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Abstract. Development of a robust autonomous Underwater Robotic Vehicle (URV) is a key element to the 
exploitation of marine resources. An accurate dynamic model is important for both controller design and mission 
simulation, regardless of the control strategy employed. In this paper, a dynamic model for an underwater vehicle 
with an n-axis robot arm is developed based on Kane’s method. The technique provides a direct method for 
incorporating external environmental forces into the model. The model developed in this paper includes four major 
hydrodynamic forces: added mass, profile drag, fluid acceleration, and buoyancy. The model derived is a closed 
form solution which can be utilized in modern model-based control schemes. 
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1. Introduction 

An Underwater Robotic Vehicle can greatly enhance 
the capabilities for oceanic engineering including oil 
and mineral explorations, inspection, and construc- 
tion. However, control strategies for URV are still 
immature compared with their space based counter- 
parts. Part of the reason is that we still don’t have a 
precise model for an URV. The difficulty arises from 
the high density, complex, unstructured ocean envi- 
ronment. The dynamics for a fixed land based manip- 
ulator are well understood, and can easily be devel- 
oped using either the Euler-Lagrange or Newton-Euler 
iteration method (Craig, 1989). However, develop- 
ment of a model for an underwater robotic vehicle has 
met with limited success, primarily as a result of the 
uncertainties presented by the hydrodynamic forces. 
Many control schemes have been proposed for under- 
water vehicles (Nakamura and Savant, 1992; Goheen 
and Jefferys, 1990; Yoerger and Slotine, 1985). In 
Nakamura and Savant (1992), a controller is developed 
for a six degree-of-freedom (DOF) underwater vehi- 
cle for the purpose of trajectory tracking. The model 
is developed in the velocity frame, and utilizes con- 
trol inputs for linear and angular velocity to achieve 

trajectory tracking. The model is applied to kinematic 
motion control of the vehicle only, and does not in- 
clude dynamics, or address the control of a manipulator. 
In Goheen and Jefferys (1990), a controller is investi- 
gated as an autopilot for underwater vehicles with the 
intent of performing autoposition and station-holding. 
This is a difficult problem using a conventional au- 
topilot control scheme because of the lack of a precise 
model and the uncertainties presented by the unstruc- 
tured hydrodynamic environment. Two multivariable 
self-tuning controller designs are presented as an ap- 
proach to overcome model uncertainties. The equa- 
tions of motion used in Goheen and Jefferys (1990), 
are derived from conventional testing techniques. The 
vehicle is mounted in a Planar Motion Mechanism 
(PMM) which oscillates the vehicle in a prescribed 
manner. Through different tests with each oscillatory 
mode, and varying PMM oscillatory frequencies and 
carriage speed, a pair of hydrodynamic coefficients are 
derived. Such a technique is very time consuming and 
expensive and requires a prototype vehicle. In Yoerger 
and Slotine (1985), a sliding mode control for a sin- 
gle input is proposed for robust trajectory control. No 
parameters of the model are known exactly. These con- 
trol schemes (Goheen and Jefferys, 1990; Yoerger and 
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Slotine, 1985) claim that good performance can still 
be achieved without precisely knowing the model pa- 
rameters. These methods use a variety of techniques 
that perform system identification either explicitly or 
implicitly. 

Better performance can certainly be achieved with 
a more detailed model. Modeling methods for under- 
water vehicles fall into two major categories (Goheen, 
1991): design methods which are concerned with the 
calculation of a proposed vehicle’s dynamic motion 
parameters from the vehicle’s design information; and 
testing techniques that require experimental data from 
a prototype vehicle from which the equations of motion 
are derived. The design method gives more physical 
meaning, but may not be as accurate as testing tech- 
niques. However, development of a prototype vehicle 
and the use of an experimental facility may be cost 
prohibitive. 

One purpose for designing an underwater vehicle 
is to carry a manipulator and perform station-keeping 
while the manipulator performs work. Once a manipu- 
lator arm becomes attached to the underwater vehicle, 
it becomes a multibody hydrodynamic problem. There 
has been a lot of current research addressing the multi- 
body hydrodynamics problem which can be found in 
Mahesh et al. (1991), Ioi and Itoh (1990), McMillan 
et al. (1995), Kato and Lane (1995). In Mahesh et al. 
(1991), an underwater vehicle equipped with a manip- 
ulator is described. A coordinated control scheme is 
developed which controls the vehicle and manipulator 
simultaneously and compensates the end-effector er- 
ror resulting from motion of the vehicle. The model 
is developed using an NBOD2 approach which derives 
the equations of motion for the N-coupled rigid bod- 
ies which form a topological tree. The control system 
is based on a discrete-time approximation of the dy- 
namic model. The model of the robot used in the paper 
is planar. In Ioi and Itoh (1990), the author expands 
the classic Newton-Euler mechanics to formulate the 
dynamic model of an underwater manipulator, McMiI- 
Ian et al, (1995) develop a dynamic simulation algo- 
rithm based on the Articulated-Body dynamics for an 
unmanned underwater vehicle with a robotic manip- 
ulator. These dynamic models, which are developed 
with the Newton-Euler method, result in a set of dy- 
namic equations presented in recursion form, which are 
valuable for simulation, but less useful from a control 
standpoint. 

Our main consideration for underwater robotic ma- 
nipulator modeling include: (1) successful operation 

of an autonomous URV, which dictates a model-based 
dynamic control system; (2) requiring accurate model- 
ing of both the manipulator and vehicle; and (3) requir- 
ing accurate modeling of the interaction of the dynamic 
system with the underwater environment. An alterna- 
tive technique satisfying these model requirements for 
an underwater robotic manipulator is presented here us- 
ing Kane’s method (Kane et al., 1983). The technique 
uses generalized speeds, partial angular and linear ve- 
locities to formulate expressions for generalized forces 
in a particularly effective way and enables one to con- 
struct, with a minimum of labor, equations of motion 
having the simplest form possible. The final model de- 
rived in this paper is in a closed form. Since modern 
control theory is based on the state space formulation, 
the closed form model enables us to recast our model 
into the state space form. This will allow us to use the 
results obtained in modern control theory. Especially to 
investigate the structural properties of the model, such 
as controllability, observability, identifiability, decou- 
pling theory, tracking theory and stability. Therefore, 
the closed form model will deepen our understanding 
of the model which in turn will improve the operation, 
safety, and reliability of the URV. 

2. Kane’s Dynamical Equations 

2.1. Advantage of Kane’s Method 

Euler-Lagrange (E-L) and Newton-Euler (N-E) are 
among the two most commonly used modeling meth- 
ods. The E-L method eliminates interaction forces be- 
tween adjacent links and provides a systematic method 
for developing the equations of motion of the entire sys- 
tem. A drawback of the E-L method is that it involves 
many unnecessary computations associated with devel- 
oping an energy function (Lagrangian) of the system. 
The N-E method is a recursive formulation which in- 
volves solving a force balance equation for each link 
in the system. Link interaction forces are incorpo- 
rated into constraint equations which must be com- 
puted, although they do not produce any work on the 
system. Although the method reduces to a relatively 
simple set of recursive equation, the constraint equa- 
tions associated with the link interaction forces can 
become computationally expensive, especially if the 
links form a closed kinematic loop. Kane’s method 
is in some sense a combination of the E-L and N-E 
methods. Like the E-L method, Kane’s method elimi- 
nates the non-working link interaction forces from the 
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onset, and considers the whole system as a single entity. 
Kane’s method requires that one develop the gener- 
alized active forces and generalized inertia forces for 
each link in the system. These forces are developed 
using N-E type equations, while eliminating the non- 
working constraint forces. These equations are another 
form of the Gibbs-Appell equations, or generalized 
D’Alembert equations written in Lagrangian form. In 
essence, Kane’s dynamical equations are equivalent to 
a set of “n” independent E-L equations, where “n” is 
the degree of freedom of the system (Angeles et al., 
1989). Kane’s method is more direct in that it elimi- 
nates the link interaction forces associated with the N-E 
method and eliminates the need to develop an energy 
or Gibbs function associated with the E-L method. 

body B belonging to S, is given by the following: 

0-9~ = w .T*+u,.R* (r=l,...,N), (5) 

where, u, is the rth partial linear velocity of the center 
of mass of B, and R* and T* are respectively the inertia 
force and torque of B. The inertial force of B is defined 
as: 

R* = -ma, (6) 

where, m is the mass of B, and a is the acceleration 
of the center of mass of B. The inertia torque of B is 
defined as: 

T*--a.I-wxI.w, (7) 
2.2. Kane’s Equations 

Given a system S possessing N degrees of freedom in a 
Newtonian frame, let 41, . . . ,QN be the N generalized 
speeds for S. Let F1 . . . , FN , be the generalized active 
forces for S, and FT, . . . , F>, be the generalized inertia 
forces associated with S. Then all motions of S are 
governed by the equations (Kane et al., 1983): 

F,+F;=O (r=l,...,N). (1) 

If a set of contact and/or body forces acting on a rigid 
body B belonging to S is equivalent to a torque T, to- 
gether with a force R applied at a point Q of B, then 
(Fr)B, the contribution of this set of forces to F,, is 
given by: 

(Fr)B=~,.T+ve,.R (r=l,...,N), (2) 

where, w, and VQ, are respectively, the rth partial angu- 
lar velocity of B, and the rth partial linear velocity of Q. 
The rth partial angular velocity of B, wr, is defined as: 

(3) 

where, w is the angular velocity about the center of 
mass of B. The rth partial linear velocity, uQr, of Q is 
defined similarly as: 

avQ 
UQr = ag,, 

where vQ is the linear velocity of Q. The contribution 
to FF of all inertia forces for the particles of a rigid 

where, I, is the central inertia matrix of B, and w and 
cz are the angular velocity and acceleration of B. 

3. URV Model 

In this section we will develop a dynamic model for 
an URV. The task involves applying the equations pre- 
sented in Section 2 to a system composed of an n link 
manipulator arm attached to an underwater vehicle. 
The technique requires that we develop expressions 
for the generalized inertia forces for the vehicle and 
the n links of the system, and expressions for all of the 
generalized active forces which act on the vehicle and 
the manipulator. 

3.1. Coordinate System 

The kinematic task is more tractable and systematic if 
we exploit the use of Denavit-Hartenberg (D-H) co- 
ordinate frames. Figure 1, illustrates the coordinates 
that we have selected for our system, where we have 
attached a fixed 0th coordinate frame to the vehicle 
which we treat as a zeroth link in an n + 1 link system. 
The 0th frame is located with respect to the center-of- 
mass (C.M.) of the vehicle (or Link 0) by the vector 
cg = kx, cyo c,, I]‘, where the subscript indicates 
Link 0, the superscript indicates a vector expressed in 
the 0th coordinate frame, and “t” denotes transpose. 
We have also carried along a 4th coordinate, 1, to 
be consistent with a homogeneous coordinate system. 
Development of the equations of motion also dictate 
the establishment of an inertial coordinate system, of 
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Figure 1. Coordinate system for URV model. 

which we have chosen a local level North, East, Down 
(NED) coordinate system. We will select the N = n+6 
generalized speeds of the system as: 

cj = [ v, uy u, w, wy co, 61, . . . , &]‘, 

where, (ux, vy, v,) is the linear velocity of the vehi- 
cle with respect to the inertial NED frame expressed 
in the 0th coordinate frame, (w,, wY , wZ) is the angu- 
lar velocity of the vehicle with respect to the inertial 
NED frame expressed in the 0th coordinate frame, and 
(4, . . . , 4,) which are the joint speeds of the n link 
manipulator arm. The kinematic expressions and iner- 
tia forces are simpler if represented in the moving 0th 
coordinate frame. Thus, all force expressions, as well 
as all derivatives and dot products will be performed 
in the 0th coordinate frame. Unless stated otherwise, 
superscripts on vectors denote the vector basis, and 
subscripts pertain to a particular link in the system. 

3.2. Kinematic Analysis 

In this section we will develop expressions for the linear 
and angular velocities, and linear and angular accelera- 
tions for each link. For simplicity we have considered 
only revolute links, but the notation could easily be 
expanded to include prismatic links. 
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Position Vector of C.M. of Link j. The position vec- 
tor of the C.M. of Link 1, with respect to the C.M. of the 
vehicle (Link 0) expressed in the 0th coordinate frame 
is given by: 

py = z: $A&; = c;+A;c;, [I 1 

where, r denote the addition of the physical coordi- 
nates of the two homogeneous vectors on the right hand 
side, At is the homogeneous transformation from coor- 
dinate frame 1 to coordinate frame 0, and ci is the posi- 
tion vector to the C.M. of Link 1 expressed in frame 1. 
The position vector of the C.M. of Link 2 with respect 
to the C.M. of the vehicle is given similarly by: 

and for an arbitrary Link j, j = 1,. . . , n, by the 
following: 

(8) 

j where, cj = [cXj cY, cZj 11” is the homogeneous posi- 
tion vector of the C.M. of Link j, expressed in the jth 
frame. 
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The angular velocity of the vehicle with respect to an 
inertial frame, expressed in the 0th coordinate system 
is given by: 

where, the hat “A” denotes a unit vector, and the nota- 
tion ‘tiS denotes the angular velocity of frames with re- 
spect to frame t expressed in the 0th coordinate frame. 
The angular velocity of an arbitrary Link j, with re- 
spect to the inertial NED frame expressed in the 0th 
coordinate frame is given by: 

iwl = imO + Owl = iwO + bzio 

iw2 = iwo + Owl + ;i:, lw2 

= ‘co0 + e,io + ;i$& 

(Link l), 

(Link 2), 
(9) 

j-l 1 

‘d = ho + ‘co1 + gnaw-, ld+l (Linkj), 

I=1 m=l 

where, k) denotes the rotation submatrix of Af , 
l&l = [0 0 &+I]’ is the angular velocity of Link Z+ 1 
with respect to Link 1, expressed in the lth coordinate 
frame. 

Linear Velocity of the C.M. of Link j. The linear 
velocity of the C.M. of the vehicle with respect to the 
inertial NED frame, expressed in the 0th coordinate 
system is given by: 

The linear velocity of the C.M. of an arbitrary Link j, 
with respect to the inertial NED frame, expressed in 
the 0th coordinate frame is given by: 

dp: v; = vi + dt + ‘co0 x p: (Link l), 

4; v; = v; + dt + too x p; (Link 2)) 
(10) 

v~=v~+$+‘w”xp~ (Linkj). 

Angular Acceleration of Link j. The angular accel- 
eration about the C.M. of the vehicle with respect to 
the inertial NED frame, expressed in the 0th coordinate 

frame is given by: 

i 0 d’w’ 

a! =dt= 
&io + ~)$I + cjzio. 

The angular acceleration of an arbitrary Link j, with 
respect to the inertial NED frame expressed in the 0th 
coordinate frame is found from the following: 

(Link l), 

(Link 2)) 
(11) 

i,j = 
diwj 
dt + iwO x iwi (Link j). 

Linear Acceleration of the C.M. of Link j. The linear 
acceleration of the C.M. of the vehicle with respect to 
the inertial NED frame, expressed in the 0th coordinate 
frame is given by: 

dv; 
ai = dt +b” x V& 

The linear acceleration of the C.M. of an arbitrary Link 
j, with respect to the inertial NED frame expressed 
in the 0th coordinate frame is found similarly by the 
following: 

dv” .o = - + iwo x vy 
1 dt 

(Link l), 

dv” a0 = 2 + iwO x vO 
2 dt 

2 (Link 2), 
w 

dv? 
as = $ + ho x vy (Link j). 

3.3. Inertia Forces 

The generalized inertia force of the system requires 
that we develop expressions for the inertia force and 
torque of each link in the system. The inertia force of 
an arbitrary Link j, is given by the following: 

R5 = -mjay, 

where, mj is the mass of Link j, and a: is the linear 
acceleration of the C.M. of Link j, and is given by 

199 



274 Tarn, Shoults and Yang 

Eq. (12). The inertia torque of an arbitrary Link j, is 
given by the following: 

where, I?, is the central inertia matrix of Link j, ex- 
pressed in the 0th coordinate frame. I$ is found through 
the following similarity transformation: 

where, 1; the central inertia matrix of Link j, expressed 

in the jth coordinate frame, and AL is the rotation sub- 
matrix of the Ai relating frame j with the 0th coordi- 
nate frame. The generalized inertia force for the system 
is now found using Eqs. (5)-(7) to obtain the following: 

(r = l,...‘N). 

(13) 

3.4. Gravity Forces 

Gravity can be treated as a generalized active force 
which acts at the center of mass of each link in the 
system. The force due to gravity acting on an arbitrary 
Link j is given by: 

where, go = [g, g, gZIT, is the gravity vector ex- 
pressed in the 0th coordinate frame. The generalized 
active force due to gravity is found from Eq. (2) and is 
given by the following: 

(Fr)gavity = 2 mjz . go (r = 1, . . . , N). (14) 
j=O r 

3.5. Hydrodynamic Forces 

The hydrodynamic forces induced by the motion of 
a rigid body in an underwater environment are very 
complex and highly nonlinear. A general discussion of 
hydrodynamic forces and their impact on submerged 
bodies can be found in Yuh (1995), Fossen (1994), 
Pate1 (1989). The forces may be developed using in- 
compressible fluid flow using Navior-Stokes equation, 
and rarely lead to a closed form solution. As is often the 

case, these forces may be treated as lumped approxima- 
tions for certain applications within certain underlying 
assumptions. Previous work by Yuh (1990), identified 
four separate effects which must be included in a dy- 
namic simulation of a submerged rigid body. The net 
effect of added mass, buoyancy, fluid acceleration, and 
drag are often treated as the superposition of each in- 
dividual force. The next 4 sub-sections will describe 
each hydrodynamic force, and will develop a general 
formulation for incorporating that force into our URV 
dynamic model. 

Added Mass. The added mass force results from the 
interaction of fluid in the immediate vicinity of a sub- 
merged link which is accelerating relative to the fluid. 
The link induces an acceleration on the fluid through a 
pressure distribution which acts on the link body. The 
force required to accelerate the surrounding fluid re- 
sults in an effective inertia which can be modeled with 
a 6 x 6 positive definite added mass inertia matrix, IA. 
For a completely submerged vehicle in an unbounded 
fluid the added mass coefficients may be treated as con- 
stants. Analytic expressions for the coefficients of 1~ 
can be derived from potential flow theory for simple 
geometric shapes (Fossen, 1994; Patel, 1989). In gen- 
eral the 36 elements of the added mass matrix, IA, for 
a body in a real fluid would be distinct and may be 
determined from experimental testing techniques. It 
has been shown by McMillan et al. (1995) and can be 
derived from Fossen (1994), that the inertia force and 
torque of a submerged body induced by the added mass 
phenomena has the following form: 

(15) 

where, ‘Wj and 7; are skew symmetric matrices, and 
Izj is the 6 x 6 added mass matrix for Link j expressed 
in the 0th coordinate frame. +y is the time derivative of 
Link j in the moving 0th frame and is given by Eq. (12): 

and %j is the time derivative of ‘wj in the moving 0th 
frame and is given by Eq. (11): 
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Substituting these two equations into Eq. (15) results 
in: 

where, p is the density of the fluid, Vj is the volume of 
fluid displaced by Link j, and go is the gravity vector 
expressed in the 0th coordinate frame. The generalized 
active force due to buoyancy for the system is given by 
the following: 

-[‘$ i&j]I~j [jzj]. (16) (F.ln”,,~=--P$Vj~.S” (r=lT...,N). (19) 
We can account for the relative acceleration and veloc- 
ity of the fluid by introducing the following relation- 
ship: 

,g = +j - “0 
f’ 

a: = as - aO,, 

Fluid Acceleration. The fluid acceleration force is 
similar to the buoyancy force in that it is proportional 
to the fluid displaced, but is result of acceleration of 
the fluid itself. The force due to fluid acceleration also 
acts through the center of buoyancy and is given by: 

RFL~ = PVjaof, 

where, v”f is the velocity of the fluid expressed in the 0th 
coordinate frame, and a”f is the acceleration of the fluid 
expressed in the 0th coordinate frame. The final form 
of the inertia force and torque resulting from added 
mass is now given by: 

The generalized inertia force due to the added mass for 
the entire system is then given by the following: 

(F;),, = $ (g . Tij + 2 . RI,) 
(r= l,...,N). (18) 

This is a general formulation for the incorporation of 
the hydrodynamic force and torque into the dynamic 
model. No assumptions were necessary on how the 
coefficients of the added mass matrix are derived. 

Buoyancy. The buoyancy force is proportional to the 
mass of the fluid displaced by the link and acts through 
the center of buoyancy of the link. For a homogeneous 
symmetric shape, the center of buoyancy and center of 
mass are equivalent. For our model, we assume that 
the buoyancy force acts through the center of mass of 
the link and is given by the following: 

'i3j = -PVjgO, 

where, again, a”f is the acceleration of the fluid ex- 
pressed in the 0th coordinate frame. The generalized 
active force due to fluid acceleration for the system is 
given by the following: 

(Fr hid Accel = P 

Profile Drag. The fluid drag forces exerted on a body 
depends on the square of the relative velocity of the 
fluid with respect to the body; the geometric shape of 
the body which is characterized by a drag coefficient 
and a reference area of the body; and the density of the 
fluid. The drag forces include profile (pressure) drag, 
skin friction drag, and lift forces. The profile drag force 
acts in a direction opposite to the link relative velocity 
with respect to the fluid and is the primary drag force 
for slow moving URV applications. Both skin friction 
drag which is tangent to the link surface and lift which 
is normal to the fluid flow may be neglected for slow 
moving URV applications. Therefore, we will only 
consider profile drag in our formulation. However, the 
other drag forces could be handled for other applica- 
tions in an analogous manor. The profile drag force on 
an infinitesimal part of the link is given by L’evesque 
and Richard ( 1994): 

dT~rag~ = -0.5pCDb.j /ILJ~(~)’ 11 (AXLij x ~3(L)l)dZ, 

where, bjdl is the reference area of Link j, bj is the 
width of the rectangle that circumscribes the frontal 
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projection of the infinitesimal element of Link j, and 
dl is the length of the infinitesimal element. CD is the 
drag coefficient , and v:(l)’ is the relative velocity of 
Link j with respect to the fluid normal to the link along 
the length, I, of the link. v;(1) is equal to v:(l) - v”f, 
the velocity of Link j minus the velocity of the fluid. 
The drag coefficient CD is a function of link geometry 
and fluid flow angle. It can be represented by: 

CD = CD,basicSiI12c7, 

where, Cn,ba& is shape parameter, and 0 is the angle 
between the relative velocity of the fluid and the link 
longitudinal axis. Different VdUeS of Cn,basic are sug- 
gested in L’evesque and Richard (1994) for different 
link shapes. Using strip theory, the surface integral 
can be reduced to a line integral to obtain the following 
equations for the force and moment on Link j due to 
profile drag: 

0 

TDragj = -0.5p 
s 0 

(21) 

x C,bidl. 

The generalized active force due to the drag force and 
torque for the system is then given by: 

(&hag = 

(r= l,...,N). (22) 

3.6. Control Forces and Thruster Dynamic Model 

Control Forces. To make this model complete, we 
will consider a control input for each of the N gen- 
eralized speeds. The vehicle or zeroth link requires 6 
control inputs: 3 rotational, and 3 linear. The rota- 
tional and linear control inputs for the vehicle can be 
expressed by the following control vectors: 

To = T;io + Ty?o + Tzio (Rotational), 

R0 = R,ic + Ry90 + R,.& (Linear), 

where, T,, Ty, T, are the control torques applied about 
the vehicle C.M., and Rx, R,, R, are the control forces 

applied through the vehicle C.M. parallel to the &,, ja, 
io axes. The n joint controls for the manipulator can 
be expressed for an arbitrary Link j by the following 
control vector: 

Tj = Tjij-1 (Link j) , 

The generalized active force for all of the control inputs 
of the system is then found from Eq. (2): 

a+? 
(Fr)c,,nm,l = $ . To + $ . Ro + $ . TI 

r i- r 

(23) 

The desired control forces Re and torques To for the 
vehicle can be physically implemented by thrusters. 
Most small-to-medium-sized underwater vehicles are 
powered by electric motors driving propellers mounted 
in ducts. Current thruster technology exhibits nonlin- 
earities and limit cycles which can dominate the control 
problem. Therefore, in order to ensure adequate track- 
ing between commanded and actual thruster inputs, it 
requires incorporation of the thruster dynamics into the 
control model. 

Thruster Dynamic Model. A good treatment of 
thruster dynamic models for underwater vehicles can 
be found in Yuh and Gonugunta (1993), Yoerger et 
al. (1990), Healey et al. (1994). Yoerger et al. point 
out in their paper (Yoerger, 1990) that the dynamics 
of the underwater vehicle can be greatly influenced by 
the vehicle thruster dynamics. They propose a nonlin- 
ear parametric model for a torque-controlled thruster. 
Three different controller designs were tested for im- 
proving the performance of the thrusters. The lumped 
parameter dynamic model derived in their paper uses 
an energy-based physical system approach. Using the 
propeller angular velocity fi as the state, the thruster 
dynamic model and output equation are given by the 
following: 

where r& is the input torque for the thruster, c&h and 
#lth are constant model parameters, and Cm is a pro- 
portionality constant. All three constants can be de- 
termined through experiments. This model assumes 
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that the water velocity is directly proportional to the 
propeller speed resulting in a constant slip angle. A 
better model which accounts for fluid slip was derived 
by Healey et al. (1994). Their model includes three 
parts: motor model, propeller map, and fluid model. 
These three components are combined into a two state 
thruster dynamics model give by the following: 

and 

!f2 = g1w2, up, K), 

tip = g2G-h vp>, 

where the propeller angular velocity, 0, and axial fluid 
velocity at the propeller up are the state variables, and 
V, is the voltage input. The thruster output equation 
is a nonlinear function of the two states and can be 
expressed by: 

Thrust = h(Q, up). 

All of the parameters in this model can be identified 
through experimental analysis. The required thruster 
forces commands Thrust,Om related to the desired con- 
trol forces Re and torques Te for the vehicle can be 
represented by: 

Ro [ 1 To 
= @Thrust,,,, 

where 0 is the thruster matrix map that maps the 
thruster forces to the C.M. of the vehicle in the 0th 
frame. The commanded thrust input can be obtained 
by inverting the above relation, taking a pseudo-inverse 
if necessary. 

3.7. Dynamic Model 

Having developed all of the generalized inertia forces 
and generalized active forces for the vehicle and manip- 
ulator, the equations of motion are found by combining 
Eqs. (13), (14), and (18)-(23) with Eq. (1) to obtain 
the following dynamic model: 

(FF) i- (VAM -I- (Fr)gravity + (Fr)~uoy + (F~hltid.k~~l 

+ @r)~rag + ~Fr)control = 0 (r = 1, . . . , N). 

(24) 

However, Eq. (24) may not be the most conve- 
nient form for the equations of motion. A considerable 
amount of previous research in robotics has resulted in 

a rather standard form for the equations of motion of a 
manipulator. Also a considerable amount of previously 
developed simulation software depends on equations of 
motion expressed in the following form: 

W&i + W, S> + G(t) + Fexternal = cmtroi, (25) 

where, < is the joint variable vector, M(t) is a matrix 
of inertia terms, C(t, 4) is a vector of Coriolis and 
centripetal accelerations, G(e) is a vector of gravity 
effects, Fexternd is a vector of external forces acting on 
the system, and ~,,,~~t is a vector of control inputs. 
Equation (24) can be rearranged into the standardized 
form in (25) by noting that: 

(M(E))i,j = -a(@‘r> + (Fr)AM)/aqj 3 
(CC<, S>> = - (@‘*I + @‘*IAM) - M(l)% 

G(E) = -(F)gravity, 

(Fextemad = - F)~uoy - @%%id ACC~ - (F)~rag, 

(~controd = O%mtml. 

The dynamic model is now complete, with Eq. (25) 
representing the equations of motion of the entire sys- 
tem composed of the vehicle and the n-axis manip- 
ulator. The output equation relating the position and 
orientation of the manipulator end-effector in the in- 
ertial NED coordinate system takes on the following 
form: 

Y = h(6, rl), (26) 

where, 71 is the position and orientation vector in the 
NED coordinate frame, and h (5, r]) is a six dimensional 
function of the generalized coordinates and is obtained 
from the following homogeneous transformation relat- 
ing the manipulator end-effector to the inertial NED 
coordinate frame. 

A'? = A'?A'A=...A;",. I I 0 1 (27) 

The n homogeneous transformations which relate 
the manipulator end-effector to the vehicle frame 
(A;Af- . A:-,) are determined from the Denavit- 
Hartenberg parameters, which are based on the link 
shape and joint angle. The displacement and orien- 
tation of the vehicle in the inertial NED coordinate 
frame is represented by the final homogeneous trans- 
formation, A:. A convenient set of angles which can be 
used to describe the vehicle orientation are given by the 
roll, pitch, and yaw Euler angles (I$, 19, @). The final 
homogeneous transformation in terms of Euler angles 
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takes on the following form, A:, 

where, c0 = COS(~), se = sin(e), and [d, d, ddlT is 
the North, East, Down displacement of the vehicle. 

For fixed land based manipulators, the position and 
orientation of the manipulator end-effector is computed 
from measured joint angles. For underwater robotic ve- 
hicles, the position of the manipulator end-effector is 
determined by not only the manipulator joint angles, 
but also the position and orientation of the vehicle. 
Measuring the position and orientation of the vehicle 
is referred to as “vehicle navigation,” and is an area for 
further research. However, from a simulation stand- 
point, the manipulator joint angles and vehicle posi- 
tion and orientation can be computed by integrating 
Eq. (25). The joint angles are available as a direct re- 
sult of integrating the n joint speeds. The Euler angles, 
which define the vehicle orientation in the NED frame, 
can be computed by integrating Euler angle rates. The 
Euler angle rates in terms of the vehicle angular veloc- 
ity (Q, wy, w,) is given by: 

[I 4 e 0 1 sin cos f$ tan 0 e 8 = cos - 4 sin tan 4 w, WY . i [ 
0 sin4secO cos q5 set 6 

I[ 
w, 
1 

(29) 

Although Eq. (29) provides a convenient kinematic re- 
lation for computing the Euler angles, it does contain 
singularities at f90” degrees pitch. A better choice of 
kinematic variables are quaternions, which do not in- 
volve singularities. 

4. Example 6 DOF URV with a 
3 Link Manipulator 

To demonstrate the utility of our modeling approach, 
we have developed the equations of motion for a 
generic 6 DOF vehicle with a 3 link Puma 560 ma- 
nipulator. The vehicle is generic in the sense that the 
vehicle mass, inertia, and hydrodynamic parameters 

may be specified at run time (i.e., simulation input 
parameters). Although, the Puma 560 manipulator is 
certainly not suitable for underwater manipulation, we 
chose it as an example to demonstrate the modeling 
approach and because we have detailed modeling data 
about the Puma 560 at our disposal. All of the modeling 
equations outlined in Section 3 were computed using 
the Mathematics (Wolfram Research Inc.) symbolic 
computation package on a Sun sparcstation, which per- 
formed all of the algebra and derivative operations on 
symbolic equations. Mathematics has a feature that 
allows it to output its result in either C or FORTRAN 
source code. Thus, we are able to generate elements for 
a dynamic simulation directly from the equations out- 
lined in Section 3, without the need of performing hand 
computations which greatly reduces the possibility for 
human error. The results from sample computations 
will be provided in the following sections. A complete 
listing of the C source code for the model elements will 
be provided in the appendix.’ 

4.1. Coordinate System 

Once again, the inertial coordinate system will be a 
locally level North, East, Down system. We will attach 
a 0th coordinate system to the vehicle (20 forward, jn 
out the left, la up). We will assume symmetry about 
the vehicle xz plane, so that the vehicle C.M. is located 
by the following homogeneous vector: 

c; = [CXO’ 0, CZ”’ 11”. 

The 9 generalized speeds of the system will be defined 
as: 

where, (v,, vy, v,) is the inertial velocity of the ve- 
hicle expressed in the moving 0th coordinate frame, 
(a, @y, wz) is the angular velocity of the vehicle with 
respect to the inertial NED frame expressed in the 0th 
coordinate frame,and (41 42 4s) are the joint speeds of 
the Puma 560 manipulator arm. 

4.2. Kinematic Analysis of Example Model 

The first 3 homogeneous transformations for the Puma 
560 are given by the following and are detailed in 
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[Technical report SSM-RL-91-151 (Tarn et al., 1991): 

[ Cl 0 41 0 
A;= “d !I “d ; , 

0 0 0 1 

1 
rc2 -& 0 0.4318czl 

given by: 

i 

c3 0 s3 -0.0191cs 
A3 = s3 0 -c3 -O.O19lS, 

2 0 1 0 1 0.1505 ’ 
00 0 1 

where, Cj means Cos(qj), Sj means Sin(qj), qj is the 
joint angle between Link j and j - 1, and all measure- 
ments are in meters. 

The homogeneous vectors defining the CM. of the 
first 3 links of the Puma 560 are given by: 

c; = [O.OOOO, 0.3088, 0.0389, l]‘, 

c; = [-0.3289, 0.0050, 0.2038, l]‘, 

c; = [0.0204, 0.0137, 0.0037, llf. 

The position vector to the C.M. of each link can now 
be computed from (8), (e.g. Link 1): 

Pi? = [Go - 0.0389 sin(qr), 0.0389 cos(ql), 

-0.3088 + c,, 1’. 

The angular and linear velocities of the links may 
now be computed from (9) and (10). An example com- 
putation from Mathematics for Link 1 is given: 

io.+ = [wx, wy, @, +&I’, 

vy = [vx + (-0.3088 + czo) wy - 0.0389 cos(ql) wz 

- 0.0389 cos(ql) 4,) 

vy - (-0.3088 + c,,) LO, 

+ (%I - 0.0389 sin(qt)) w, 

- 0.0389 sin(qr) 41, 

u, + 0.0389 cos(ql) w, 

- (c,, - 0.0389 sin(qt)) r+]‘. 

The angular and linear accelerations may be com- 
puted from Eqs. (11) and (12). The result for Link 1 is 

a~=[o,(v, + 0.0389cos(ql)w, 

- (c,, - 0.0389 sin(qt))w,) 

+ 0.0389 sin(qt)w,qr + 0.0389 sin(qt)qt 
- mz(vy - (-0.3088 + c&ox 

+ (cxo - 0.0389 sin(qt)) o, - 0.0389 sin(qr)qt) 

+ tix + (-0.3088 + c,,,)hy - 0.0389 cos(ql)hz 

- 0.0389 cos(ql)ijl , 

- (wx (uz + 0.0389 cos(q&, 

- (cXO - 0.0389 sin(qr))wy)) 

- 0.0389 cos(q&, 41 - 0.0389 cos(q&j; 

+ w,(vx + (-0.3088 + czo)wy 
- 0.0389 cos(q&, - 0.0389 cos(q&j,) 

+ ti, - (-0.3088 + cZo)Wx 

+ (cxo - 0.0389 sin(qt)) bz - 0.0389 sin(qr)qt , 

- 0.0389 sin(qt)w,qt + 0.0389 cos(ql)oyql 
- wy(vx + (-0.3088 + CZ”)WY 

- 0.0389 cos(ql)w, - 0.0389 cos(q&$ 

+ wx(vy - (-0.3088 + czo)wx 

+ (cxo - 0.0389 sin(ql)) w, - 0.0389 sin(qt)qt) 

+ ir, + 0.0389cos(ql)& 

- (cXg - 0.0389 sin(qI))&y]‘. 

4.3. Inertia Forces for Example Model 

As previously stated, the vehicle will be modeled with 
generic mass properties having a,mass, mo, and we will 
assume that the vehicle principle axes are aligned with 
the 0th coordinate system so that we have a diagonal 
inertia matrix: 

The mass and central principle inertia parameters 
for the first 3 links of the Puma 560 are given by the 

205 



280 Tarn, Shoults and Yang 

following: 

ml = 12.96(kg) 

1.09809 0 0 

0.177381 0 
0 1.1112 I 

(kg - m2>, 

m2 = 22.37(kg) 

0.403567 0 
0.968405 0 

0 1 (kg - m2>, 
0 0.966379 

m3 = 5.Ol(kg) 

0.0746421 0 0 
13’ = 0 0.0755015 0 

0 0 0.0074957 1 I 

(kg - m2). 

The generalized inertia force due to the physical 
mass parameters (i.e., hydrodynamic added mass not 
included yet) of the system can now be computed from 
(13). 

4.4. Computation of Gravity Forces for Example 
Model 

The generalized active force due gravity is computed 
from (14). The result computed from Mathematics for 
the generalized active force along the direction of the 
first generalized speed (i.e., v,.) is given by: 

(F&w = mOgx + ma + m2g, + mjg,, 

where, g, is the x component of gravity represented in 
the 0th coordinate frame. 

4.5. Hydrodynamic Forces for 
Example Model 

In the absence of experimentally derived hydrody- 
namic coefficients for an actual vehicle and manipu- 
lator, we will make certain assumptions about both the 
the vehicle and manipulator in order to approximate the 
hydrodynamic forces for the purposes of simulation. 
When better data becomes available about a specific 
URV, it can easily be incorporated into the model and 

simulation by regenerating the model through Mathe- 
matica. However the approximations and model de- 
veloped here should be adequate for the general study 
of URV dynamics and control system design. 

Added Muss. In general, the motion of a 6 DOF URV 
moving at high speeds will be highly nonlinear and 
coupled. However, for many URV applications the 
URV will be operating at relatively low speeds. With 
the assumption of a slowly moving URV and 3 planes 
of symmetry, the off-diagonal elements of the added 
mass matrix Z,J can be neglected (Fossen, 1994). We 
will model the vehicle as a prolate ellipsoid 

x2/a2 + y2/b2 + z2/b2 = 1, 

with semi-major axis “a” along the lo axis and “b” 
along the & and ic axes. Define eccentricity e and 
mass of the water displaced by the spheroid as m as the 
following: 

e = 1 - (b/a)2, 

m = 4/3npab2. 

The constants CQ and fro are calculated from: 

2(1 - e2) 1 
a0 = 

e3 
z In 

l+e 
i-rye ’ > 

1 1 - e2 
In l+e -- 

p’ = 2 - ze3 l-e’ 

Then, the diagonal terms for the vehicle’s added 
mass matrix are given by the following. 

I0 40 
A011 = -Gm7 

IO,o22 = --Am, 
2 - PO 

IO,,33 = IoAo22’ 

I0 A,,44 = o.O, 

1 (b2 - a2)2(ao - PO) 
co55 = -2 2(b2 - a2) + (b2 + a2)(fJo - ~0) m’ 

The added mass coefficients for the manipulator will be 
derived by approximating the links as cylinders. The 
added mass derived for a cylinder can be found in Pate1 
(1989). We will apply the same assumptions for the 
links as we did for the vehicle (low speed operation, 
3 planes of symmetry) so that off diagonal terms may 
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again be neglected. Furthermore, we will assume that 
the added mass contribution due to accelerations along 
the length of the cylinder axes to be negligible. Thus for 
a cylinder oriented such that the length of the cylinder 
is along the .? axis, the added mass inertia matrix may 
be approximated as: 

kjL5 kjL; 
kj, kj, 0, 3, -, 0 

3 

where kj = pnrTLj/4, rj and Lj are the radius and 
length of the cylinder. It must be emphasized that 
although these added mass derivatives are approxi- 
mations, the dynamic formulation which incorporates 
them into the equations of motion is based on a general 
formulation without regard to how the added mass coef- 
ficients were derived. When experimental data and/or 
better model approximations for the added mass pa- 
rameters become available, it can easily be incorpo- 
rated into the URV dynamic model and simulation. 

Buoyancy Force. The form of the buoyancy force is 
nearly identical to the force due to gravity except that 
the force is proportional to the mass of the volume 
of the displaced fluid instead of the mass of the sub- 
merged body. In our simulation model we will assume 
that the mass of the displaced fluid is equal to the mass 
of the submerged body so that we can maintain a ver- 
tical equilibrium. This is a valid assumption for the 
vehicle, since underwater vehicles will typically use 
ballast in order to compensate for the buoyancy force. 
Variations between the buoyancy and gravity forces 
on the links of the manipulator will produce a force 
and a torque on the vehicle, which will increase the 
station keeping cost of the URV Careful manipulator 
design can ensure that the buoyancy and gravity force 
are nearly equivalent. Therefore, we will nominally 
model the buoyancy force on the manipulator links as 
equivalent to the gravity force. We can then introduce 
variations into the nominal buoyancy force to examine 
its effect as a disturbance on the URV 

FluidAcceleration. Fluid acceleration will typically 
be studied under the context of a model disturbance 
and will not be incorporated into the example model. 
The form of the model is equivalent to the gravity and 
buoyancy force and can be incorporated into the sim- 
ulation at a future time by simply modifying a routine 
which computes buoyancy. 

Projile Drag. The drag model for the URV will con- 
sider separate models for the vehicle and manipulator, 
The drag on the vehicle will be modeled by approx- 
imating the vehicle shape as a sphere with a frontal 
reference area Se. The drag and torque induced by the 
vehicles relative velocity in the fluid is then given by: 

R Drag, = 4/2CD”P,2 so, 
T Drag, = 0, 

where, uo is the relative velocity of vehicle with respect 
to the fluid, and CD, is the drag coefficient for a sphere. 

The drag force exerted on the links of the manipula- 
tor will be modeled by approximating the links as cylin- 
ders and then applying strip theory. The drag equations 
become: 

brag, = -0.5~ 
s 0 

~~~~~~ = -0.5~ 
s 
oi II!J~(l)‘II ($Zij X U:(Z)‘) 

X CD2rjd1, 

where rj is the radius of the cylinder of Link j. A 
value of C D,bsic =l.l is suggested by LCvesque and 
Richard (1994) for a cylindrical cross section. Al- 
though the drag models for both the vehicle and the 
manipulator are approximations, no assumptions were 
necessary regarding the incorporation of these forces 
into the dynamic model. The drag force and torque for 
each element (Link) in the system is represented in the 
dynamic equations as a symbolic force and torque vec- 
tor expressed in the 0th coordinate frame, the elements 
of which are computed by the above approximate equa- 
tions. Therefore, an improved drag model can easily 
be incorporated into the dynamic model by replacing 
the routines which compute the elements of the generic 
drag force vectors. 

5. Summary and Conclusions 

The dynamic equations for an underwater vehicle 
with an n-axis manipulator have been developed using 
Kane’s equations. Kane’s method provides a straight- 
forward approach for incorporating external forces into 
the model. External hydrodynamic forces considered 
in this model include: buoyancy, profile drag, added 
mass, fluid acceleration. Other external forces include 
gravity, manipulator joint torques, and the vehicle’s 
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linear and angular control inputs. The technique was 
demonstrated for a generic 6DOF vehicle with a 3 link 
Puma 560 manipulator. The resulting set of dynamic 
equations are a closed form representation of the com- 
plete system and provides the physical insight neces- 
sary to study the behavior of the total system. It may 
be advantageous in future applications to perform co- 
ordinated control of both the vehicle and manipulator 
so that a target point is reached in a prescribed manner. 
Developing a controller to provide coordinated motion 
control of the vehicle and manipulator will require an 
accurate dynamic model which describes the behavior 
of the total system. 

Control of underwater robotic vehicles presents 
many challenges. Underwater robotic vehicles may ex- 
hibit non-holonomic phenomena and may encounter 
dynamic singularities. Disturbances introduced by the 
underwater environment are unique. Therefore, con- 
trol schemes developed for spacecraft robotic systems 
may be rendered unsuitable by the unstructured under- 
water environment. The model presented in this pa- 
per provides a complete description of the combined 
motion of a vehicle and manipulator in an underwa- 
ter environment and will provide the understanding 
necessary to develop an appropriate control for un- 
derwater robotic vehicles. There are still many prob- 
lems which must be resolved before autonomous un- 
derwater robotic vehicles can be successfully deployed. 
In addition to the problem of vehicle control, under- 
water robotic vehicles must address problems in the 
area of: underwater vision, communication, as well as 
navigation. 
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