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Abstract. We investigate the effect of changes in daily and interannual variability of temperature and 
precipitation on yields simulated by the CERES-Wheat model at two locations in the central Great 
Plains. Changes in variability were effected by adjusting parameters of the Richardson daily weather 
generator. Two types of changes in precipitation were created: one with both intensity and frequency 
changed; and another with change only in persistence. In both types mean total monthly precipitation 
is held constant. Changes in daily (and interannual) variability of temperature result in substantial 
changes in the mean and variability of simulated wheat yields. With a doubling of temperature 
variability, large reductions in mean yield and increases in variability of yield result primarily from 
crop failures due to winter kill at both locations. Reduced temperature variability has little effect. 
Changes in daily precipitation variability also resulted in substantial changes in mean and variability 
of yield. Interesting interactions of the precipitation variability changes with the contrasting base 
climates are found at the two locations. At one site where soil moisture is not limiting, mean yield 
decreased and variability of yield increased with increasing precipitation variability, whereas mean 
yields increased at the other location, where soil moisture is limiting. Yield changes were similar 
for the two different types of precipitation variability change investigated. Compared to an earlier 
study for the same locations wherein variability changes were effected by altering observed time 
series, and the focus was on interannual variability, the present results for yield changes are much 
more substantial. This study demonstrates the importance of taking into account change in daily (and 
interannual) variability of climate when analyzing the effect of climate change on crop yields. 

1. Introduction 

There is considerable quantitative uncertainty concerning how agricultural crops 
respond to changes in climate variability, although it is known qualitatively that 
changes in variability can have serious effects. There have been noteworthy peri- 
ods of climatic fluctuations in historical times, such as the 1930s in the central 
Great Plains, when the effects of climatic variability on agriculture were keenly 
experienced (Worster, 1979; Rosenberg, 1980). Agricultural vulnerability to cli- 
matic fluctuations has not decreased to any appreciable degree in more recent times 
(Anderson and Hazell, 1989). Moreover, in the face of possible climatic change 
from, for example, increased greenhouse gas concentrations in our atmosphere, 
there is mounting evidence that changes not only in climatic mean states but also 
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in their higher order moments will occur. Evidence for this is particularly strong in 
regard to precipitation (Gordon et al., 1992; Whetton et al., 1993; Meatus et al., 
1995a), and some evidence for changes in temperature variability has also come to 
light (e.g., Cao et al., 1992; Meatus et al., 1995b). Agricultural crops experience 
change in variability mainly through the frequency of climate extremes; it recently 
was demonstrated that change in variance has a larger effect on changes in extremes 
than does change in the mean of a given climate variable (Katz and Brown, 1992). 

So far very little attention has been paid to possible impacts of changes in 
climatic variability in climate impacts assessments (e.g., Rosenzweig and Parry, 
1994; Mendelsohn et al., 1994). The effect of possible changes in high frequency 
(annual to daily time scales) climatic variability remains a significant uncertainty 
that has not received sufficient attention in the arena of integrated assessment of 
climate change. Here we present sensitivity experiments of the effect of changed 
daily and interannual variability of precipitation and temperature on crop yields 
generated by the CERES-Wheat model (Ritchie and Otter, 1985). Our objective 
is to determine the magnitudes of changes in variability, and temperature and 
precipitation variability important to wheat production in the U.S. Great Plains. 

Mearns et al. (1992) (henceforth referred to as MR92) explored the effect of 
changes in (primarily) interannual variability of climate (temperature and precipi- 
tation) on simulated wheat yields, using a simple approach of altering the monthly 
year-to-year variances of observed time series. This approach, although produc- 
ing informative results, was somewhat unrealistic in that changes in interannual 
variability were artificially isolated from changes in daily variability. For temper- 
ature daily variance was changed very little, but autocorrelation functions of daily 
time series were altered. For example, for maximum temperature with doubling 
of interannual variance daily variance is increased slightly (factor of 1.2) using 
this technique, as is the first order autocorrelation coefficient. The most substantial 
change, however, is in the autocorrelation function of the daily time series, which 
damps toward zero much more slowly than does the function of the original time 
series. For precipitation, frequency was not changed, but the mean and variance of 
daily intensity was altered somewhat. 

In MR92 the relative variability of yield increased with increasing variability of 
both temperature and precipitation. Mean yields decreased with increasing variabil- 
ity of precipitation at a relatively wet location, but increased at a moisture limited 
location. The effects of variance changes of precipitation were greater than those 
of temperature. Results from this earlier study indicated that significant changes 
in simulated crop yields result from changes in climatic variability, and that such 
changes can be as important as changes in climatic means. 

Here we continue this line of investigation using a stochastic simulation approach 
for generating time series of climate variables whereby daily variability is directly 
changed, which imposes changes in interannual variability. The same study area is 
used, the central Great Plains, in particular two locations in Kansas - Goodland a 
drier site in the northwest, and Topeka, a wetter site in the northeast. 
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This type of study contributes to a wide variety of research concerns. It serves 
as an important test of the crop models themselves, and can provide insights into 
the adequacy of their formulations for simulating crop response to climates. The 
study explores the basic nature of the interface between the atmosphere and biotic 
systems. The results may also provide useful information in a non-interactive mode 
for eventual interactive coupling of crop/ecosystem models with climate models. 

In the next section we describe the CERES-Wheat model and the general study 
characteristics. In Section 3 we describe the weather generator used. The sensitivity 
experiments are described in Section 4 and Section 5 presents results, followed by 
concluding remarks in Section 6. 

2. CERES Wheat Model and Study Characteristics 

2.1. WHEAT MODEL 

2.1.1. General Description 
The CERES-Wheat model employs simplified functions to predict the growth and 
yield of wheat as influenced by plant genetics, weather, soil, and management fac- 
tors (Ritchie and Otter, 1985). Climate input variables are daily solar radiation (MJ 
m -2 day-l), minimum and maximum temperature (~ and precipitation (mm 
day- 1). Model processes include phenological development (Hodges, 1991), veg- 
etative and reproductive plant development stages, partitioning of photsynthates, 
growth of leaves and stems, senescence, biomass accumulation, and root system 
dynamics. Detailed descriptions of the model may be found in Ritchie and Otter 
(1985) and Rosenzweig (1990). Below we highlight certain aspects of the model 
that are particularly germane to our results. 

Soil water. The soil water balance for a layered soil is calculated in CERES- 
Wheat in order to determine reduction in growth processes caused by soil and plant 
water deficits. For multi-year simulations, it also tracks the soil water when the 
wheat crop is not growing, enabling the calculation of soil moisture accumulation 
from the practice of fallowing. Evapotranspiration in the model (which is divided 
into transpiration and soil components) is driven by solar radiation and temperature, 
based on the equilibrium evaporation concept (Priestley and Taylor, 1972). A 
variable multiplier is applied to the calculated equilibrium evaporation to account 
for unsaturated air and for maximum temperatures greater than 24 ~ and less than 
0 ~ Root length density and distribution are used to calculate water absorbed for 
transpiration via a 'supply and demand' formulation. The water content of multiple 
soil layers is calculated based on changes in evaporation, root absorption, or flow 
to adjacent layers. Runoff is calculated using the USDA Soil Conservation Service 
Curve method (Williams et al., 1982). 

Four soil water deficit factors are defined based on layer water contents that 
are then used to modify root growth, photosynthesis and transpiration, leaf and 
stem extension growth, and tillering. We emphasize here soil water deficit factor 
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1 (SWDF1), which primarily affects photosynthesis and transpiration. It is defined 
as the ratio of total daily root water uptake from the soil plant system and potential 
plant evapotranspiration. Its value ranges from 0 (no stress) to 1 (maximum stress). 
This factor also modifies a number of other plant growth processes. 

Crop failures. There are three types of crop failure in the CERES-Wheat model 
as formulated for this study: failure of germination; winter kill; and inadequate 
grains m -2. 

(1) Germination fails to occur if there is insufficient soil moisture for 90 days 
after planting. Sufficiency of soil moisture is defined as presence of extractable 
water in the top soil layer or the combined top two layers. 

(2) Winter kill. We provide details on the winter kill submodel because the 
frequency of winter kill figures prominently in some of our results. Wheat plants 
can be killed or damaged by extremely low temperatures. This damage is also 
influenced by the degree to which the plants have adapted to the cold, known 
as hardening. In CERES-wheat the crown depth temperature, which is a function 
of maximum, minimum temperature and snow depth, is used to evaluate cold 
hardening and winter kill. Hardening is quantified using a hardening index (HI) 
whose value ranges from 0 to 2. Stage 1 hardening (HI 0-1) occurs when mean 
daily crown temperature is between - 1  ~ and 8 ~ Stage 2 occurs after Stage 
1 while temperatures are below 0 ~ and is complete after 12 days. Damage is 
determined by the relative contrast between the crown temperature and the killing 
crown temperature, which is determined by the degree of hardening. For HI 0, 
1, and 2, the killing crown temperatures are -6 ,  -12 ,  and -18  ~ respectively. 
Hence, less hardened plants, are susceptible to cold temperature extremes. The 
plant can also lose its hardening when crown temperatures rise above 8 ~ and 
maximum temperature is above 10 ~ 

(3) Inadequate grains per m 2 cause crop failure in growth stage 4 (anthesis to 
beginning of grain fill) if the number of kernels per m 2 drops below 100. This type 
of crop failure occurs when the stem weight of the simulated wheat is low, a plant 
variable which is primarily dependent on soil moisture via its effect on leaf area 
index (LAI) and biomass. Actual biomass increase depends on a soil water deficit 
factor; at times of maximum water deficit, the biomass increase is reduced to a 
very low value. 

2.1.2. Validation 
The CERES-Wheat model has been validated for production of yield at numerous 
locations (see Otter-Nacke et al., 1986) and more recently for Goodland (MR92). 
Of interest here is how well the model reproduces year-to-year variability of yield. 
In MR92 it was found the model overestimated year-to-year variability, but part of 
this overestimation was due to the faulty comparison of point location simulated 
yield to county area actual yields. For this study we statistically compared the 
relationship between year-to-year variability of observed precipitation, observed 
year-to-year county yields and yield simulated using observed climate data for 
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Goodland. We found that the relationship of the simulated yields to annual crop 
season precipitation (R 2 -- 0.57) was stronger than that of observed yields to annual 
crop season precipitation (R 2 -- 0.27), and that the slope of the simple regression line 
(yield regressed on precipitation) was higher for the simulated yields. However, 
this comparison is also confounded by the lack of spatial compatibility between the 
point climate and the area observed yields, i.e., the point location misrepresents the 
area climate. This result was anticipated also since the crop model does not account 
for various factors (e.g., hail, insect pests, diseases) that can affect observed yield 
in any given year. The model does reproduce the fluctuations in yields for extreme 
weather years, for example the large drop in yield in Sherman country (Goodland) 
in 1956, which was a severe drought year. More work needs to be done in carefully 
validating the crop model specifically for reproduction of yield variability. 

2.2. STUDY CHARACTERISTICS 

The main difference in the climates of the two locations is the amount of precip- 
itation received. Goodland, where annual average total precipitation is about 421 
mm, is a relatively dry location, and summer fallowing is the common cultivation 
practive. Topeka, which receives on average 853 mm of precipitation annually, is 
relatively wet, which allows for continuous rainfed cropping. 

The three generic soils used in the CERES-wheat model to represent low (S 1), 
medium ($2), and high ($3) soil productivity levels at Goodland were deep sandy 
loam, deep silt loam, and shallow silty clay. At Topeka these were deep sandy 
loam, medium silt loam, and medium silty clay. The soils differ mainly on the basis 
of soil water holding capacity and depth. 

The wheat cultivars grown at the two sites (Newton for Goodland and Scout 
66 for Topeka) are similar. The largest difference between the two cultivars is that 
Newton has a longer duration of grain filling period, but this difference does not 
affect the results significantly. 

Two types of management practices - continuous rainfed and fallow - were 
simulated by the model. For Topeka a crop was planted every fall for continuous 
rainfed production; and for Goodland every other fall for fallow production (two 
runs with alternate fallow years were averaged so that annual crop yields were 
reasonable). Soil moisture at planting was initialized for each soil type using the 
average soil moisture at planting from runs of the model using observed climate 
data. 

3. Stochastic Weather Generator 

3.1 .  DESCRIPTION OF THE MODEL 

Richardson's (1981) stochastic weather generator simulates daily times series of 
maximum and minimum temperature, incident solar radiation, and precipitation. 
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Daily precipitation occurrence is represented by a two-state first-order Markov 
chain model. It accounts for the stochastic dependence of the series of wet and 
dry days. Parameters estimated are two transition probabilities: Pll  and P01, the 
probability of a wet day following a wet day, and the probability of a wet day 
following a dry day. Rainfall amounts (x) are simulated for rain days using the 
gamma distribution: 

f ( z )  = > O, 

where: 

Oz 

3 

(1) 

= 3 x 1 matrix for day t for j --- 3 elements, which 

are standardized values of maximum temperature (j -- 1), 

minimum temperature (j-- 2) and solar radiation (j -- 3); 

r (j) = 3 x 1 matrix for day t for j elements, 

of independent random normal components; 

A, B = 3 x 3 matrices constructed from matrices of 

lag 0 and lag 1 correlations among the three j elements. 

A ~ time dependence, 

B ~_ simultaneous correlations among the j elements. 

Then the actual daily values of the j elements Xt are determined for j - -  1, or j - -  3 

where: 

xt( j)  

by: 

Xti(j)  = xti(j) x sti(j) + mti(j) ,  

where: 

Xti( j)  

sti(j) 
mti( j)  

(3) 

= daily value of variable j on day t for precipitation occurrence state i, 

i -- 1 for a wet day, i = 0 for a dry day; 

= standard deviation of variable j on day t for state i; 

= mean of variable j on day t for state i; 

= the shape parameter; 

= the scale parameter; 

= the gamma function of o~. 

The mean # of the distribution is oLfl and the variance cr 2 is a 3  2. 
Maximum and minimum temperature, and solar radiation are modeled as a 

multivariate first-order autoregressive process: 

xt( j)  = Ax t - I  (j) + B~t(j),  (2) 
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The seasonal cycle for the means and standard deviations of the j  elements is deter- 
mined by two-harmonic Fourier series. Since maximum temperature and solar radi- 
ation are conditioned on the occurrence of precipitation, separate models (including 
different harmonics, means, and variances) are used for values occurring on rain 
days and dry days, indicated by the i index. For j  -- 2, miminum temperature, there 
is no conditioning, and the index i in Eq. 3 is not used. 

3.2. RELATIONSHIP BETWEEN ANNUAL AND DAILY VARIABILITY 

Based on the stochastic model for precipitation occurrence and intensity, the vari- 
ance of the monthly total precipitation is related to the characteristics of daily 
precipitation according to the following: 

, l + d ]  
~ _~ w ~  2 1 + ~(1 - ~)Vz-d- dJ 

where: 

N 

71" 

, (4 )  

= year-to-year variance of monthly precipitation; 

= number of days in the time series; 

--- unconditional probability of a wet day 

(Tr = Pol /Plo + P01); 

a,  fl = shape, scale parameters of the gamma distribution; 

d = the persistence parameter for a first order Markov 

chain of precipitation occurrence(d = P11 - P01 ). 

The relationship between interannual and daily variance of temperature is the 
following: 

(30 

var(T) _~(~+~ ~ 2 ~ pk), (5) 
k=l  

where: 

Var(T) = interarmual variance of monthly temperature (~ 

ad 2 = variance of daily temperature (~ 

Pk = autocorrelation coefficient of order k. 

Since temperature is modeled as a first-order autoregressive process Eq. 5 is sim- 
plified to consider only Pl. It is important to note that these relationships are 
approximations. 

As is the case with most weather generators, the Richardson model has some 
inadequacies which affect how well it simulates the climate. For example, the first- 
order autocorrelation coefficient of mean temperature can be misspecified (Katz, 
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1996). We rigorously validated the model for the locations we used (see Section 
5.1.) and found it largely adequate for our purposes. 

4. Sensiti~ityTests 

Approaches to changing the variability of stochastically germ~ated climate time 
series was adumbrated by Mearns (1989) and described in more detail by Wilks 
(1992). 

4.1 .  TEMPERATURE 

We performed sensitivity tests at both locations for multiplicative changes of 0.33, 
0.5, 2, and 3 x the base temperature year-to-year variance, on a monthly time scale 
(Eq. 5). This was accomplished in the stochastic generator by altering st(jJ~ ( for j  
-- 1, 2) in Eq. 3 by the square roots of these variance change factors. This method 
changes the daily variance of minimum temperature exactly by the chosen factor, 
but only approximates it for maximum temperature. 

Since maximum temperature is conditioned on the occurrence of precipitation 
and separate means and standard deviations are calculated in the Richardson model 
on the basis of this conditioning, the daily variance of the series, which is comprised 
of combining these separate models, is the following (Katz, 1996): 

~r 2 = (1 - 7r)a20 + 7rtr~l + 7r(1 - 7r)(#l - #0) 2, (6) 

where: 

C~o 

7l" 

#o 

#1 

= variance of daily maximum temperature time series (~ 

= variance of daily maximum temperature on a dry day (~ 

= variance of daily maximum temperatureon a wet day (~ 

= unconditional probability of a wet day; 

= mean daily maximum temperature on a dry day, 

= mean daily maximum temperature on a wet day. 

Since the last term on the r.h.s, of Eq. 6 remains constant, then changing ~rd20 and 
~ 1  by some factor, does not result in a change in Crd2 by this same factor. For 
example, by adjusting by a factor of two, the adjustment in variance of the time 
series is actually closer to 1.9 for Topeka, based on the average difference in the 
means of maximum temperature on a dry and a wet day of 2.4 and an average 7r of 
0.25. For our purposes, these discrepancies are small and acceptable. We mention 
this here because in cases where relatively small changes in variance are made, the 
discrepancy could become important. 

We chose the range of changes described above to overlap with the changes used 
in MR92, which included variance changes from 0.25 to 4x the current interannual 
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variances, to facilitate comparison of the two sets of results. Additionally, in a recent 
regional climate model experiment of doubled CO2, daily temperature variance 
changed by factors from 0.25 to 2.50 (Meatus et al., 1995b). The 3•  factor was 
included as an extreme change, which may be larger than could be expected under 
doubled CO2 greenhouse-gas-induced climate warming, However, these changes 
are smaller than the seasonal ranges of changes found in observations for Kansas 
(Eder et al., 1989), where the variance of winter is five times that of summer. For 
temperature variance changes thirty years of daily climate data were generated for 
each experiment. 

4.2. PRECIPITATION 

We constructed two different ways of changing the variance of~precipitation. In 
both cases, changes are made in daily parameters in Eq. 4, such that interannual 
variability of precipitation is changed by a given factor. In the precipitation exper- 
iments 81 years of climate data (i.e., 80 years of crop yields) were generated for 
each case. Longer runs are desirable here because it takes longer time series for the 
precipitation statistics to converge to the values set by the parameters. 

4.2.1. Frequency and Intensity Changes (Tr and/3) 
The first type of change involves changing the scale parameter of the gamma distri- 
bution (/3), and the unconditional probability of precipitation (70, so that interannual 
variance of monthly total precipitation is changed by the following multiplicative 
factors: 0.33, 0.5, 2, and 3. Certain constraints were observed: mean total monthly 
precipitation (NTrc~/3) remains constant; the shape parameter a remains constant, 
as does persistence, d. Since 1/x/~ is the coefficient of variation,(c.v.) of the gamma 
distribution, then the c.v. of the precipitation intensity also remains ,constant./3 is 
changed in Eq. 4 by a factor approximately the same as the interannual variance 
change factor, and 7r by approximately the inverse of that factor. For variance 
increase cases,/3 increases and 7r decreases; this results in an increase in both the 
mean and variance of the precipitation intensity. For variance decrease cases fl 
decreases and 7r increases, thus reducing the mean and variance of precipitation 
intensity. 

4.2.2. Change in Persistence (d) 
In the second case only d in Eq. 4 is changed, to bring about changes in interannual 
variance of monthly total precipitation. Since d = Pll - /901, both transition 
probabilities are changed. Variance increases by factors of 2 and 3 were simulated 
for Topeka and Goodland. Variance decreases are constrained by the physically 
plausible lower limit of d = 0, and d at these locations is quite low to begin with, in 
some months less than 0.2. Thus, we tried only one experiment at Topeka wherein 
the interannual variability was changed by a factor of 0.8. 



266 LINDA O, MEARNS ET AL. 

4.3. TYPES OF COMPARISONS MADE 

In discussing the results we compare changes in the mean and variability of yields, 
frequency of crop failure, and yield distributions. Two statistics are used, % 
base yield, and coefficient of variation of yield. In addition, we performed the 
Kolmogorov-Smirnov non-parametric two-sample test (Gibbons, 1985) to com- 
pare cumulative distributions of yield. 

5. Results 

5.1 .  BASE CLIMATE AND YIELD SIMULATIONS 

5.1.1. Climate Simulations 
We performed a series of climate simulations of various lengths (e.g., 30, 90, and 81 
years) for each site. We report here the 81-year base climate simulations for Topeka 
and Goodland. The parameters for the weather generator were estimated from 30 
years (1951-80) of observations for both sites. Observed mean daily precipitation 
is very well represented (Figs. 1 a, 2a) by the simulated time series. Although the 
simulation of precipitation frequency is quite good at both locations (Figs. lc, 2c) 
the mean intensity is sometimes overestimated in high rainfall months (Figs. lb, 
2b), which is partially due to bias in the method of estimation of c~ and/3. 

The results for the simulation of daily precipitation intensity for the two locations 
indicate ways in which the gamma distribution is a good, but less than perfect model 
of precipitation intensity for these locations. The medians of the distributions of 
intensity are almost always slightly high, even when the mean intensity is accurately 
reproduced (Fig. 3a-d). (We show results for May since it is one of the most 
important months for precipitation for producing final grain yield.) In addition, the 
lower quartile of the intensity distribution tends to be too high, indicating that there 
is an underestimation of very small rainfall events. The variability of daily intensity 
appears to be slightly underestimated, based on the standard deviation, but it is 
generally well represented as measured by the interquartile range. Maximum values 
(after controlling for difference in sample size between observed and simulated 
climate) are often too low. 

Interannual variance of precipitation is also usually underestimated (Table I for 
Goodland), which follows directly from the simple daily precipitation model used 
(Wilks, 1989; Katz, 1996). These shortcomings notwithstanding, the reproduction 
of precipitation is generally quite good for these locations in the central Great 
Plains. 

The estimates of mean and variance of daily maximum and minimum tempera- 
ture are generally quite good (Table II for Topeka), but there are sometimes errors 
in the estimation of interannual variance. It is generally underestimated in summer 
months. The first-order autocorrelation coefficient (not shown) is often underesti- 
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Figure 1. Goodland simulated (81 yr) versus observed (30 yr) precipitation mean monthly values. 
(a) Daily mean; (b) mean intensity; (c) frequency. 

mated for maximum temperature. This error follows directly from the Richardson 
model structure (Katz, 1996). 

Small errors in cross-correlations and serial correlations also result from using 
default correlation matrices in Eq. 2 generalized for the entire U.S. and for the entire 
year. Small errors based on departures from the correlations of the location-specific 
variables may exist. However, the differences in the temperature and solar radiation 
values generated from location-specific matrices compared to those generated using 
the general matrices are usually small (Richardson, 1982) and are trivial in their 
effects on simulated crop yields (Wilks, personal communication). 

Since the solar radiation values used at these two locations were originally 
simulated from the weather generator, there was no need to evaluate them further in 



268 LINDA O. MEARNS ET AL. 

>,,. 
lJ 

"O 

E 
E 

E 
E 

59 

ID 
" 0  

10 

8 

6 

4 

2 

0 

15 

12 

9 

6 

3 

0 

30 
25 
20 
15 
10 
5 
0 

I I I I 1 I I I I . I  

o b s e r v e d  a 

s i m u l a t e d  

I I I I I i I I I ! 

I I I I / J ~ .  I I 

1 / 

I I I 

I I I I I I I I I I 

I I I I I I I I I I 

C 

I i i I , I  t 

2 5 4 5 6 7 
Month 

I I I I 

8 9 10 11 12 

Figure 2. Topeka simulated (81 yr) versus observed (30 yr) precipitation mean monthly values. (a) 
Daily mean; (b) mean intensity; (c) frequency. 

the baseline climate simulations. Moreover, the CERES crop models are relatively 
insensitive to variability errors in solar radiation (Richardson, 1985). Our results 
are not dissimilar from other validations of weather generators (Richardson, 1985; 
Johnson et al., 1996). 

5.1.2. Yields Simulated from Stochastically Generated Baseline Climate 
We then compared the yields simulated using 30 years of observed climate data 
for each location and those simulated using the stochastically generated climate. 
Results were quite different at the two locations (Table III and Fig. 4). At Topeka, 
yields simulated from simulated climate ('Base yields') for three soil types, were 
very similar to those simulated from observed climate ('observed yields'). The 
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Figure 3. Box plots and statistics of observed (obs) vs. simulated (sim) intensity of daily precipitation. 
(a) Goodland January; (b) Goodland May; (c) Topeka January; (d) Topeka May. Solid dots on vertical 
lines extending from the boxes represent the 90th percentile. Numbers associated with arrows are 
maximum values. Prob. of wet day confidence interval (CI) means the 95% CI for the difference 
between simulated and observed unconditional probability of a wet day. The CI for the ratio of 
medians is the 95% CI for the ratio of sim/obs median precipitation intensity. Z is the Z value for the 
interquartile range test. The critical Z value for significant difference at the 0.05 level is 4-1.96. 

differences in the cumulative frequency distributions were quite small (Fig. 4a and 
Table III). 

At Goodland, where the climate is much more marginal for wheat growing, the 
simulation of yields is more sensitive to small errors in the simulation of climate 
than at Topeka (Table III and Fig. 4b). We simulated sets of yields, using several 
realizations of simulated climates of several different lengths. The most accurate 
realization (based on our statistical criteria) did not produce the most accurate 
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Table I 
Variance (mm 2) of precipitation variance change cases base, 
PV.5, PV2, and PD2 cases 
Goodland 

Winter Spring Summer Fall Annual 

Base 132 2660 3575 1460 7276 
Observed 271 3348 4851 1582 12452 
ratio 0.49 0.79 0.74 0.92 0.56 

PV.5 82 927 1567 578 4092 
ratio 0.62 0.34 0.44 0.40 0.56 

PV2 390 4810 6327 2971 16866 
ratio 2.9 1.8 1.8 2.0 2.3 

PD2 322 3779 6018 3058 14037 
ratio 2.4 1.4 1.7 2.1 1.9 

PV = variance change by altering 7r and/3; for PV > 1, 7r .L /3 T; 
forPV< 1,7r T /3 +. 
PD = variance change by altering persistence parameter (d). 
ratio = ratio of precipitation change case variance to base variance 
except in first comparison, which is ratio of base to observed 
variance. 

Table II 
Topeka observed and simulated minimum daily temperature statistics 

January April July October 

Mean (~ 
Observed -9.0 5.9 19.7 6.7 
Simulated -9.1 5.8 19.7 7.4 

Interannual variance (~ C 2) 
Observed 8.0 2.8 2.3 4.1 
Simulated 6.7 3.7 1,3 4.3 

Daily variance (~ C 2) 
Observed 45.4 29.3 12.3 33.5 
Simulated 38.1 26.4 12.1 30.5 

simulated yields (compared to yields generated by the 30-year  observed climate).  
The realization that produced the mos t  accurate yields actually overest imated the 

observed characteristics of  precipitation. We combined  these two 80-year  simulated 
yield series to produce the baseline yield data set. Combining  yields produced what  
we felt was the best  compromise  between using the best climate, but producing 
low yields, or using a climate that overest imated mean intensity of  precipitation 
but produced a more  ' accura te '  yield series at Goodland (Table III  and Fig. 4b). 
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Table III 
Yields (kg/ha) simulated from observed climate vs. simulated climate 

271 

Goodland fallow Topeka rainfed 
sim n = 160 sim n = 80 
S1 $2 $3 Sl $2 $3 

Observed (n = 30) 
mean 823 1735 1965 3728 4135 4581 
sd 749 1099 1140 1459 1478 1340 
cv (%) 91 63 58 39 36 29 

Simulated 
mean 664 1295 1439 3602 3991 4401 
sd 620 928 966 1498 1 402 1251 
cv (%) 93 72 67 42 35 28 

D statistic 0.1287 0.2677 0.2489 0.0871 0.1228 0.1228 
P value 0.70 0.05 0.07 0.96 0.54 0.76 

n = sample size. 
S = soil type. 
Observed = yield simulated from observed climate. 
Simulated = yield simulated from simulated climate. 
sd = standard deviation. 
c v  = coefficient of variation (%). 
D statistic ~- Kolmogorov-Smirnov 2-sample statistic, which is the maximum absolute 
difference between the empirical cumulative distribution functions for the observed and 
simulated yields. 
P value = two-sided probability of attaining a larger D statistic under the null hypothesis 
of equal distributions. (i.e., the smaller the P value the more significant is the difference 
between the data sets). 

A number  of  factors contribute to an underest imation of  yield at Goodland.  The 

underest imation of  interannual variance of  precipitation results in an underesti-  

mat ion of  the f requency of  high precipitation amounts on a monthly  basis, which 

translates to smaller  amounts  on a daily basis and hence higher yields (generated 

f rom the observed climate) are underest imated (Fig. 4b). Since the yields are rela- 

t ively low under current climate conditions, there is less of  a response to the lower  
f requency of  low precipi tat ion years. 

There  is also a definitive posit ive trend in the observed annual precipitation 

t ime series (Fig. 5a), which is reflected in the simulated yield time series (Fig. 5b). 
The stochastically generated climate of  course has no trend, reflecting a stationary 
series with the same mean  as the observed precipitation time series. The high 

end of  the observed time series produces very high yields that the stationary mean 

precipitation t ime series cannot  reproduce.  At the lower end, the lower precipitation 

values in the observed series do not produce yields as equally low as the high end 

yields are high. Hence,  when the precipitation amounts are overest imated the yields 
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Figure 4. Cumulative distribution functions (CDFs) of wheat yields simulated from observed climate 
(labeled observed, n = 29) and stochastically generated climate (labeled base, n = 80) for (a) Topeka; 
(b) Goodland. 

simulated from the generated climate are still lower than the yields simulated with 
the observed climate. 

Another factor is the lack of year-to-year persistence in the annual time series of 
the stochastically generated climate. This problem is not very serious in the present 
context because there is very little persistence in the annual observed time series 
of precipitation at Goodland or Topeka. There is some autocorrelation, however, 
in the temperature times series. For example, the first-order autocorrelation of 0.31 
at Goodland for annual mean temperature contrasts to that of the simulated time 
series value of -0.07. This may have a small additional effect on the simulation 
of a series of years of yields. The effect for temperature would most likely be less 
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Figure 5. Goodland time series of (a) observed annual growin&season precipitation (51-80); (b) 
fallow yields simulated from observed climate (52-80). Diagonal dashed lines are linear trend lines 
through the data. 

than if there had been autocorrelation in the observed annual precipitation time 
series. It should be noted, however, that for locations where there is significant 
autocorrelation in the annual times series of precipitation, the stochastic weather 
generator would fail to reproduce this characteristic. This~ consequently would also 
then contribute to the underestimation of interannual variance of the annual time 
series. This probably is one reason why the interannual variance of temperature is 
often underestimated by the Richardson model at both sites (Table II). 

Since we are mainly interested in examining the way simulated yields change 
when climate variability changes, the 'errors'in simulated yield from the generated 
climate were not so large as to vitiate interpretation of the changes in yield caused 
by altered climate variability. The simulated climate at Topeka is not more accurate 
than that at Goodland, but the simulated yields are closer to observed there because 
the base precipitation is quite high, and deviations from the base precipitation have 
less effect on final yield calculations (Table II). 
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Table IV 
Variances (~ 2) of Topeka simulated maximum tem- 
perature variance change cases 

January April Ju ly  October 

Interannual 
Base 6.0 5.8 1.5 5.1 
TV2 19.2 12.6 2.8 9.3 
TV.5 4.9 3.4 0.7 2.4 

Daily 
Base 57.6 42.9 14.0 34.3 
TV2 100.4 87.0 25.5 68.0 
TV.5 27.5 26.2 7.3 22.9 

TV = temperature variance change. 

5.2. TEMPERATURE CHANGE RESULTS 

5.2.1. Overview of Stochastically Generated Temperature Variance Change 
In general, approximately the correct ratio of variance change is simulated, on an 
interannual and daily basis, but there tend to be underestimations (Table IV). This 
is most likely due to how the variance is changed (Eq. 3) which only approximates 
the change in variance of the maximum temperature time series as described in Eq. 
6. Sample size is also a consideration. 

5.2.2. Overview of Temperature Variance (TV) Yield Results 
The temperature sensitivity analyses show relatively large changes in the mean and 
relative variability of yield in response to changes in daily temperature variability 
at both locations (Figs. 6 and 7 for Topeka). Although the overall tendencies are 
similar to the changes seen in MR92 the results here are much more extreme. 
As in MR92, increases in temperature variability result in larger changes in yield 
than do decreases. The major factor responsible for the decreases in the mean 
and increases in variability of yield with increasing daily climate variability is the 
increased prevalence of crop failures due to winter kill at both locations (Fig. 7). 
The probability of crop failure for soil 2 is 0.21 for a doubling of daily temperature 
variance whereas with doubling of only interannual variance the sample estimated 
probability of crop failure approached 0. 

Note that there is little difference in the response of the three soil types to the 
variance changes. This would be expected in this case, since soil water processes 
do not figure prominently in the crop responses to varied daily temperature. 

5.2.3. Variance Increases - Crop Failures Due to Winter Kill 
The effect of changes in daily variance may be concretely demonstrated by com- 
paring two winter months with similar average temperatures (5.3 ~ but with very 
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different daily variances (Fig. 8). Each is taken from the Topeka time series where- 
in interannual variance of temperature has been doubled, but the former is from 
MR92, with little or no daily variance change and the latter from stochastically 
generated series that is based on changing the daily variance. In the first time series 
from MR92 with relatively low daily variability (Fig. 8a), the winter hardiness 
index increases through much of the month, whereas with higher daily variabil- 
ity (Fig. 8b), the rapid temperature vacillations prevent the plants from properly 
hardening. The hardiness index falls, rendering the plants less capable of surviving 
further extremes of cold, and the crop is finally killed. At Goodland, results are 
similar, but the probability of crop failure due to winter kill with a doubling of 
temperature variance is even higher (0.3 for soil 2). Wheat is more vulnerable 
to winter kill there, since there is greater moisture stress, and thus, on average, 



276 LINDA O. MEARNS ET AL. 

UI 
._c 

0'1 

8 0 0 0  , , 

7 0 0 0  

6 0 0 0  

5 0 0 0  

4 0 0 0  

3 0 0 0  

2 0 0 0  

1000 

0 r I 

0 

I I I , 

I~/"q 

I\ [ 
\1 

t . .  

t t l t  

5 

I I I I  I I I l l l l l  I l l  

1 

v 
I 
I 
I 
I 
I 

I I 

t I i l  i 

10 

1 i L i i i i 

' b a s e  

,,v,!',.ll /! Y ',- 
! i  3 1  i ! l \ .  
!/ !11 ; i , 

iV /',; 
t ' i  t ~ I t t I I I 0 t ~ I I I I I 

15 20 25 30 
Y e a r  

Figure 7. Topeka simulated yield time series for soil 2, Base and TV*2 cases. 

fewer tillers per plant. In summary, the inclusion of increases in daily variability of 
temperature greatly increases the occurrence of winter kill, decreases mean yields, 
and increases yield relative and absolute variability. 

5.2.4. Variance Decreases 
Decreases in the variance of temperature have much less effect on simulated yields 
than increases (Fig. 6). In general, critical thresholds related to the various parabolic 
functions making up thecropmodel are mainly crossed when variance is increased. 
For example the photosynthetic reduction factor, which acts to reduce the effective 
transformation of PAR into carbohydrate, is a function of daytime temperature. 
At the optimum temperature (18 ~ no reduction occurs, but at the temperature 
extremes ( - 3  ~ and 37 ~ maximum reduction occurs and no carbohydrate is 
produced. The slope of the function increases towards these extremes. In both the 
base and decreased variance cases, these thresholds are not crossed and so results 
tend to be more similar. There is little gain from being farther away from the 
extreme thresholds, when the mean temperatures of the base climate are close to 
the optima for crop growth as prescribed in the model. 

There is one effect of decreased daily temperature variability: at Goodland the 
relative variability of yield (CV) decreases from 70% (3 soil average) to 60% 
with a -~ halving of daily temperature variability. Comparing the temperatures at 
Goodland and Topeka, mean monthly maximum temperatures are similar, but the 
daily variance is higher at Goodland. Topeka minimum temperatures are higher 
than those at Goodland. Temperatures for many functions are more suboptimal 
at Goodland (compared to Topeka) and so reduced variability both decreases the 
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extreme high and low temperatures enough such that yield variability decreases 
somewhat. 

5.2.5. Senescence Due to Cold Temperatures 
Cold damage is prevalent with temperature variance increase even when winter kill 
does not occur (Fig. 7). Figure 9 presents seasonal daily average values of leaf area 
indexes (LAIs) for base, TV.5, and TV2 yields runs for Topeka. The averages in the 
LAI graph only include years without crop failures. Even when winter kill does not 
lead to crop failure, there is still severe senescence due to cold temperatures in the 
TV2 case. Although there is an advantage for the reduced temperature variability 
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case in winter for accumulating LAI, this advantage is less in the spring, and final 
LAI (and yields) are very similar to the base case. Similar results are also seen for 
the TV.33 and TV3 cases. 

5.3. PRECIPITATION RESULTS 

5.3.1. Changes in Frequency and Intensity (PV Changes) 

(a) Description of changes in precipitation statistics. Figure 10 displays sample 
times series of daily precipitation for Goodland for three different precipitation 
variance cases: (a) 7r is increased, r decreased (one-third times the base variance, 
PV.33); (b) the Base case (simulated current climate); and (c) 7r is decreased,/3 
increased (three times the base variance, PV3). When precipitation frequency is 
changed, because of the conditioning of maximum temperature and solar radiation 
on precipitation occurence, these two variables are changed as well. Although 
Katz (1993, 1996) demonstrated a method whereby maximum temperature could 
be altered in the Richardson model so that it would not change with frequency, we 
do not adopt that method here. The changes in maximum temperature that occur at 
our stations when we change precipitation frequency are relatively small and have 
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Table V 

Daily precipitation intensity and frequency for Goodland doubled precipita- 
tion variance cases 
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Case January July 
Mean Variance 
(mm/day) (mm2/day) 

Mean Variance 
(mrrgday) (mm2/day) 

Intensity 

Observed 2.0 
IV2 2.2 

PV2 4.0 

7"C 

Observed 16 
IV2 16 

PV2 8 

6.25 7.0 88.36 
8.41 7.1 116.64 

24.01 13.7 179.56 

28 

28 

15 

IV2 refers to the time series as changed for MR92. 
PV2 refers to time series as changed for present study. 
7r = the unconditional probability of precipitation (%). 

only a trivial effect on results. (see Section 5.3.1 .c). Moreover, it could be argued 
that it would be inconsistent to accept the changes in solar radiation resulting 
from changes in precipitation frequency but not those of temperature. Table II 
compares the interannual variance of monthly precipitation, Base vs. PV2 vs. 
PV.5 for Goodland. There are under and overestimations of change in interannual 
variance, but the overall average changes are generally correct. 

There are several ways in which the PV changes and interannual precipitation 
variance changes in MR92 differ. In the earlier study, precipitation frequency was 
not altered (Table V). Although mean and variance of precipitation intensity were 
altered, the changes were relatively small compared to those made in PV changes 
(Table V). The change in year-to-year variance of precipitation on a monthly 
time scale are basically the same, although more exact in MR92 since mechanical 
alteration of the observed time series was made. 

(b ) Overview of PV change yieM results. Yields respond substantially to changes 
in daily and interannual variability of precipitation. Changes in frequency prove 
to be particularly important. As in MR92, at Topeka yields decrease and relative 
variability increases with increasing precipitation variability (Fig. 11), but results 
are more complex at Goodland (Fig. 12). At Topeka, the slopes of the lines are 
steeper than in the MR92 study. For example, with a variance doubling in MR92, 
yields dropped on average to 95% of the base yield, but in the current study, the 
decrease is to approximately 85% of the base yield. Relative variability of yield also 
changes more rapidly with change in precipitation variance compared to MR92. 
At both locations changes in mean yield diminish (or change direction) between 
PV2 and PV3, which appears to be a threshold for the trends in changes seen. At 



280 LINDA O. MEARNS ET AL. 

, 3 0  . . . .  i . . . .  i ~ : l  . . . .  ~ . . . .  , . . . .  

pv.33 a 
25 

E 
E 

20 

"EL "~ 10 

0 
90 100 110 120 130 140 150 

Julian Day 

E 
E 

C 
0 

a m  
. 4 -  
12 

o.. 

( 3 -  

,3o 

2,5 

2o 

15 

10 

5 

0 
9o 

. . . .  i . . . .  i . . . .  d . . . .  ~ . . . .  i . . . .  

B o s e  b 

.... I ] ..... 
1 0 0  1 1 0  1 2 0  

J u l i a n  D a y  

I ,d .... 
130 140 150 

E 
E 

C 
0 

a m  

13 

s  
"5 

(3 -  

30 

25 

20 

15 

10 

5 

0 
90 

60.7 -,- 
. . . .  ~ . . . .  b , , , n . . . .  n . . . .  m l  . . . .  

pv3 C 
q 

1 
-4 

1 

I 1 
. . . .  ....... t 1 ........ 

100 110 120 130 140 150 

J u l i a n  D a y  

Figure 10. Sample daily time series of simulated precipitation (May-June) for (a) PV.33; (b) Base; 
and (c) PV3 for Goodland, for years when total May-June precipitation amount in each case was 
approximately 75 mm. 



CLIMATE VARIABILITY ON CERES-WHEAT 281 

130 

-o 120 
. - -  

>- 110 
C9 
03 a 100 

O3 

90 

80 

7O 

8O 

7O 

--~ 6O 
~  

~- 50 

o 40 

30 

> 2O 
r 

10 

0 

I I 1 1 I 

�9 " " A .  
- $ 2  

-~-- $3  
I I I I 1 

I I I 1 I 

�9 SI 

----'-" $2 

I I I . I , ,  I 

.33  .5 B 2. 3. 
V a r i a n c e  C a s e  

0 

b 

Figure 11. Topeka (a) % base yields and (b) CV for precipitation variance (PV) change cases. 

Goodland, relative variability of yield increases with both increased and decreased 
variability of precipitation (Fig. 12b). Absolute variability (as measured by the 
standard deviation), however, increases only with increasing PV (Table VI). In the 
earlier study CV increased monotonically with increasing precipitation variability. 

There are clear differential effects of yield change based on soil type. In general, 
largest changes in mean and relative variability of yield occur on the least productive 
soils (Figs. 11, 12). The overall directions of change are similar for all soil types. 
At Goodland there is a clear separation between magnitude of response for Soil 
1 and the other two soils, which reflects the relative difference in the base yields 
(Table II). 

At Topeka the increased mean and decreased variability in the PV.5 case results 
from having a lower frequency of low yields, but the upper range does not appre- 
ciably change (Fig. 13a). In the PV2 case the yield distribution changes shape with 
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Figure 12. Goodland (a) % base yields and (b) CV for precipitation variance (PV) change cases. 

a greater frequency of low yields (Fig. 13a). The overall range, however, does not 
change. At Goodland the shapes of the distributions do not appreciably change, but 
higher frequencies are noted at the low end in the PV.5 case and at the high end in 
the PV2 case (Fig. 13b). 

Essentially the same physical processes (e.g, variations in evaporation from soil) 
are responsible for the yield results at Goodland and Topeka for variance increase 
or decrease in precipitation, but the interactions of the variance changes with the 
different base climates results in the different tendencies at the two locations. 

(c) Goodland. Change in precipitation variance (with changes in frequency) 
affects soil evaporation significantly, particularly in the spring (Fig. 14a). With 
roughly the same aggregate amount of precipitation on average for each case, the 
soil evaporation is much higher in the PV.33 case than in the Base and PV3 cases. 
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Table VI 
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Base P M 3 3  PM5 PV2 PV3 PD.8 PD2 PD3 

(a) Topeka rainfed soil 2 n = 80 
Mean 3991 4553 4406 3388 3377 4229 3694 3210 
sd 1402 670 812 1609 1559 1153 1570 1491 
D statistic na 0 .3125  0 .213  0.300 0.2875 0.1000 0.1750 0.2750 
P value na 0.000 0.03 0.001 0.001 0.69 0.12 0.003 

(b) Goodland fallow soil 2 n = 80 a 
Mean 1275 503 707 1847 1624 na 1922 1508 
sd 928 526 658 1389 1322 na 1342 1304 
Dstatistic na 0 .4562  0.3500 0.1987 0.1188 na 0.275 0.131 
P value na 0.00 0.00 0.03 0.38 na 0.00 0.27 

a except the base, where n = 160. 
sd = standard deviation (kg/ha). 
D statistic = Kolmogorov-Smirnov 2-sample D statistic comparing base yields with variance 
change yields (see definition in Table II). 
P value = (see definition in Table II). 
na = not applicable. 

This difference occurs for two reasons. Decreased variance (i.e., increased fre- 
quency) brings many days with small precipitation amounts (Fig. 10a); more pre- 

cipitation evaporates immediately and hence does not infiltrate to increase available 

soil moisture. Low precipitation variance increases crop moisture stress through 
the season as indicated by the stress factor SWDF1 (Fig. 14b). More rain days also 

results in reduced solar radiation and potential evapotranspiration. The reduced 
water demand, however, is greatly overshadowed by the greater soil moisture loss 
through evaporation. These contrasts are also evident in actual evapotranspiration 
(Fig. 14c) and leaf  area index (Fig. 14d). There are large differences in LAI that 

persist throughout the growing season, and in this case LAI is highly correlated 
with final yield (Table VI). 

The second reason for the contrasts in soil evaporation and other plant growth 
components  with decreased variability is the reduced interannual variability of  total 
monthly precipitation. The reduced frequency of  high precipitation months results 
in a lower incidence of  high soil moisture months (and years). The fact that there 

is also a reduced frequency of  low precipitation months has less of  a mitigating 
effect. 

In order to examine more fully the effects of  reduced precipitation variance we 
ran the crop model  using isolated components  of  the PV.33 climate. This included 
a case where the PV.33 precipitation time series were used but all other variables 
were held the same as in the Base case. While this destroys the cross-correlations 
o f  the climate variables, it provides us with insights into the relative importance 
of  different variables. Interestingly, the highest LAI values (and yield) result from 
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Figure 13. Cumulative distribution functions (CDFs) for Base, PV.5 and PV2 cases for (a) Topeka; 
and (b) Goodland. 

the solar radiation only change (Fig. 15). The decreased solar radiation reduces the 
photosynthetic rate of the crop, but it also reduces the potential evapotranspiration. 
Lower moisture demand earlier in the season proves advantageous later in the 
season, since the reduced LAI and reduced potential evapotranspiration results in 
less water stress later in the season when yield is forming. On the other hand, 
the case where precipitation changes are isolated from changes in solar radiation 
and all other variables results in the greatest decrease in LAI (and yield), with no 
mitigating effect of solar radiation decrease on water stress. Note that the isolated 
effect of the temperature change that attends increased precipitation frequency is 
small. 
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Figure 14. Goodland, Soil 2, for PV.33, Base, and PV3 cases, daily average values during the 
growing season of: (a) soil evaporation (ES); (b) soil water deficit factor 1 (SWDF1); (c) actual 
evapotranspiration (ET); and (d) leaf area index (LAI). 

In the case of increased variability, frequency of rain events decreases while 
both the mean and variance of daily precipitation intensity increase (Fig. 10c). 
With fewer but larger rainfall events, soil evaporation decreases, infiltration of 
precipitation increases and hence available soil moisture (Fig. 14a--c). Runoff, 
though small at Goodland, increases as well. Increased solar radiation brings both 
increases in crop photosynthetic rate and in potential ET. However, the increases 
in these factors are not as great as their decreases in the PV.33 case, because there 
are naturally occurring upper limits to the amount that solar radiation can increase. 
The determining factor for yield is the decrease in soil water deficit, (Fig. 14b) and 
thus, compared to the base and PV.33 cases, both LAI (Fig. 14d) and yield (Table 
VI) are higher. 
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The decrease in average daily SWDF1 is also a function of the increased interan- 
nual variability of precipitation. The high precipitation years naturally reduce soil 
moisture stress. And although there is a higher frequency of low precipitation years 
as well, there is less room for further increase of stress, since soil moisture stress is 
relatively high under current conditions. At Goodland, the changes in interannual 
and daily variance components of precipitation complement each other, leading to 
larger changes in yield than in MR92. 

(d) Topeka. The wetter conditions for wheat growth at Topeka result in different 
responses to changed precipitation variability. As at Goodland, increasing precip- 
itation variability brings increased potential evapotranspiration and decreased soil 
evaporation (Fig. 16a). There are critical contrasts, however, in SWDF1 (Fig. 16b) 
and actual evapotranspiration (Fig. 16c). At Topeka, increased precipitation vari- 
ability causes the soil water deficit factors to increase rather than to decrease, for 
the cropping season as a whole, and particularly during May and June (Fig. 16b). 
Since soil moisture stress is relatively low in the Base case, there is little to gain by 
further increasing available soil water. Actual evapotranspiration, with increased 
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Figure 16. Topeka rainfed, Soil 2, for PV.33, Base, and PV3 cases, daily average values during 
the growing season of: (a) soil evaporation (ES); (b) soil water deficit factor 1 (SWDF1); (c) actual 
evapotranspiration (ET); and (d) leaf area index (LAI). 

variability is initially higher than in the PV.33 case, but falls to lower values in 
May and June, as soil moisture stress for all cases becomes fairly high (Fig. 16c). 

A critical difference at Topeka is the much higher LAI values attained through- 
out the season, and particularly at the LAI peak in May and early June (cf. Figs. 14d 
and 16d). At that same time soil evaporation drops, reflecting the high transpiration 
demand associated with high LAI and insolation (Fig. 16a). Actual evapotranspi- 
ration reflects the large differences in actual transpiration at Topeka (Fig. 16c). In 
the PV increase cases, actual evapotranspiration falls off abruptly (Fig. 16c) due 
to moisture stess (reflected in the high SWDF1 values, Fig. 16b) during May and 
June, and grain yield (even though LAI is never dramatically reduced) suffers. 
Whereas LAI and final yield values are positively correlated at Goodland, this is 
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not the case at Topeka. Although LAI remains high in the PV2 and PV3 cases, this 
becomes a burden from a water demand point of view later in the season when 
yield is forming. Hence, the greater soil moisture stress resulting from the much 
higher demand (which is partially a function of LAI) results in lower final grain 
yield. 

Thus at Topeka, in contrast to Goodland, relatively abrupt changes in soil 
moisture stress and evapotranspiration toward the end of the cropping season have 
the largest effect on final yield, whereas at Goodland water stress throughout the 
season determines final conditions (Figs. 14b and 16b). With increased precipitation 
variability, at Topeka, where base level precipitation is high, there is little advantage 
to further increases in soil moisture in the high precipitation years, but large losses 
in soil moisture and final yield occur in the low precipitation years. 

5.4. CHANGES IN PERSISTENCE (PD CHANGES) 

Variability changes brought about by changing the persistence of precipitation 
affects simulated wheat growth in ways similar to changes in frequency/intensity 
described above. At Topeka, mean yields decrease with increasing persistence (and 
interannual variance), and relative variability of yield increases (Table VI), whereas 
at Goodland both mean and relative variability of yield increase with increasing 
persistence (Table VI). 

Changes in some processes related to plant growth are distinctly different from 
those of the PV change cases. Daily average potential evapotranspiration through 
the growing season does not change as persistence is varied, and changes in runoff 
are relatively small. Soil evaporation, however, decreases slightly as persistence 
increases at Topeka, and is similar in magnitude to the PV changes cases. At 
Goodland, the changes in soil evaporation are smaller than in the PV cases, but 
the direction of change is the same (decreased soil evaporation with increased 
precipitation variability). LAI is much lower in the PD3 case than in the PV3 case 
(peak values in May of 2.5 m2/m 2 versus 4.0 m2/m 2, respectively). 

One may infer from these contrasting results that changes in daily frequency 
and intensity have a decided effect on soil evaporation at Goodland, whereas they 
are less significant at Topeka. The similarity to the PV changes at Topeka is likely 
a result largely of the relative abundance of soil moisture in the base climate, such 
that there is less sensitivity to differences in the daily sequencing and/or frequency 
of precipitation. Thus, when soil moisture is adequate the change in interannual 
variability of precipitation basically drives the changes in yields for the different 
case. Although there are differences in growth processes, these do not lead to large 
differences in the final response of the crop (i.e., yield formation) compared to 
the PV change cases at Topeka. At Goodland, the PV3 yield (soil 2) is 150 kg/ha 
greater than that of PD3, consistent with the difference in LAI, but this is relatively 
small. 
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6. Summary and Concluding Remarks 

The effect of changes in daily and interannual variability of temperature and pre- 
cipitation on simulated yields can be significant. At both locations increased tem- 
perature variability substantially decreased mean yields and increased their vari- 
ability owing chiefly to increased frequency of crop failure due to winter kill. 
Increased precipitation variability effects were location-specific. Where soil mois- 
ture was limited, increased precipitation variability increased mean and variability 
of yields, but where soil moisture was plentiful, mean yields declined but variabili- 
ty increased. Magnitudes of these yield changes were significantly affected by soil 
type. 

These variability change effects are significantly larger when changes in both 
variability times scales are appropriately taken into account. This is more realistic 
since variability on these time scales are physically (and statistically) related. Cli- 
mate change will naturally bring about simultaneous changes on both time scales. 
Therefore, a stochastic simulation approach to altering variance of time series 
allows for greater flexibility and physical meaning in making changes, compared 
to the approach in MR92 of directly altering observed time series for bringing 
about variance changes on a (primarily) daily time scale. The limitations of the 
earlier study notwithstanding, some of its overarching conclusions were confirmed 
here, such as the differential effect of baseline moisture conditions on the direction 
of change of mean yield with changes in precipitation variability. 

This study analyzes how the CERES-Wheat model responds to changes in 
variability and, as such, the study is most clearly a test of the crop model, and caution 
must be used in inferring from these results possible effects on actual yields. More 
rigorous testing of crop models in regard to their ability to respond accurately 
to year-to-year climate variability is needed as well as model development to 
simulate more realistic response to climate extremes. For example, crop models do 
not successfully simulate crop losses due to excess precipitation, which can result 
in water logging and lodging. Some of the higher yields estimated in this study in 
response to precipitation increases would in reality probably result in decreases. 

The changes in variability examined in this paper are relatively large and should 
be viewed as representing variability changes possible under conditions of climatic 
change caused by external forcing of the climate system, such as increasing green- 
house gases. They fall within the range of changes that have recently been found 
in the regional climate model experiments discussed in the introduction. In that 
regard they are not overly extreme. 

Our results both complement and contrast with those of the study by Riha et  al. 

(1996), in which several crop models were subjected to changes in temperature and 
precipitation variability, also using a stochastic weather generation approach. The 
effect of increased temperature variability on mean wheat yields basically agrees 
with their results, but yield variability results differ. For precipitation, our results 
contrast with theirs, but interpretation is difficult since their ranges of precipitation 
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variance changes do not overlap with ours and their sites have substantially different 
soil moisture regimes. Our results for effect of change in temperature variability are 
similar to those of Semenov and Porter (1995) where a stochastic weather generator 
was used to investigate changes in simulated wheat yields with climate variability 
change at two European locations, but our results are somewhat more extreme. 
Their comparisons of the effect of mean and variability changes of climate further 
confirmed our earlier results (MR92). 

The investigation of possible effects of climate variability change on resource 
systems such as agriculture is a new endeavor, one that requires further develop- 
ment. One research task is to incorporate changes in variability in climate change 
scenarios, since the absence of such changes could be an important uncertain- 
ty in integrated assessments of climate change. Meams (1995), and Mearns and 
Rosenzweig (1994) in a pilot investigation, have indicated that incorporating such 
changes can indeed alter one's assessment of the possible impact of climatic change 
on agriculture. Further development of techniques for such incorporation is cur- 
rently underway. 
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