, 1979; Meatus etal., 1992, 1995; Semenov and Porter, 1995). 
This is because many of the relationships linking crop dynamics to atmospheric 
variables are nonlinear and interdependent, and because dynamic crop simulations 
can depend on the sequencing of weather events. Differences in climate from one 
location to another, as well as possible future climate changes, may involve changes 
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in climatic variability as well as changes in means (e.g. Rind et al., 1989; Mearns 
et al., 1990), and indeed variability changes may have the larger impact for some 
responses (Katz and Brown, 1992). A more thorough understanding of the response 
of crop models to such changes appears wan'anted. This understanding will also 
be relevant to evaluating the consequences for crop growth simulations of using 
daily climate data versus longer time averages (Bonan, 1993; Nonhebel, 1994). 

Prerequisite to understanding the responses of crop simulations to changes in 
climatic means and variability jointly, is separate study of changes due to each of 
these two aspects of climate change. Mearns et al. (1992) approached this problem 
through adjustments to observed data series, although the different kinds of vari- 
ability changes that can be achieved with this method are limited. The sensitivity of 
crop model predictions to changes in weather variability can be evaluated system- 
atically using stochastic weather models ('synthetic weather generators'). These 
algorithms allow variability of temperature and precipitation to be manipulated 
while holding constant the respective climatic means. The purpose of this study 
was to explore the impacts of changes in temperature and precipitation variabil- 
ity on various aspects of the performance of several crop models in relation to 
the structure of the crop models and nonclimatic inputs, in order to evaluate the 
importance of accurately representing such variability. 

2. Methods 

2.1. LOCATIONS 

Two locations are considered in these simulations: Redwood Falls, Minnesota and 
Tifton, Georgia. These sites were selected because they are near the northem and 
southern margins, respectively, of the corn-producing region of the United States. 
Corn and soybeans are the predominant crops of this region. Redwood Falls is 
in MLRA (major land resource area) 103, the central Iowa and Minnesota till 
prairies (Austin, 1972). Within MLRA 103, two contrasting soils were selected 
for study. The Ves loam (fine-loamy, mixed mesic Udic Haplustoll) is considered 
representative of the well-drained, loamy textured till prairie soils which are a major 
component of this MLRA. Ves soils have a high plant-available water capacity 
(approximately 20% by volume) throughout a deep rooting zone. In contrast, the 
Dickman sandy loam (sandy, mixed mesic Typic Hapludoll) is representative of 
soils in this region with relatively low plant-available water capacity. This capacity 
is approximately 14% by volume in the upper part of the rooting zone and decreases 
to 4% below about 90 cm. Tifton, Georgia is in MLRA 133A, on older, higher 
surfaces of the upper southern coastal plain. The Tifton loamy sand (fine-loamy, 
siliceous, thermic Plinthic Kandiudult) is extensive in this region. These soils have 
a relatively low plant-available water capacity of approximately 8% by volume in 
the upper part of the rooting zone, increasing to about 12% by volume below 90 cm 
(Sharpley and Williams, 1990b). 



IMPACT OF TEMPERATURE AND PRECIPITATION VARIABILITY 295 

40 

0 30 

eo 
-',1 

10 
o 
Q. 
E 0 

~- -10 

-20 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  m ~ : . . . . . _ . . : ~ , 1 ~ . -  ~ ~ r  . . . . . . 1 1 <  . . . . . . . . . . . . . . . . . . . . . . . . .  

I i I i ; J I i I 

1 3 5 7 9 11 
Month 

Figure 1. Smoothed  (single Fourier  harmonic)  annual  cycles of  max imum (- - -) and m i n i m u m  ( - - )  
temperature  at Redwood Falls, M N  ( [ ] )  and Tifton, GA (11). 

Smoothed (single Fourier harmonic) annual cycles of temperatures at the two 
sites are shown in Figure 1. Average (maximum, minimum) temperatures range 
from about 5 ~ -15 ~ in winter to about 30 ~ 17 ~ in summer at Redwood 
Falls, while the corresponding values at Tifton are 16 ~ 4 ~ and 34 ~ 22 ~ 
Average precipitation at Redwood Falls ranges from around 15 mm per month 
in winter (December-February) to 90 mm per month in summer (June-August), 
while on average at Tifton the driest month is October (~  55 mm) and the wettest 
is July (~  130 mm). 

2.2. WEATHER GENERATOR 

Daily values for precipitation, maximum temperature, minimum temperature, and 
solar radiation are synthetically generated using the model of Richardson (1981). In 
this model, daily precipitation occurrence is represented as a two-state, first-order 
Markov chain, with parameters P01 (the probability of a wet day following a dry 
day) and Pll (the probability of a wet day following a wet day). In the following, 
it will be convenient to express these probabilities in terms of the two parameters 

POl 
7r = , (1) 

1 +P01 - P l l  

which is the unconditional (i.e., long-term climatological) probability of a wet day; 
and 

d = P l l  - Po l  , (2) 

which is the lag- 1 autocorrelation coefficient for the precipitation occurrences, and 
indexes the average lengths of series of wet and dry days. The precipitation amounts 
on wet days are drawn from gamma distributions with mean # = aft  and variance 
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cr 2 = c~/32, where c~ is the shape parameter and/~ is the scale parameter. Gamma dis- 
tributions becomes more strongly skewed as the shape parameter becomes smaller, 
and for a given value of o~ the magnitudes of the generated precipitation amounts 
are directly proportional to/3. Separate sets of the four precipitation parameters 
(P01, Pll ,  c~,/3) were fit for each calendar month, using available climatic data from 
each of the two locations. 

The temperature and radiation values are generated using the trivariate, first- 
order autoregression. 

:~min(t) / = [A] :~rnin(t- 1) | + [B] e2(t) 
:~rad(t) J Xrad(t--1) J e3(t) 

(3) 

where the (3 x 3) parameter matrices [A] and [B] reflect the time- and cross- 
correlation structure of the three variables, the e's are independent standard Gaus- 
sian variates, and the tildes indicate a standardization conditional' on whether that 
day is simulated to be wet or dry, 

2 i -  x i -# i j ,  i = 1 , 2 , 3 ;  j = 0 , 1 .  (4) 
o'ij 

That is, for each of the i = 1,2, 3 variables, separate means and standard deviations 
are used for dry (j = 0) and wet (j = 1) days. The annual cycles of these means 
and variances, and of the correlations that are the basis of the matrices [A] and [B], 
are represented using single Fourier harmonics, again fit using available climatic 
data. 

Sets of synthetic daily weather values exhibiting the same means as, but dif- 
ferent variability from, the base climates were constructed using the approach 
presented in Wilks (1992). For the temperatures, adjusting the variances while 
maintaining the mean values is most easily achieved by changing the variances of 
the Gaussian forcing variables el and e2 in (3), while leaving constant the mean 
and standard deviation functions #ij and oij in (4). In particular, forcing (3) with 
modified Gaussian random variables E~l and e~ having variances VT yields synthetic 
temperature series with variances approximately equal to VT@, where @ is the 
variance exhibited by temperatures in the model for the base climates. Actually, it 
is the conditional temperature variances given either that precipitation did or did 
not occur, that are changed by the factor VT. Unless the respective two conditional 
means are equal, the effect on the variance of the whole (unconditional) temperature 
series will be somewhat less pronounced (Katz, 1996). The parameter VT specifies 
relative temperature variability: for VT > 1 the temperature series are more vari- 
able than in the base case, and for VT < 1 the temperatures are less variable. In the 
limiting case of VT = 0 only the climatological mean values (conditional on the 
precipitation state) of temperatures on a given day are simulated. 

Parameter adjustments for precipitation are more complex. These are approached 
through expressions for the first two moments of the distribution of monthly total 
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precipitation that are implied by the day precipitation process. In terms of the daily 
precipitation parameters, the long-term mean monthly precipitation is 

~p = NTr~3,  (5) 

where N is the number of days in the month. The variance of the distribution of total 
monthly precipitation, reflecting year-to-year fluctuations, is well approximated by 

, l + d ]  
cr~p,~NTr~fl 2 1 + o~(1 - 7r) 1 _ - - ~ j  . (6) 

Different types of variability changes are produced by finding sets of new param- 
eters 7r', d', c~', and/3' such that the resulting value of #~ in (5) is the same as 
the original value #p, but yielding a changed monthly variance specified by the 

2' = Vpa2p. Analogously to the relative precipitation variability factor Vp; i.e., err 
situation for temperature, for Ve > 1 the modified synthetic precipitation series are 
more variable than in the base climate, and for Vp < 1 the precipitation exhibits 
less variability. 

There are a number of ways to achieve changes in precipitation variability while 
preserving the mean monthly precipitation. The six types of changed precipitation 
variability that are used in this study are summarized in Table I. For Type I, the 
distribution of daily precipitation amounts is changed by increasing one of the 
gamma distribution parameters while decreasing the other, in such a way that their 
product is unchanged, i.e., o~'/3' = c~/3. For Type II only the parameter d changes, 
and this can be manipulated independently since it does not appear in (5). Type II 
changes affect only the pattern of rainfall occurrences, but not the average number 
of rain days, or the statistical distribution of rainfall amounts on rain days. In Types 
III and IV the variability changes are achieved by altering both the frequencies 
and intensities of daily precipitation. For Type IV the intensities are changed by 
adjusting the gamma distribution shape parameter, yielding different skewness of 
the daily precipitation distribution (the skewness of the gamma distribution is given 
by 2c~ -1/2, so that symmetric distributions are approached for very large c0. The 
probabilities of very large precipitation events are thus changed more in Type IV 
than in Type III, where it is the scale parameter that is allowed to change. In Types 
V and VI the variability changes are produced by simultaneously adjusting the 
frequencies, day-to-day correlations, and intensities of daily precipitation amounts. 
Again, since in Type VI the daily intensity changes result from changes in the 
skewness of the precipitation amount distributions, the frequencies of very large 
daily precipitation amounts are affected more strongly than for Type V, where the 
scale parameter changes. Meatus et al. (1996) investigated the response of crop 
yield to Types II and HI precipitation variability changes, as defined here. 

To illustrate the contrast between Types III and IV precipitation variability 
changes (and, by extension Types V and VI), consider the following hypothetical 
example. If o~ = 1 and/3 = 1 cm in the baseline climate, the probability of wet-day 
precipitation at least as large as I cm is about 0.37. If p01 = 0.3 and Pll = 0.5 
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Table I 
Qualitative summary of precipitation parameter adjustments, which produce the six types 
of precipitation variability changes considered 

Type Description Vp < 1 Vp > 1 

I. Changes in precipitation amounts only c~ T,/3 J. a .[,/3 i" 
II. Changes in wet/dry spell lengths only d J. d T 
III. More smaller, or fewer larger precipitation 7r ]',/3 J. ~r 1,/3 ]" 

events 
IV. As III, but amounts change through changing 7r T, o~ .L 7r .L, o~ T 

skewness 
V. More frequent smaller and 'clumpier', or 7r ], d T,/3 J. 7r .L, d l,/3 T 

fewer larger and more uniformly distributed 
precipitation events 

VI. As V, but amounts change through changing 7r ]', d T, ee ~ 7r J., d .[, c~ T 
skewness 

(yielding 7r = 0.375 and d = 1.50), then for Vp = 1.2 (an increase in variability), 
holding (5) constant yields, through (6), /3' -= 1.16 cm (and c~ ~ = c~ = 1) for 
Type III. For Type IV, the corresponding results are cg = 1.42 and /3 ~ = 1 
cm). The probabilities of at least 1 cm of precipitation on wet days increase to 
approximately 0.42 and 0.64, respectively, for Types III and IV. Conversely, for 
Vp = 0.8 (a decrease in variability) the Type III changes yields/3 '  = 0.84 cm, 
and the probability of at least 1 cm of precipitation drops to around 0.30; while 
for Type IV the change is c~ ~ = 0.58, leading to the probability of at least 1 cm 
of precipitation on a wet day of only 0.19. In each of these cases the parameter 7r ~ 
moves in the opposite direction from either c~ ~ or/3 ~, in order that 7rc~/3 = 7r~c~/3 ~ 
(compare Eq. 5). 

Since the mean values #ij  in (4) depend on whether a wet or dry day is simulated, 
changing the average number of wet days (the parameter 7r) will lead to changes 
in mean values for simulated temperatures and radiation (Katz, 1996). In order 
to isolate completely the effects of precipitation variability changes in Types III-  
VI, corrections to these means are applied, which compensate for the increased 
or decreased frequency of wet days produced by 7r ~ ~ 7r. These adjusted means, 
which are then used in (4), are computed using 

/ 
]Zij  = # i j  "q- (Tr' - -  7 c ) ( l z i O  - -  /~i 1)- (7) 

Notwithstanding this correction, changes in the probability of  a wet day also affect 
the daily temperature variance (as well as the autocorrelation function) (Katz, 
1996), although for the present data this variance change was found to be quite 
small. In a climate impacts assessment, where physical consistency among the 
variables would be more important than isolating the effects of variability changes, 
it would probably be advisable not to use Eq. (7). Results in Meatus et al. (1996) 
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suggest that the adjustment is of little importance for temperature, but its effect is 
more substantial for radiation. 

2.3. SOIL-CROP-ATMOSPHERE MODELS 

The impact of climate variables on simulated crop yield depends on how other 
processes in the physical environment are simulated, and on how the physical 
environment, in turn, influences crop growth and development. The software used 
here to simulate crop growth incorporates models for corn (Stockle and Campbell, 
1985; Moen et al., 1994), wheat (Stockle and Campbell, 1989), and EPIC corn 
and soybeans (Sharpley and Williams, 1990a; Williams, 1995). All of these crop 
models access common routines for simulating potential evapotranspiration (PET), 
soil water flow and plant water uptake. This unified approach has the advantage 
of separating (to a large degree) the simulation of the effect of climate variables 
on important processes in the crop's physical environment from the simulation 
of the effect of that physical environment on the crop (Buttler and Riha, 1992). 
However, the crop and environment systems do interact, as the development of the 
crop canopy affects PET and the development of roots affects soil water uptake. 

The Priestley-Taylor equation (Priestley and Taylor 1972) is used to specify 
potential evapotranspiration. Potential evapotranspiration is divided each day into 
potential evaporation and potential transpiration based on the leaf area index of the 
crop, with the specific dependency differing among the crop models. 

All precipitation is assumed to infiltrate the soil surface (i.e. surface runoff was 
not simulated in this study). Soil water flow was modeled following the approach 
taken in the CERES models (Jones and Kiniry, 1986). Water is immediately trans- 
ferred downward in the soil profile if the amount of water entering the layer exceeds 
the layer's saturated water content. Water will then continue to drain from a layer 
until a 'drained upper limit' (i.e. field capacity) is reached. Further water can be 
removed from the soil only through evaporation and transpiration. Soil evaporation 
is simulated by assuming a limiting water content to which soil evaporation can 
dry the soil, and that evaporative potential declines continuously as a function of 
soil depth. 

Soil water uptake is calculated by first assuming that potential transpiration 
will be met through soil water being taken up by roots from each soil layer in 
proportion to the root density in that layer. However, there is a limiting soil water 
content below which the plant cannot take up water (lower limit or permanent 
wilting point). If potential transpiration cannot be met from a given soil layer, 
unsatisfied demand can be transferred to lower layers. This scheme is similar to the 
plant uptake simulation in the EPIC model, where, as in this study, root density is 
assumed to be decreasing exponentially with depth (Sharpley and Williams, 1990a; 
Williams, 1995). Soil characteristics were determined using the EPIC soil database 
(Sharpley and Williams, 1990b). 
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Figure 2. Dependency of photosynthesis or biomass accumulation on air temperature in the crop 
simulation models; corn (HI), EPIC corn ([~), wheat (T) and EPIC soybean (XT). 

The ratio of actual transpiration (soil water uptake) to potential transpiration 
is used as the environmental indicator of water stress (deWit, 1958; Hanks, 1983, 
Nonhebel, 1993; Simane et al., 1994) in all of the crop models. The functional 
relationship between water stress and a particular plant process, however, varies 
with the plant process and with the crop model. Since these functions affect plant 
growth and development, both potential transpiration (through the impact of leaf 
area development) and actual transpiration (through the impact of leaf area and 
rooting depth) can be dynamically influenced when water stress occurs. 

All four crop models assume that temperature drives the phenological devel- 
opment of a crop, and therefore the total number of days over which growth can 
occur. In the corn model, the developmental stages of corn through the onset of 
grain filling are solely a function of accumulated heat units based on mean daily 
temperatures. The time required for the leaf area of the crop to completely senesce 
limits the length of the grain filling period, which in turn directly influences yield. 
Water stress occurring after the vegetative phase is assumed to accelerate the 
reduction in leaf area. Therefore, water stress during either the vegetative or the 
reproductive phases can reduce the time to physiological maturity, and thereby 
yield. The developmental stages in the spring wheat model (from emergence to 
physiological maturity) are determined solely as a function of thermal units calcu- 
lated using a growing degree-day approach. In both the corn and wheat models, 
air temperature also impacts photosynthesis (which is calculated hourly) through 
a polynomial relationship (Fig. 2). 

Water stress is assumed in both the corn and wheat models to affect growth 
by limiting photosynthesis in direct proportion to the ratio of actual to potential 
transpiration. A reduction in photosynthesis in turn limits dry matter accumulation 
and leaf area development. In addition, in the wheat model a water stress factor 
is accumulated during each of the developmental phases. Although this stress 
factor is always dependent on the ratio of actual to potential transpiration, the 
function relating this ratio to the stress factor varies with the developmental phase. 
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Ultimately, the stress factors from all the developmental stages impact the grain 
number, and thereby the grain yield. 

In the EPIC crop model, the accumulated daily heat units needed for the crop 
to attain maturity is specified as an input to the model. The daily heat unit value is 
the average of the maximum and minimum temperature minus a base temperature, 
which is specified for each crop. Biomass accumulation in the EPIC model is the 
product of the energy-to-biomass conversion ratio (a constant) and intercepted 
photosynthetically active radiation (PAR). Intercepted PAR is a function of leaf 
area, whose development is dependent on accumulated heat units but can be slowed 
by temperature or water stress, whichever is more limiting. The temperature stress 
is symmetrical around an optimum temperature (Fig. 2). In the EPIC model, average 
daily soil surface temperature is used to determine temperature stress (Sharpley 
and Williams, 1990a), whereas in the simulations presented here, the mean of the 
daily maximum and minimum air temperature is used. Also, the ability of roots to 
take up water is affected by several soil conditions in the EPIC model, including 
soil temperature. These soil stress factors are not implemented in the simulations 
reported here. 

In the EPIC crop model, yield is simulated as the product of accumulated 
biomass and the harvest index (ratio of grain to total dry matter). Water stress can 
reduce biomass accumulation, and therefore yield, when temperature stress is not 
more limiting. Water stress is the ratio of daily actual transpiration to daily potential 
transpiration. In addition to its impact on biomass accumulation, water stress can 
reduce the harvest index. When the ratio of accumulated actual transpiration to 
accumulated potential transpiration declines below 0.7, the optimum harvest index 
is decreased sigmoidally to a minimum level that is crop-dependent. 

An assumption underlying all of the crop models as implemented in this study 
is that yield is only limited by light, temperature and water. Optimum fertility 
management and no pests or diseases are assumed. Also, yield reduction due to too 
much water (erosion, waterlogging, inability to cultivate, lodging) is not simulated. 
Therefore, the simulated yields represent potential crop yields rather than expected 
crop yields under standard management practices. 

3. Results 

3.1. BASELINE YIELD CHARACTERISTICS 

Average yield is predicted using the four crop models (corn, wheat, EPIC soybean, 
EPIC corn) at each soil/site for 100 years of synthetic weather. All four models 
predict significantly lower yields on the Dickman compared to the Ves soil at the 
Minnesota site (Table II). Within a soil type, the two corn models predict similar 
average yields at the Minnesota site, whereas the EPIC corn model predicts slightly 
higher average yields at the Georgia site (Table II). 
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Table II 
Average model yields (kg ha -1, n = 100) and their standard 
deviations (in parentheses) in response to weather simulated using 
the unaltered climatic parameters 

Crop model DickrnardMN Soil/location Tifton/GA 
Ves/MN 

Corn 7.7 (2.4) 9.2 (2.3) 7.3 (2.0) 

EPIC corn 7.4 (1.5) 8.9 (1.3) 7.9 (0.9) 
Wheat 3.3 (1.0) 3.8 (0.9) 3.1 (1.1) 
EPIC soybeans 2.5 (0.4.) 3.1 (0.4) 3.2 (0.2) 

The standard deviation of yield differs among crop models and sites (Table II). 
The standard deviation of yield predicted using the EPIC corn model is significantly 
less than the standard deviation of yield using the other corn model at all three 
soil/site combinations. These differences in standard deviation of yield are not 
surprising since the biophysical processes included in these models, as well as the 
complexity with which these processes are represented, do vary. Soil type does 
not affect the standard deviation of yield at the Minnesota site. Because average 
yields are different on the two soils, the coefficient of variation (CV = standard 
deviation/mean) of yield is lower for the Ves soil than the Dickman. These results 
may imply that a soil with relatively low plant available water capacity (Dickman) is 
likely to suppress yields in most years without amplifying the impact of interannual 
climatic variability on yield variations. 

3.2. RESPONSE TO TEMPERATURE VARIABILITY 

For the Minnesota soil and climate parameters, all four crop models predict decreas- 
ing average yields with increasing variability of temperature (Fig. 3a, b). The 
decreases are essentially linear as the temperature variance parameter, VT, increas- 
es from zero to 1.9. This result contrasts with that for the Georgia site (Fig. 3c) 
where increasing temperature variability has little impact on average corn and soy- 
bean yields, while wheat yields decline about 50% less than at the Minnesota site. 
At both sites, the influence of temperature variability on the standard deviation 
(year-to-year fluctuation) of yield (not shown) was generally small, with the result 
that the CV increased with increasing temperature variability. The exception to 
this was the EPIC corn and soybean yield predictions for the Ves soil. The stan- 
dard deviations decreased with increased temperature variability, which resulted in 
slight decreases in CV. 

It is not immediately clear whether temperature variability affects simulated 
yields primarily through the functions relating photosynthesis or biomass accumu- 
lation and leaf area development, through the effect of temperature on the length 
of crop growth, or as a consequence of both these processes. In the case of the corn 
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Figure 3. Percentage changes in average yields as a function of the relative temperature variability 
change, VT, at Redwood Falls, MN (Ves and Dickman soil) and Tifton, GA (Tifton soil); corn ( I ) ,  
EPIC corn (V]), wheat (T)  and EPIC soybean (~7). 

model, average days to maturity decrease with increasing temperature variability 
at the Minnesota site (not at the Georgia site), but in this model the length of 
the growing season is influenced by photosynthesis through its effect on leaf area 
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development. Therefore, a series of simulations were implemented in which pho- 
tosynthesis was made independent of temperature. In these simulations increasing 
temperature variability had no impact on average corn yield at either site. Evident- 
ly, the temperature dependency of photosynthesis (Fig. 2) is responsible for the 
simulated yield response to temperature variability of the corn model. 

In the case of the wheat model, the influence of temperature variability on 
average days to maturity is small at both sites. As with the corn model, a series of 
simulations were implemented in which photosynthesis was not allowed to vary 
with temperature. When this is done, average yields and standard deviations do 
not change appreciably with changes in temperature variability at either site. This 
result indicates that an analogous mechanism for the suppression of average yield 
by increasing temperature variability is operating in the corn and wheat models. 

For the EPIC soybean model, increasing temperature variability does not alter 
the average days to maturity at either site, although there is an increase in the vari- 
ance in days to maturity with increasing temperature variability. When the temper- 
ature stress function for biomass accumulation and leaf area development (Fig. 2) 
is not implemented, increasing temperature variability does not alter average yield. 
Using the EPIC corn model, increasing the temperature variability decreases the 
average days to maturity at the Minnesota site, but not at the Georgia site (by 5 
days from VT : 0 to V T = i and by 1 day from VT = 1 to VT = 1.9). As is the 
case with the other three crop models, when the temperature stress function is not 
implemented, there is no effect of temperature variability on average yield. 

The differences among the crop models and among sites in simulated average 
yield responses to changing temperature variability can be explained primarily 
by how the air temperatures over the growing season relates to the dependencies 
of photosynthesis or biomass accumulation on temperature. The models behave 
similarly at the Minnesota site because the air temperatures are near or below the 
optimum range for much of the growing season (Fig. 1). Since the functions decline 
rapidly at low temperatures and change more gradually around the optima (Fig. 2), 
increasing temperature variability at this site would be expected to negatively 
impact crop growth. In contrast, at the Georgia site air temperatures are closer to 
the optima, and increasing temperature variability therefore has less effect. 

The cumulative water stress index (the summation of 1 - actual transpira- 
tion/potential daily transpiration) is greater for all crops grown on the Dickman 
versus the Ves soil. However, in all cases, the stress index and variability of the 
stress index changes very little with increasing temperature variability. 

3.3. RESPONSES TO PRECIPITATION VARIABILITY 

In addition to influencing average yield (Table II), soil type noticeably mediates 
the response of predicted yields to changes in precipitation variability for most 
of the cases examined (Fig. 4). Interestingly, average yield on the Dickman soil, 
which has less water-holding capacity than the Ves soil, in general responds less to 
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changes in precipitation variability than does yield on the Ves soil. Average yields 
increase on the Ves soil wherever increasing precipitation variability increases the 
probability of days with high rainfall, even if this means fewer days with rain 
(Types III and IV) or fewer rain days and dry spells (Types V and VI). The other 
aspects of precipitation variability change among Types III-VI appear to be less 
important than the changes in 7r. In the case of Type I, variability of the daily rainfall 
amounts increases as Vp increases while the number of rain days and the length of 
dry and wet spells are held constant. This implies that there are fewer large rainfall 
events for Vp < 1, which favors yields on the Dickman and suppresses yields on 
the Ves. The amount of water transpired in the Dickman simulations of the corn, 
EPIC corn and EPIC soybean models increased at Vp = 0.7 in Type I precipitation 
variability change, relative to greater levels of precipitation variability (Vp _> 1). 
As dry and wet spells increase from shorter to longer (Vp increasing in variability 
change Type II over the range considered here) there is no impact on average yield 
for crops grown in the Ves soil and only a slight decline in average yield for crops 
grown on the Dickman. 

The ranges for the parameter Vp shown in Figures 4 and 5 are limited by the 
feasible solutions that can be obtained from (6), while holding (5) constant, for 
different months at the two locations. That is, without allowing the mean precip- 
itation to change (which is strongly related to precipitation variance in observed 
data; Waggoner, 1989), increasing or decreasing Vp beyond some limit produces 
nonsense solutions; such as negative o~,/3 or 7r; or 7r or d greater than one. Some 
of the parameter changes used here, however, do constitute quite strong departures 
from the base climates, as is illustrated by the example in Section 2.2. 

The nature of these yield responses to changes in precipitation variability, and 
the fact that the different crop models behave fairly similarly, is attributable to the 
manner in which water uptake is modeled in these simulations. The water stress 
indicator, although applied at different times and to different components of the 
crop models, is calculated in a similar manner in all the models; it is the ratio of soil 
water uptake (actual transpiration) to potential transpiration. The simulation of soil 
water uptake is shared by all the crop models, and is proportional to the fraction 
of total root density at a given depth. If there is not enough water in surface layers 
to meet the demand for water, this demand is passed downward to deeper layers. 
Once the soil dries at depth, even if the soil is rewetted at the surface, there will be 
unmet demand in proportion to the amount of roots that are in dry soil. The result 
is that water uptake will be less than the potential evapotranspiration, producing 
water stress in the crop models. 

Since potential transpiration is generally greater than growing-season precip- 
itation in the Minnesota climate, crops must rely on stored soil water to meet 
transpiration demands. The Ves soil has a higher water-holding capacity than the 
Dickman soil and, as expected, the amount of water transpired and predicted aver- 
age yield of all crops are higher on the Ves than on the Dickman soil. Crops grown 
on the Ves soil are less subject to water stress. However, as stored water is depleted 
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Figure 4. Percentage change in average yields at Redwood Falls, MN as a function of the magnitude 
of relative variability change, Vp, for the six types of change in precipitation variability. Ves (--) and 
Dickman (- - -) soils; corn (11), EPIC corn (I-1), wheat ( , )  and EPIC soybean (V). 

deeply in the Ves soil, larger rainfall events are required to recharge this soil at depth 
than are required to recharge the Dickman. Without this recharge, some stress will 
still occur. Thus, simulated crop growth on the Ves soil, with a larger water-holding 
capacity, is more sensitive to variability of  precipitation amount distribution than 
simulated crop growth on the Dickman soil, while at the same time simulated crop 
growth is less subject to stress on the Ves soil. There is some indication in Fig. 4 
of  greater yield increase on Ves for Type IV vs. Type III, and for Type VI vs. Type 
V variability changes, for Vp = 1.3. 
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F i g u r e  5 .  Percentage change in average yields at Tifton, GA as a function of the magnitude of the 
relative variability change, Vp, for the six types of change in precipitation variability; corn (m), EPIC 
corn (El), wheat (T) and EPIC soybean (V). 

The response at the Tifton site is similar to the results for the Dickman soil 
(Fig. 5). The low water-holding capacity of the soil combined with higher growing- 
season precipitation result in this soil/site being relatively insensitive to changes 
in variability of precipitation, although wheat and corn yields are increased when 
the variability of daily rainfall amounts decrease (Type I-IV, Fig. 5). At the Tifton 
site, the change in yield predicted using the EPIC corn and soybean models was 
smaller than change in yield predicted using the corn and wheat models, though 
the direction of change was usually similar (Fig. 5). This difference is probabily 
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due to the more complex representation of corn and wheat responses to climatic 
factors contained in the corn and wheat models compared to the EPIC model. 

4. Discussion and Conclusions 

The results of this study suggest that increasing variability of temperature produces 
smaller average yield where growing-season temperatures are outside the optimum 
range for photosynthesis or growth. Other studies using winter wheat models to 
examine the impact of within-year temperature variability on crop yield have also 
reported decreasing yield with increasing temperature variability (Meatus et al., 
1996; Semenov and Porter, 1995). In the Mearns et al. study, larger decreases in 
predicted winter wheat yields occurred as temperature variability increased than 
occurred for the crops simulated in this study. Mearns et al. (1996) attributed the 
effect of increasing within-year temperature variability on winter wheat yields 
primarily to increased likelihood of winter damage while this study has focused 
on crop production during a frost-flee growing season. The smaller impact of 
increasing within-year temperature variability on winter wheat yields reported by 
Semenov and Porter (1995) is consistent with the present results in suggesting that 
increasing within-year temperature variability will have the greatest effect on yield 
where growing season temperatures are outside the optimum for growth. However, 
an assumption inherent in all the crop models used in this study is that temperature 
dependency of photosynthesis or biomass accumulation remains constant over the 
growing season. Whether this is a realistic assumption may be open to question 
(Berry and Bjorkman, 1980). 

The findings of this study suggest that where temperature optima for plant 
growth are similar to growing-season air temperatures, weekly or monthly air 
temperature data could be used as input to a crop simulation model with little impact 
on predicted yields. In other cases, crop models using summary air temperature 
data may overpredict yield (Nonhebel, 1994). 

Increasing the within-year (and, accordingly, interannual) variability of tem- 
perature generally increases the CV of crop yields. In this study, these increases 
were in the range of 1-5% over the range of temperature variability examined. 
In other studies using winter wheat models, the CV in year-to-year yield has also 
been found to increase with increasing variability of temperature (Mearns et al., 

1996; Semenov and Porter, 1995). The larger increase in CV found by Mearns et 
al. (1996) was attributed to the increased likelihood of winter damage. In contrast, 
in the Semenov and Porter (1995) study, doubling the daily variance of temper- 
ature had much less effect on the CV of yield. Again, it is likely that increasing 
within-year temperature variability will have a more pronounced effect on the CV 
of yield as growing season temperatures are further from optimal. 

Changing precipitation variability has been reported to both increase and decrease 
average simulated yields, depending on the climate and soil type (Mearns et al., 
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1992, 1996; Nonhebel, 1994; Semenov and Porter, 1995). The present results indi- 
cate that the sign of the relationship between precipitation variability and average 
yield may be mediated by the nature of the soil in which the plants are grown. 
Furthermore, the strength of the relationship, and sometimes even its sign as well, 
appears to depend on the qualitative nature of the change in precipitation variabil- 
ity, with different variability types sometimes yielding quite different responses to 
the same level of interannual variance change. However, in this study, the main 
differences in responses to variability change appeared to be between those types in 
which the average frequency of rain days (the parameter 7r) was changed (III-VI), 
versus those where it was held constant (I and II). 

For soils with relatively large water-holding capacities but subject to occasional 
low growing-season rainfall, increasing precipitation variability in a manner that 
increases the likelihood of larger rainfall events generally resulted in greater aver- 
age yields, while decreasing this variability lowered simulated yields. Simulated 
yields on soils with low water-holding capacities were not as much affected by 
such changes in precipitation variability, but showed average yield decreases in 
response to increasing precipitation variability when the average number of rain 
days was held constant. This was also the case where stress due to soil moisture 
status was relatively low for initial climate simulations. These results are generally 
consistent with those reported by Mearns et al. (1996) for simulated yield of winter 
wheat. 

The large differences in response between soils with high and low water-holding 
capacities are seen to derive from the (commonly assumed) modeled mechanism 
of water uptake from depth in the soil profile. The present results suggest that the 
robustness of this mechanism should be the subject of further investigation. 

That the yield response to changes in precipitation variability can depend on 
the qualitative nature of the variability change presents a substantial challenge 
to modelers of the impacts of climate changes. Current atmospheric general cir- 
culation models (GCMs) yield inconsistent results concerning changes in mean 
precipitation at particular locations, and the sign and magnitude of any change in 
interannual variability is even less clear. Since GCMs reproduce the current statis- 
tics of daily precipitation rather poorly (Mearns et al., 1990; Reed, 1986; Rind et 
al., 1989; Wilson and Mitchell, 1987), GCM results concerning the nature of these 
variability changes (e.g., Gordon et al., 1992) must be regarded as speculative. 
However, the present results suggest that the qualitative nature of these changes 
may be a significant determinant of important agricultural impacts. 
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