
Modeling Default Reasoning Using Defaults

PAUL V A N ARRAGON

Dept. of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada, N2L 3G1
prvanarragon@watdragon.uwaterloo.ca

(Received 14 October, 1990; in final form 9 January, 1991)

Abstract. User modeling research can benefit from formal automated reasoning tools. How-
ever, existing formal tools may need to be modified to suit the needs of user modeling. Theorist
is a simple framework for default reasoning. It can be used as a tool for building and main-
taining a user model, and as a model of a user 's default reasoning. To apply Theorist to both
tasks, we develop Nested Theorist (NT), a simple tool based on Theorist that allows default
reasoning on arbitrarily-many levels. We extend NT in two ways: we allow prioritized defaults,
and we allow reasoning about agents with limited reasoning capabilities. This paper focusses
on applications, and uses wide-ranging examples from user-modeling literature to illustrate
the usefulness of the tools presented.

Key words: User Modeling, Theorist, default reasoning, nested reasoning, limited reasoning

1. Formal User Modeling Tools

Many issues that arise for user modeling also arise in the general context of
knowledge representation, where they are dealt with abstractly by defining
reasoning formalisms. Some of these formalisms can be applied to user mod-
eling. For example, a key issue that arises for user modeling is how to build
and maintain a detailed model of a user based on a small set of observations
about the user. Abstractly, the problem is how to predict what is true about an
object (the user) despite incomplete information about that object. One way
to solve this abstract problem is to make assumptions about the object. This
is the primary motivation for default reasoning research (Etherington, 1988).

Another key issue that arises for user modeling is how to reason about the
beliefs and inferences of a user. To engage in dialogue with a user, it helps to
know what the user believes, and what the user is able to derive from those
beliefs. As user modeling research shows, it is useful to view a user as being
able to reason with incomplete information (Joshi et al., 1984; Wilks and
Ballim, 1987). The abstract problem of reasoning about belief has been dealt
with by proposing formalisms (Konolige, 1982; Konolige, 1985; Levesque,
1984; Fagin and Halpem, 1988). However, few formalisms deal specifically
with reasoning about a user (or any agent) that is reasoning with incomplete
information.

User Modeling and User-Adapted Interaction 1: 259-288, 1991.

0 1991 Kluwer Academic Publishers. Printed in The Netherlands.

260 PAUL VAN ARRAGON

This paper shows how to build a formal tool to deal with both of the
above issues: reasoning with incomplete information, and reasoning about a
user that is reasoning with incomplete information. The tool, called Nested
Theorist (NT), provides a formal way to build and maintain a user model (by
default reasoning), including a way to reason about what users believe and
about how users reason by default.

An advantage of using a formal tool, such as NT, is that the input (domain
knowledge) and output (user models) are given a clear semantics. This makes
NT easy to use because statements of domain knowledge can be understood
independently of each other, and the effect of individual statements on the
whole system can be studied logically. A particular advantage of NT is that
NT builds on research in the areas of default reasoning and reasoning about
belief. Both of these areas have been studied extensively. NT enables this
research progress to be applied to user modeling.

Another advantage of NT is that NT makes a clear distinction between
levels of reasoning. In NT, both the system (that is reasoning about the
user) and the user (who is reasoning about some domain) have incomplete
knowledge, and use defaults. Hence defaults occur on multiple levels in NT.
Although some user modeling research studies agents that use defaults (Joshi
et al., 1984; Perrault, 1988; Wilks and Ballim, 1987; Wilks and Bien, 1983) the
level distinction is not fully made. An advantage of making a clear distinction
is that a wide range of user modeling research can use the NT framework. We
illustrate this by implementing examples drawn from various existing user
modeling systems.

1.1. CONTEXT

Figure 1 illustrates this paper's view of the context of a user model. At the
core of the computer system is the belief subsystem, which maintains and
reasons with the system's beliefs. Initially, a knowledge base (KB) is input
by the KB designer. A fully-integrated subpart of this KB is the user model
(UM). The UM is designed to contain general statements about users, and
to accumulate specific statements about specific users during dialogue with
users. According to a formal definition of reasoning (symbolized by ~) , the
belief subsystem is able to predict other beliefs (KB+) from the given KB,
including more beliefs about users (UM+). For example, in NT, ~ is a type
of default reasoning.

The computer user is able to communicate with the system by asking
questions (Q) and providing answers (A). This is done through an interface
that uses a theory of dialogue to generate helpful answers and ask appropriate
questions. Sometimes the answers provided by the user to the interface are

MODELING DEFAULT REASONING USING DEFAULTS 261

f

KB

T
A

Belief subsystem KB+ A [

J Q I Interface

Q+A,~ ~Q+A

KB designer user

Fig. I. The context o f a user model .

added to the K.B. In this way, the system accumulates specific knowledge
about specific users.

When the interface requires information about the domain or about the
user, it poses questions that are answered by the belief subsystem. The belief
subsystem is driven by these questions. Assuming the interface only asks
specific questions, such as whether a formula a is in KB+, the belief subsystem
needs only to be able to compute specific answers, rather than be able to derive
the complete KB+.

Given this context, a user modeling system consists of four components:
1. an underlying formal definition of reasoning (~),
2. an implementation of the definition,
3. a method for KB designers to organize the KB within the definition, and
4. a fully compiled KB organized according to the method.

Components I and 2 together define a user-modeling tool. Such a tool
(often called a shell) consists of a definition of reasoning (including reasoning
about the user model) and a domain-independent implementation of this
definition of reasoning.

Every user modeling system must incorporate some underlying form of
reasoning about a user. The reasoning may not be completely formalized,
but some reasoning must be used. The availability of a formal user-modeling
tool frees a researcher to work on issues regarding how to structure knowl-
edge (component 3), and what knowledge to use (component 4), without
having to formally define the underlying reasoning, or having to consider
implementation details.

262 PAUL VAN ARRAGON

The definition of reasoning (component 1) provides ways to deal with par-
ticular abstract issues that arise. For example, the tools of this paper provide
a way to reason with incomplete knowledge, and a way to reason about users
who have incomplete knowledge and who have limited reasoning capabilities.
The capabilities of the tools suggest ways of structuring knowledge (compo-
nent 3) without prescribing exactly how knowledge is to be structured. For
example, the tools presented in this paper are capable of default reasoning,
which enables incorporating many user-modeling techniques: using stereo-
typical knowledge, attributing capabilities to users, ascribing belief to users,
using user utterances to modify a model, and deciding what to say to a user.
None of these techniques are inherent in default reasoning, however. The KB
designer must decide how to use the tools for a given application.

1.2. DESIGN DECISIONS

The following summarizes our design decisions for our user modeling tools.
The first eight concern the formal definition of nested reasoning; the last one
concerns the implementation.

Decision 1. Reasoning is nested to arbitrary depth.
For generality, the tool is not limited to two levels of nesting, but allows

an arbitrary number of levels. This allows the system to reason about users
who are reasoning about other agents.

Decision 2. There may be many agents on each level (except on the top
level).

Also for generality, the tool may have many object-level reasoners (users),
and many agents on each more-deeply-nested level. In user modeling, there
may be more than one user. Each user may reason about several other agents,
each of these agents may reason about several other agents, and so on. How-
ever, we need only have one agent on the top level, since the top level
corresponds to the system, and in user-modeling applications there is only
one system involved that reasons about the users.

Decision 3. An agent's representation of another agent is incomplete.
The system does not have complete information about the user, and the

user may not have complete information about other agents. Our language
should allow representing incomplete knowledge.

Decision 4. Each level supports deduction.
The system can draw inferences about the user, and model that the user

draws inferences. We use logic. It may be argued that logic is a poor rep-
resentation of the nuances of human reasoning. Our view is that logic is
useful for user modeling in the same way that logic is useful for other do-
mains (Hayes, 1977). Logic provides a way to talk about knowledge precisely

MODELING DEFAULT REASONING USING DEFAULTS 263

with a straightforward declarative semantics, and a powerful representation
language.

We do not commit to logic in the strong sense of claiming that a user rea-
sons according to deduction in some logic. Logic provides a way to represent
inferences of a user, but does not completely specify how the inferences are
drawn.

Decision 5. Each level supports default reasoning.
To overcome the rigidity of deduction, the system models the user as able

to make assumptions. The system can also make assumptions about the user,
such as that the user can draw an inference.

Defaults have been shown to be useful for performing a wide variety of
types of reasoning. Whereas deduction is sound inference in a logic, reasoning
by default is unsound inference. This unsounddefault inference can take many
forms, such as analogy (Goebel, 1989). Defaults can be used to reason despite
incomplete information. Furthermore, defaults may have associated priority
levels that allow a more flexible type of reasoning (Brewka, 1989). Hence our
commitment to logic does not pose as strong a limitation as at first it seems.

Decision 6. Knowledge and belief are not de3~ned.
Instead of defining the notion "belief" or "knowledge," the tool is based

on the notion "what is derived by an agent." In this view, a user has given
premises with which to derive beliefs. Representing this reasoning procedure
enables using the system to predict what a user will infer from what the system
tells the user, and how a user will revise her beliefs.

Because each user may be different, there is no fixed logic of belief.
Instead, there is only a representation of a reasoning procedure. This reasoning
procedure is not completely fixed either, because the system can reason about
limitations of the user's ability to apply the reasoning procedure.

Knowledge is often defined as true justified belief (Shoham and Moses,
1989). The tool need not incorporate any such definition. Instead, the tool
models the argument used to derive a "belief." These arguments have various
properties: some are based on premises that the user believes firmly (facts),
and others are based on premises that are assumed more tenuously (defaults).
The former arguments correspond more closely to knowledge, and the latter
correspond more closely to beliefs.

Decision 7. The representation is general.
The tool functions as a programming language for applications that re-

quire a model of belief. A general representation allows many techniques
to be incorporated, and does not limit the domain of the KB. Logic is ad-
vantageous because it is a well-understood and general representation, thus
logic simplifies the amalgamation of specific application ideas under a unified
framework.

264 PAUL VAN ARRAGON

Decision 8. The tool does not incorporate psychological theories.
Representing what a user can derive seems to rely heavily on psychology.

Cognitive psychology researches what people typically believe, how people
change their minds when faced with conflicting evidence, and how learning
takes place (Hoenkamp, 1987). Although each of these issues is relevant to
user modeling, this paper avoids these issues. No claim is made about the
psychological validity of the tools presented.

Our view is that the formal aspects and the psychological aspects of
user modeling are not in competition. One does not have to choose between
a psychological representation and a logical representation. Instead, a for-
mal logical tool presents a language that can be used to express relevant
psychological theories.

A formal deftnition makes a tool easier to use. Rather than having to de-
sign ad hoc structures when implementing a technique based on psychology,
a KB designer can structure psychological ideas according to a principled
tool. For this to be possible, the tool must be flexible, not enforcing a par-
ticular psychological view, and allowing a flexible language for expressing
knowledge. For example, if the tool is to be used for reasoning about a user's
limited ability to reason, the limitations should not be fixed by the tool, but
the tool should provide a way to express and reason about such limitations.
We achieve this by using a logical language that can express defaults.

Decision 9. The tool is implemented ef-~ciently, but without insuring
worst-case tractability. : "

A possible problem with generality is that there is potential for intractabil-
ity (Levesque and Brachman, 1985). Reasoning with a full first-order predi-
cate calculus reasoner is known to be intractable in general. Adding defaults
increases the potential for intractability (Reiter, 1980). However, a tool should
be general, in the same way that a programming language is. Rather than re-
stricting the use of a tool to efficiently-solvable problems, we leave the tool
general so more difficult problems can be represented and reasoned about.

In this view, tractability is a property of the application, rather than of
the tool. Specific instances of average problems that arise may typically be
tractable enough (Halpem and Moses, 1985, p. 489). The tool is general,
but finds answers to specific problems efficiently. Overhead arising from the
implementation is small, so the time and space required to solve a problem
depends mainly on the complexity of the specific problem.

2. Theorist

Theorist (Poole et al., 1987; Poole, 1988) is a simple framework for default
reasoning. Its input is two sets of formulae, called facts and defaults. Theorist

MODELING DEFAULT REASONING USING DEFAULTS 265

uses facts and consistent defaults as premises in a logical argument. If a
formula g is a logical consequence of the facts and consistent defaults, we say
that Theorist can explain g from the facts and defaults. If new facts are added
later, it may be that Theorist can no longer explain g because the defaults
used are inconsistent with the new facts.

Explanations in Theorist are defined in terms of two sets of formulae input
by the knowledge designer: 1

b r a set of facts: closed formulae taken as true in the domain;
A a set of defaults: (possibly open) formulae taken as the "possible
hypotheses" in the domain.

DEFINITION 2.1. An explanation from ~', A of a closed formula g is a set
.~ U D where D is a set o f ground instances of elements o f A such that.~ U D
is consistent and implies g.

That is, from ~', A, Theorist can explain g if there exists a set D such
that

1 . . ~ U D ~ g ,
2. ~" U D is consistent, and
3. D is a subset of ground instances of elements of A .

3. Theorist as a User Modeler

To illustrate Theorist, and to show how Theorist can be applied to user mod-
eling, we consider some simplified examples from user modeling literature.
In our notation, variables are upper case letters. Functions, predicates, and
constants are strings beginning with a lower case letter. Variables are some-
times universally quantified using V. The following logical connectives are
used: implication (~--), conjunction (A), disjunction (V), and negation (7).

EXAMPLE 3.2. UNIX Novices
In a system that provides consultation for users of the UNIX 2 operating

system, it is useful to model the level of expertise of the user (Chin, 1988,
1989). This expertise can take the form of a default. For example, we may
assume that novice 3 users understand the simple command "login." If we

I Note that throughout this paper, we use the word "explains" because it corresponds best to
Theorist terminology. However, the propositional attitude we intend to express more closely
resembles "predicts" or "believes".

2 UNIX is a trademark o f Bell Labs
3 We ignore for now the issue o f how these stereotypes are obtained.

2 6 6 PAUL VAN ARRAGON

have a fact that David is a novice, Theorist can explain that David understands
the "login" command.

~ = { novice(david) } (1)

A = { understandsA(login) ~- novice(A) } (2)

From the above fact and default, ~ U {understandsda,id(login) *-- novice
(david) } is an explanation of understandSdavid(login).

An explanation can be blocked by adding facts that contradict defaults
used in the explanation.

EXAMPLE 3.3. Blocking an Explanation
If the system observes that Eric is having trouble logging in, it may add this

observation as a fact. Given that the system has a fact that users who cannot
login do not understand the "login" command, the system cannot explain that
Eric understands the "login" command.

~c = { novice(eric) (3)

cannotLogin(eric) (4)

VA ~understandsA(login)+- (5)

cannotLogin(A) }

A = { understandsA(login) +-- novice(A) } (6)

From the above, understands~ric(login) is not an explanation since
{ understandseric(login) +-- novice(eric)} is inconsistent with ~-.

Rather than have a default such as understandsA(login) ~- novice(A)
for each UNIX command, we can organize these defaults usefully by classi-
fying each command according to whether it is mundane or simple. (Chin,
1988, 1989, calls this a double stereotype.) This technique allows us to specify
the defaults more compactly.

EXAMPLE 3.4. Double Stereotypes
UNIX commands are classified by the facts as being simple or mundane.

The defaults specify that novices understand simple commands, and that
beginners understand simple and mundane ones. If we have as a fact that
a user is a novice or a beginner, we can assume the user understands all
commands of the appropriate category.

.~ = { novice(david) (7)

beginner(kathy) (8)

MODELING DEFAULT REASONING USING DEFAULTS 267

simple(login)) (9)

simple(tin)) (10)

mundane(ed)) (11)

mundane(my)) (12)

mundane(cp)) } (13)

A = { understandsn (C)*--novice(A) A (14)

simple(C)
under stands A (C)~-beginner(A) A (15)

(simple(C) V mundane(C)) }

From the above, understandsda.id(C) is explainable i fC is one of {login, rm},
and understandskathy(C) is explainable if C is one of { login, rm, ed, my, cp }.

The expressability of the underlying first-order logic that Theorist uses is
an advantage. For example, we can express disjunctive knowledge. We may
have a fact that u is a novice or a beginner, but not know which.

EXAMPLE 3.5. Disjunctive Stereotype
Let us add to the facts of example 3.4 a fact that Eric is a novice or a

beginner.

(beginner(eric) V novice(eric)) E (16)

From the above, we can explain that eric understands the login command,
since both beginners and novices understand simple commands. Note that we
do not have to first eliminate all but one of the stereotypes, as in (Chin, 1989),
before we can derive understands~ric(login). In a sense, extra expressability
provides a computational advantage.

Theorist is a flexible framework. Following design decision 7, Theorist
does not specify exactly how knowledge must be structured. For example,
the idea of organizing knowledge into double stereotypes is orthogonal to
Theorist. For another example, stereotypes can be structured into a hierarchy,
as is (Finin and Drager, 1986), to enable reasoning about how a stereotype
inherits properties of more general stereotypes. Nothing extra is needed in the
definition of Theorist to make this reasoning possible, since Theorist defaults
can be organized in a hierarchy (Jones and Poole, 1985).

Furthermore, stereotypes need not be specified as facts as in the above
examples. Instead, we can use observations to derive the user type, as Chin
does. The basic structure of domain knowledge would be as follows:

268 PAUL VAN ARRAGON

observations ---*stereotype ---§

For example, instead of having "novice(david)" as a fact, we may have obser-
vations about commands that David used in the past. From these observations,
we use facts or defaults to derive what type of user (stereotype) David is. For
example, we may have a fact that users who use the "ed" command are either
novices or beginners, and a default that users who use the "ed" command
are beginners. Once we derive a stereotype from these observations, we can
derive further predictions about the user.

The above examples illustrate that, despite not being originally intended to
be applied to user modeling, Theorist is applicable to user modeling because it
provides a way to reason with incomplete information. We need only specify
as facts and defaults the relevant knowledge about observations, stereotypes,
and predictions.

4. Theorist as a Model of Reasoning

Much of the impetus for user modeling comes from the desire to improve
communicat ion between system and user. The capability o f modeling the
level of competence of the user (as in the above examples), can help the
system to decide what advice is appropriate to the user (Chin, 1988, 1989;
Finin and Drager, 1986).

Sometimes a more detailed model of the user is helpful. To understand
and respond to a user, it is helpful to have a model of what the user believes.

For example, the user may not merely understand the " rm" command, but
may also believe particular details about how the " rm" command was used
during the current session. If the system knows what the user believes, the
system can avoid telling the user details the user already believes, but can tell
the user details that are important for the user 's goals (Cohen et al., 1989).

Furthermore, it is helpful to model how the user reasons. I f the system
knows how the user reasons, the system can tell the user just the necessary
detail so the user can derive the rest herself. A model of how the user reasons
also enables the system to prevent the user f rom drawing false conclusions
(Joshi et al., 1984).

Theorist does not have any built-in capabilities of modeling how a user
reasons. So to apply Theorist to modeling a user 's reasoning, we must augment
Theorist with a model of reasoning. But what capabilities should the model
of reasoning have?

It would be useful to model a user as at least being able to make deductive
inferences. For example, if we tell the user that " rm t*" removes files that
begin with the letter "t ," we can reason that the user can deduce that " rm t*"
will remove a file called "temporary."

MODELING DEFAULT REASONING USING DEFAULTS 269

It has been argued in (Joshi et al., 1984) that it is also useful to model
assumptions the user might make. Since the user also has to deal with in-
complete information, the user may assume things that are typically true. The
system should block any of these assumptions that are false. For example,
the user might assume that a command does not have negative side effects
if there is no error message. If we tell the user that " rm t*" removes the file
named "temporary," the user may assume that " rm t*" has no negative side
effects. We should warn the user that " rm t*" removes all files with names
that begin with the letter "t ," such as the file named "thesis."

This leads to the idea of employing Theorist as a model of the user 's
reasoning. We can view a user as having a set of facts and defaults in her
mind, and using these to derive beliefs. Technically, a belief is viewed as any
formula that can be explained from a set of facts and defaults. This is not to
take the view that people are actually Theorist systems, but that a Theorist
system is a useful model of some parts of a person's reasoning.

5. Nested Theorist

The tool we present has Theorist on two levels. To obtain a nested formalism,
we axiomatize one Theorist system in the language of another Theorist sys-
tem. To do so, we need to d e f n e a language in which to axiomatize Theorist
using facts and defaults.

5.1. META AND OBJECT LANGUAGE

Suppose a system, s, is modeling a user, u. On the metalevel, Theorist is
used to build and maintain a model. This corresponds to s reasoning about
u. On the object level, Theorist is used as a model of how u reasons. This
corresponds to s 's model of u's reasoning about the world.

Technically, we can achieve this by defining two languages: an object
language (OL) to express u 's facts and defaults, and a metalanguage (ML) to
express s 's facts and defaults (Konolige, 1982). The OL is part of the object
of study of the ML, since the ML is be able to refer to u 's facts and defaults
that are expressed by the OL.

Both the ML and OL are first-order languages. That is, they consist of con-
stants, functions, predicates, variables, connectives, and quantifiers, combined
to form formulae, and given a Tarskian semantics. 4 To refer to statements in
the OL, the ML has terms that denote these sentences. For each OL constant
and variable, the ML has a corresponding constant. For each OL function,
predicate, connective, and quantifier, the ML has a corresponding function.

4 See (van Arragon, 1990) for details.

270 PAUL VAN ARRAGON

This is summarized in table I, where the OL predicate r is represented by the

OL sentences

p+--q
pAq
pYq
-~p
VX r(X)

r j l ~

if(p', q')
and(p', q')
or(p', q')
not(p')
forall(z', r' (x'))

TABLE I
Representing OL in ML

ML function r~; the OL function f is represented by the ML function f ' ; the
OL constant a is represented by the ML constant a'; the OL predicates p and
q are represented by the ML 0-ary functions p' and q' respectively; and the
OL variable X is represented by the ML constant x'. We do not discuss here
many of the technical issues that arise in a ML/OL structure. (See Konolige,
1982; van Arragon, 1990). Rather, we focus on the aspects that are unique to
NT.

To refer to u's facts, defaults, and explanations, the ML has functions
9v~, Au, and E D, where D is replaced with a set of defaults used in the
explanations. The ML can express that a statement is in the facts of the
user using the predicate "E." For example, p'(a ~) E . ~ is a ML statement
expressing that p(a) is a fact of u.

Notation

For ease of notation, we do not use the E predicate, but instead treat ~ u as
a predicate. For example, to say that p(a) is a fact of u, we state JZu(p'(a~)).
Similarly, we treat Au and E D as ML predicates in our notation. A~(p')

means that p is a default of u, and E{P'}(q ') means that q is explained by u,
using default p.

Furthermore, instead of using the ML with all of its complexity, we replace
ML terms with the corresponding OL sentence. For example, rather than
stating

~u(forall(z', and(p'(x'), q'))) (17)

to say that VX p(X)Aq is in the facts of u, we use the following simpler
notation:

v x p(X)Aq) (18)

MODELING DEFAULT REASONING USING DEFAULTS 271

This is a notational convenience only. The ML is still actually first-order.

5.2. ASSUMING CONSISTENCY

Imagine a scenario where the system s is reasoning about a user u and the
assumptions u can make. If s builds a model of u's reasoning where u makes
assumptions to explain some formula g, there are two conditions this model
should satisfy (see definition 2.1):

Condition 1: the assumptions (together with the facts) of u imply
9, and

Condition 2" the assumptions of u must be consistent with the
facts of u.

To show that condition 1 holds, s must show that a subset of u's facts
(.T'*`) together with the assumptions u makes imply 9- It suffices to show that
a subset of 5.*` implies 9 because such deductive conclusions are monotonic.
That is, given that ~ is a subset of St'* ,̀ and that D is the set of assumptions
of u, ff 5"* tO D ~ g then 5"u U D ~ g.

To show that condition 2 holds would require knowledge of the complete
set 5.u, which s does not have. If s discovers a new element of 5.u, then
u's assumptions may no longer be consistent since default conclusions are
nonmonotonic. That is, given that . ~ is a subset of 5. , , and that D is the set
of assumptions of u, if 5.* to D is consistent, it does not necessarily follow
that 5",, to D is consistent.

Consider the following example, in which s has two facts: that u has a
fact b, and that u has a default f+-b. 5

EXAMPLE 5.6. Unsatisfied Condition 2
The following are facts of s:

5.u(b) (19)

Au(f +--b) (20)

s cannot explain that u explains f , because s cannot show that f e -b is
consistent with u's facts. (19) does not say that b is the only fact of u. There
may be other unknown facts of u that am inconsistent with f +-b. For example,
u may have the fact ~ f .

The inability to satisfy condition 2 stems from incomplete knowledge
regarding the facts of u. By design decision 3, we allow situations where
s is unable to obtain complete knowledge of u. Fornmately, we can deal

5 This is a propositional version of the well-known birds fly example.

272 PAUL VAN ARRAGON

with this inability using the technique Theorist already uses to reason despite
incomplete knowledge. That is, we can use a default. We specify that for
any set of assumptions D, provided that s cannot show that 5ru U D is
inconsistent, s can assume that ~= UD is consistent. We call this the Consistent
Assumptions Default (CAD). CAD leaves open the possibility that other facts
exist that s does not know about, but still enables s to reason that u can
consistently use defaults.

Reconsider example 5.6. Assuming .T'= is consistent with default (20)
enables s to satisfy condition 2. Hence, s can show that u explains f , as
desired, and it is still possible that u has facts other than b, as long as they do
not conflict with (20). For example, the assumption of consistency precludes
that u has a fact -~f, but u may have any number of facts unrelated to f and
b.

DEFINITION 5.7. NT is a Theorist system with a ML that refers to an OL
(as described above) such that the metaleveI Theorist, s, has a fact that the
user, u, forms explanations according to the definition of Theorist: 6

D VDVG E~ (G) ~ U D ~ G

A .Tu U D is consistent

A D C_A~

(21)

and a default that the user's assumptions are consistent. That is, s has the
following default:

(. ~ U D is consistent) ~-- (D C_ Au) (CAD)

(van Arragon, 1990) shows how this definition can be altered to allow rea-
soning about more than one user, and to allow reasoning about how u reasons
about other reasoning agents.

6. NT Examples

To illustrate the properties of definition 5.7, and how it can be applied to
user modeling, we consider several examples. In these examples, we list all
relevant facts and defaults of s. Note however, that we do not rewrite the
fact and default of s that occur in definition 5.7. These are operative in the
examples, but left implicit.

6 Some details are left out here. See (van Arragon, 1990).

MODELING DEFAULT REASONING USING DEFAULTS 273

EXAMPLE 6.8. Reasoning about Defaults
s has two facts: that u has a fact that no error message occurs after the

command "rrn t*," and that u has a default that if a command has bad side
effects there would be an error message.

~u (--,errorMessage("rm t*")) (22)

VC A~,(errorMessage(C)~---sideEffects(C)) (23)

From (22) and (23), we can show that s can explain ED(-~sideEffects("'rm t*'"))
with D -- {errorMessage("rm t*")~--sideEffects("rm t*")}. To see this,
consider the three conjuncts in statement (21) of definition 5.7 with D as
above, and G = -~sideEffects("rm t*") . The three conjuncts are

Conjunct 1: 5r~, U D ~ G
Conjunct 2: 5r~, U D is consistent
Conjunct 3: D c_ A,~

They can be explained by s as follows:
1. By (22), s can explain

Uu (-~errorMessage("rm t*")).
Since D =

{ errorMessage("rm t*") *--sideEffects("rm t*") }
s can explain that

:7=u U D ~ -~sideEffects(" rm t*").
2. s can consistently assume that D is consistent with the facts of u since it

does not follow from the facts of s that u 's facts imply the negation of D:
-~(errorMessage("rm t*")~---sideEffects("rm t*")).

3. By (23), s can explain
Au(errorMessage(C)(---sideEffects(C))

for any C. Hence, s can explain that D _C A u .

EXAMPLE 6.9. Ascribing Belief

Wilks, Ballim, and Bien (Wilks and Bien, 1983; Wilks and Ballim, 1987)
propose various belief-ascription heuristics. One heuristic they propose is
that the user believes the same propositions as the system does, provided that
the proposition is a typical belief. This heuristic may have exceptions, so it is
viewed as an assumption.

We can reason with such a heuristic in NT. Imagine that s believes that the
world is round, and that it is typical to believe that the world is round. Then
s assumes that u believes that the world is round, s has the following facts:

round(world) (24)

typical (round(world)) (25)

2 7 4 PAUL VAN ARRAGON

and the following default

.~(X)~--XAtypical(X) (26)

From the above, s can explain that u explains round(world). That is, s
ascribes round(world) as a fact of u, and since s has no conflicting facts in
the model of u, u can explain round(world).

If we add that s also has a fact that u has a fact that the world is flat (27),
and that fiat things are not round (28), then s cannot explain that u explains
that the world is round.

~ (flat(world)) (27)

~ (VX -.round(X)*--flat(X)) (28)

As in (Wilks and Ballim, 1987), this belief-ascription heuristic can operate
on deeper levels to ascribe beliefs to agents that u is reasoning about. We can
do this in NT by having as a fact of s that u has the heuristic as a default for
all agents:

A ~ (~ A (X) + - - X A t y p i c a l (X)) (29)

s must also be able derive what is typical for u. One simple way to do this is
for s to have a fact that the same things are typical for u as are typical for s:

,~u(typical(X))~--typical(X) (30)

Note that, as with (Wilks and Ballim, 1987), defaults allow NT to build
nested models as needed rather than having to precompute all levels. We do
not need to specify in the KB all beliefs for all combinations of nested agents.
These beliefs can be derived as necessary by using belief-ascription defaults.

7. Prioritized Nested Theorist

7.1. CONFLICT BETWEEN LEVELS

A technical problem with NT as defined above is that defaults on the metalevel
are weak. I f s has a fact that u has a default p(X), then s can explain that u
can explain p(a) for an arbitrary object a. Now if s assumes that u has a fact
-,p(a), an exception to the default p (X) , then s can explain that u can explain
-,p(a). However, by definition 5.7, it also still follows that s can explain that
u can explain p(a).

MODELING DEFAULT REASONING USING DEFAULTS 275

EXAMPLE 7.10. Multiple Explanations
s has a fact that u has a default p(X):

Au(p(X)) (31)

and s has a default that u has a fact ~p(a):

.T~(~p(a)) (32)

Two mutually inconsistent explanations exist. In one, s assumes (32);

hence s can explain E{}(-,p(a)). In the other, s assumes u's default (31) is

consistent for X = a; hence s can explain E~ {p(a)} (p(a)).

In example 7.10, statement (31) itself does not contradict statement (32).
The default CAD, which s uses to assume that u's defaults are consistent, is
in direct conflict with (31). For s to explain that u explains p(a), s assumes

(.T'u t3 {p(a)} is consistent) +--- ({p(a)} C A~,) (33)

(33) and (32) are in direct conflict. Because of this conflict, s cannot block
the assumption (31) of u by assuming that u has specific knowledge (32) of
an exception.

7.2. PRIORITIZED DEFAULTS

Brewka has expanded Theorist to include defaults of different priority levels
so that a default of higher priority can block a default of lower priority. This
idea is more powerful than methods of removing multiple explanations (Poole,
1988) that do not allow one default to block another.

EXAMPLE 7.11. Priority Levels
Let D i be the set of defaults of priority i, where a smaller i indicates higher

priority. (1 is the highest priority level.)

A 1 = { p(a) } (34)

/X 2 = { p (X) } (35)

Given (34) and (35), defaults of different priority, -~p(a) can be explained,
but p(a) cannot.

We can use this idea to solve our multiple-explanations problem. By
defining (32) to have priority over CAD, it is possible for (32) to block (33)
so that only the desired explanation exists.

276 PAUL VAN ARRAGON

In general, we can solve this problem by having all defaults that are given
by the knowledge designer, such as (32), to be of higher priority than CAD.
The following is a non-technical summary of the definition of Prioritized
Nested Theorist (PNT) that uses this idea.

DEFINITION 7.12. PNT is a Prioritized Theorist system with a ML that
refers to an OL (as described above) such that the metalevel Prioritized
Theorist, s, has a fact that the user, u, forms explanations according to the
definition of Prioritized Theorist. As in the definition of NT, s has a default
that u" s defaults are consistent. In PNT, this default is of lower priority than
all other defaults of s. 7

8. PNT Examples

Examples 6.9 and 6.8 can be achieved in PNT just as they were in NT.
Furthermore, example 7.10 works as desired in PNT. That is, s assumes (32),
and concludes that u can explain ~p(a).

Some user models make use of reasoning with degrees of certainty (Rich,
1979; Chin, 1988, 1989). For example, when choosing which stereotype to
use as a model of a user, there may be competing evidence, some stronger
than the rest. Having prioritized defaults on the top level of reasoning enables
this type of reasoning.

EXAMPLE 8.13. Preferred Stereotypes
Suppose that s has a default that u is a novice:

novice(u) (36)

a higher priority default that u is a beginner ff u has used a mundane command:

beginner(u)~---usedu(C)Amundane(C) (37)

and a fact that users cannot be both novices and beginners:

-~ (beginner (u) Anovice(u)) (38)

With such defaults and facts, s assumes that u is a novice unless specific
information about commands u has used suggests that u is more experienced,
and should be classified as a beginner. This idea can be developed so that
competing classifications are compared based on the strength of their precon-
ditions. Defaults with strong preconditions can be given higher priority, so
that the most appropriate classification can be found.

7 There are other aspects of the definition of PNT that differ from NT. For example, in PNT,
s can assume not only that u 's defaults are consistent, but also that u 's defaults satisfy priority
constraints. That is, s can assume that u has no defaults of higher priority that contradict the
given defaults. Details are presented in (van Arragon, 1990).

MODELING DEFAULT REASONING USING DEFAULTS 277

Sometimes it is useful to model the user as reasoning with degrees of
certainty. Example 8.14 shows an example where s reasons about how u
predicts what is true based on two sources of knowledge. The more reliable
source of knowledge is believed. Again prioritized defaults, this time on the
object level, provide a tool that enables this type of reasoning.

EXAMPLE 8.14. Speech Acts
A theory of speech acts specifies how utterances affect the beliefs of the

hearer. An approach that can be implemented with PNT is to have the hearer
u to assume that what the speaker s says is true:

 3(X _aedares,(X)) (39)

If we add to (39) that u has a fact that s declares p:

.Tr~ (declaress (p)) (40)

then u assumes that p is true. However, this assumption may be contradicted
if u has a higher priority default that contradicts p:

A~(-~p) (41)

PNT provides a flexible language for stating the relative strengths of various
defaults of u based on whether u believes s to be lying, or to be an authority,
and so on. For example, u may assume at high priority that if agent A declares
X, and X is within A's area of expertise, then X is true:

1 A~ (X ,---declaresA (X)Aexpertise(A, X)) (42)

Now if s declares p and is known by u to be an expert, u will assume that
what s says is true.

With such defaults, s's model of u is automatically modified to take into
account utterances of s. The change in u's belief due to utterances of s is built
into the defaults and the definition of PNT. The knowledge designer's task
is to define the contexts in which utterances occur, and to rank their priority
based on which utterances are more likely to be believed by the hearer.

A full discussion of reasoning with uncertainty is beyond the scope of this
paper. Prioritized defaults provide one way of doing this, and they are part
of our tool anyway, since they are useful for solving the multiple explanation
problem discussed in section 7.1. Only two levels of priority are necessary to
solve this problem, but allowing an arbitrary number of priority levels gives
rise to no new technical issues.

278 PAUl. VAN ~,P, AGON

9. Limited Nested Theorist

So far we have modeled users as able to make assumptions to deal with
incomplete information. An aspect of reasoning that we have overlooked is
that a reasoner is limited in her ability to reason (Fagin and Halpem, 1988;
Robert, 1988; Konolige, 1985; Le~esque, 1984). We have shown that NT can
model a user as being able to mal~ unsound inference. Now we show how
to model a user as being unable to make complete inference. (Notice that
although we use logic, the tool we are proposing can represent both unsound
inference and incomplete inference.)

NT's metalevel defaults are potentially a tool for reasoning about limita-
tions. The metalevel can assume that in general an object-level agent can draw
individual inference steps, unless the metalevel knows of specific constraints
that prevent the agent from drawing an inference. Using defaults, s would
assume that u can draw individual inferences. Using facts, s can reason about
reasoning limitations that exist for particular agents in particular situations. 8

This idea does not work in NT, because NT's metalevel does not reason
about the inference itself. For the metalevel to make assumptions regarding
individual inferences, the metalevel must represent the user's reasoning in
greater detail. The metalevel must reason about, not only how the user's
knowledge (facts and defaults) entail a goal, but also about the inference
steps required to derive the goal. Given a representation of these steps, the
metalevel can reason by default about whether the user is able to perform
each individual step.

This approach is valid regardless of the underlying object-level reasoning
procedure. For example, the underlying reasoning procedure itself need not
be inherently incomplete. This is an advantage for a user modeling tool,
because a tool should be flexible enough to model many different kinds of
limitations. By having s reason about a reasoning procedure that is potentially
complete, the tool need not be restricted to a particular class of limitations.
Instead, the knowledge designer decides what type of limitations should exist
in a specific application. The role of a user modeling tool is to provide an
implementation of a flexible framework that allows the knowledge designer
to specify limitations.

9.1. MODELING LINEAR RESOLUTION

Although the design of a user modeling tool need not be committed to specific
types of limitations, the design must be committed to a particular underlying

8 (van Arragon, 1990) describes how to extend this so that s can use defaults to mason about
reasoning limitations.

MODELING DEFAULT REASONING USING DEFAULTS 279

reasoning procedure. The tool must specify a particular object-level procedure
and a metalanguage (ML) that can be used to specify limitations with respect
to that procedure.

NT commits to modeling the user as forming Theorist explanations, but
NT does not specify the underlying procedure to derive those explanations.
The implementation of NT specifies the underlying procedure, but the imple-
mentation is orthogonal to the definition of NT.

Many considerations could go into choosing a particular reasoning pro-
cedure. The choice depends on psychological, philosophical, and practical
dimensions. It is an empirical issue. To define LNT, this paper takes a simple
practical approach. Rather than incorporate psychological models explicitly,
we view LNT as a tool in which psychological models can be built. We
define LNT using a simple logical reasoning procedure, and leave it up to
the knowledge designer to build higher-level concepts. The advantage of this
approach is that LNT is easy to build and to use. LNT is a good tool for
further empirical study.

Our simple approach is to define ~z's reasoning procedure according to the
details of the implementation of NT. Our implementation of NT is based on
linear resolution. In this paper, we do not discuss in detail the implementation
of NT, and hence we also present our definition of LNT without all details.

In LNT, s can reason about zt's reasoning as a linear resolution proof tree.
This idea is easy to implement, and is still sufficiently powerful for reasoning
about many types of limitations. For example, s can reason about the size of
the proof tree, about the length of proof branches, about whether particular
predicates were used in the proof, and about whether individual proof steps
are especially difficult. Various aspects of proof trees correspond to various
types of resource limitations.

To reason about a user as performing linear resolution, we need to be able
to refer to the steps of linear resolution in the ML. The key step of linear
resolution as applied to Theorist is to chain on a fact. 9 We refer to this step
using the ML predicate infer~(G~--B), where G+--B is a fact of zl,.

As with NT, we define LNT by using facts and defaults of a Theorist system
to define object level explanations. Instead of defining what is explained as
what consistently follows from the facts and defaults, we define what is
explained in terms of individual derivation steps from the facts and defaults.
We take the simple approach of specifying chaining on facts as a default of s.

9 Linear resolution is performed on clauses: statements of the form G~---B, where G is a
literal and B is a conjunct of literals. Chaining on a fact is to prove that a goal G is true by
showing that the goal B is true, where there exists a fact G~---B.

280 PAUL VAN ARRAGON

DEFINITION 9.15. LNT is a Theorist system with a ML that refers to an
OL such that the ML can represent the proof tree of object-level derivations.
The metalevel Theorist, s, has facts and defaults that the user, u, forms
explanations according to the definition of Theorist, such that the underlying
reasoning procedure is specified as follows:

1. s has facts and defaults that specify that u reasons according to linear
resolution (excepting the step of chaining on facts);

2. s has a default to assume that u can chain on u's facts. That is, s has a
default "in f eru(G+--B)," meaning that u can infer G if u can infer B
and has a fact G+---B.

10. L N T E x a m p l e s

To reason about limitations of u, s can reason using facts of the form

-~infer~(G~---B)~---... (43)

where the right side of (43) defines inferences that s believes cannot be
made by u. To illustrate the capabilities of LNT, we consider examples using
various kinds of limitations. These are adapted from other work regarding
limited reasoning.

We can limit a derivation based on the number of steps it takes to derive a
goal (Konolige, 1985). If s believes that u can draw only four inferences, it is
inconsistent for s to assume that u has inferred more than four steps. Although
a simplistic way of reasoning about limitations, this example illustrates the
principle of using the metalevel to reason about a user's limitations.

EXAMPLE 10.16. Length of Derivation
s has facts that u has facts that imply p,~, such that the derivation requires

n steps. 10

Y~(Pl +--true) (44)

p2 --pl) (45)
Y u (P3~-'-P2) (46)

~ (P ~ ~--P~-I) (47)

s has a fact that u is unable to infer more than four steps:

-~in f eru(G ~ - B)+--in f er~(Gl r (48)

lo t r u e denotes the empty conjunction. That is, p (- - t r u e is the same as p.

MODELING DEFAULT REASONING USING DEFAULTS 281

A inferu(G2+-B2)
A infer~(G3+-B3)
A infer~(G4~-B4)
A G O G 1 A . . . A G 3 r

The fact (48) prevents s from assuming more than four instances of
inferu(G+-B). From these facts, s can explain Eu(pl) through Eu(p4),
since they follow from the facts of u in less than five steps. However, s can-
not explain Eu (Ps)- Although P5 also follows from the facts of u, to explain
E~ (Ps), s would have to assume five instances of in f er~ (G+--B):

in f er~ (Pl +--true) (49)

inferu (P2 +---Pl) (50)

in f eru (P3 +-P2) (51)

in f er~(p4~-P3) (52)

in f eru(ps+--p4) (53)

but these five assumptions together are inconsistent with s's fact that u is
limited to four steps (48).

With this simple form of limited reasoning, we can model situations where
u's facts are inconsistent, but u is too limited to realize the inconsistency.

EXAMPLE 10.17. Undiscoveredlnconsistency
s has several facts regarding u's facts:

.T'u (Pl +--true)

.T'u(p2~---pl)

:7% (P3 ~---P2)
p4 p3)

s has a default that potentially makes u's facts inconsistent:

a~u (-~P4+--true)

However, s has a fact that u can reason using only two steps.

-~in f eru(G+-B) ~-in f eru(G1 +--B1)
A infer~(G2e-B2)
A G O G 1 A GTs
AG1 r G2

(54)

(55)
(56)
(57)

(58)

(59)

282 PAUL VAN ARRAGON

Therefore, in s 's model, u is not able to detect the inconsistency, s can
explain Eu(pl), Eu(p2), Eu(~p3), and Eu(~p4), since each of these only
takes two inference steps for u. Without the reasoning limitation, u's facts
are inconsistent, so nothing can be explained. (Explanations require facts to
be consistent.)

Other reasons for lack of inference have nothing to do with limited re-
sources. For example, lack of awareness regarding a goal may prevent some-
one from being able to derive the goal, even if the goal is a tautology (Fagin
and Halpem, 1985).

EXAMPLE 10.18. Awareness
s has as facts that u i s a hermit, and that hermits do not know of the

existence of computers.

hermit(u) (60)

unawar e A (computers) ~-- hermit(A) (61)

s has a fact that an agent cannot infer a goal if the agent is unaware of some
concept required to understand the goal.

-~inf erA(G~-B)~--concept(G, C)AunawareA(C) (62)

where concept(G,C) is true when C is a concept required to understand the
goal G. For example, if G is the goal that the price of computers is rising
(rising(price(computers))), s can explain

concept(rising(price(computers)), computers) (63)

From these facts and defaults, s cannot explain that u explains the simple
tautology that the price of computers is rising or the price of computers is not
rising. That is, s cannot explain

ED (rising(price(computers)) V (64)

~rising(price(computers))).

Even though this tautology follows from u's facts and defaults (it follows from
any facts and defaults), u, being a hermit, cannot derive the goal because u
lacks awareness.

Other types of limitations can be represented using the same principles.
(van Arragon, 1990) shows how Konolige's variation of the famous wise
men puzzle can be implemented. In this example, an agent is limited simply

MODELING DEFAULT REASONING USING DEFAULTS 283

because a particular step of reasoning is difficult, and the agent is not smart
enough to draw the inference. The constraint can be represented as follows:

~in f erA (G e- B)*-dif-ficult(G~- B) A-~smart (A) (65)

where inferences are classified on the basis of difficulty, and agents are
classified on their inference ability.

Properties of LNT

From the above examples, we can see that several properties that are desirable
for reasoning about limitations are achieved with LNT.

1 Explanations are not closed under implication. (Example 10.16)
2 Not all tautologies can be explained. (Example 10.18)
3 Explanations are not closed under valid implication. (See (van Arragon,

1990).)
4 Facts may be inconsistent without every sentence being in an explanation.

(Example 10.17)

Furthermore, these properties are achieved with one simple concept. Since
object-level inference is required to explain a goal, we can achieve these limi-
tations by specifying object-level limitations on the metalevel. The limitations
arise for a variety of factors, such as limited resource, lack of awareness, and
others. We need not specify the limitations in advance, but may allow s to
reason about them.

To use this technique the KB designer must decide what kinds of lim-
itations are important, and include these as metalevel knowledge. LNT is
intended to be a flexible tool with which to reason about many kinds of
limitations. Therefore, limitations are considered as domain-dependent con-
siderations, and are not built in to LNT.

11. Related Work

Reasoning about Defaults

Many user modeling systems employ defaults in some way. For example, the
user modeling framework GUMS (Finin and Drager, 1986) uses defaults to
build and maintain a model of a user's expertise. Different types of defaults
are combined in GUMS, so GUMS's relationship with formal AI tools is
unclear. In contrast, each of the nested levels of reasoning in NT is defined
as a Theorist system. The formality makes the capabilities of NT clear, and
enables augmented versions (PNT, LNT) to be defined. Another difference

284 PAUL VAN ARRAGON

is that GUMS does not represent a user's reasoning. It represents a user's
expertise (similar to the unders tands predicate in example 3.2), but not
individual beliefs.

Much user-modeling research employs formal tools that do not allow
explicit representation of a user's default reasoning. For example, the under-
lying formalism of Wilks and Ballim (Wilks and Ballim, 1987) represents
belief, but not inference. As such, it cannot be used to customize a model to
a particular user's reasoning abilities as can NT (and especially LNT).

Another example is Perrault's (Perrault, 1988) theory of speech acts. The
theory employs Reiter's default reasoning (Reiter, 1980). Perrault's augmen-
tation of Reiter's default reasoning can reason about an agent's belief, and
even an agent's reasoning, but cannot reason adequately about an agent's
default reasoning.

Interestingly, Perrault's theory of speech acts requires a model of an agent's
defaults. To reason about an agent's use of defaults, Perrault does not define
defaults on multiple levels, but uses a default schema on the metalevel. This
approach is not as expressive as NT, and thus is not as useful as a user
modeling tool. The lack of expressability arises because it lacks the ability to
express user defaults explicitly. For example, rather than expressing that q*--p
is a default of the user, it expresses a sort of approximation of this statement,
such as "it is a default of the system that if the user believes p, then the user
believes q." Default reasoning regarding the revision of a user's beliefs takes
place solely on the metalevel, since the object level models only deduction,
but lacks defaults. This works for some examples, but cannot deal with cases
where the distinction between defaults on different levels is important.

A similar critique applies to the work of Konolige and Appelt (Appelt and
Konolige, 1988), and of Joshi, Webber, and Weischedel (Joshi et al., 1984).
Both systems reason about users (agents) that reason by default. However,
neither explicitly represents defaults on different levels, and so neither is as
expressive as NT.

In contrast, NT's reasoning about belief revision is a natural result of
viewing a user as a default reasoner. Assuming that someone has a fact, and
having a fact that someone uses a default are treated differently by NT. The
distinction is lost by the systems mentioned above.

Reasoning Limitations

Syntactic approaches to reasoning about limitations base the definition of
reasoning limitations on syntax. LNT is a syntactic approach because the
metalevel reasons about object-level limitations based on the underlying
reasoning procedure of the object level, which is based on syntax.

MODELING DEFAULT REASONING USING DEFAULTS 285

As Konolige argues (Konolige, 1986b), syntactic approaches may be more
appropriate than semantic ones. Possible worlds logics, upon which most
semantic approaches are based, are inappropriate in some ways for represent-
ing belief. Different possible worlds differ from epistemic alternatives that
reasoning agents have. For example, a reasoning agent does not know the
truth-value of complex statements (such as P=NP), whereas such statements
are either true in all possible worlds or false in all possible worlds. This would
mean that either an agent believes or disbelieves such statements depending
on their truth-value. Avoiding this by modifying possible worlds often gives
rise to counter-intuitive results, such as that incompleteness depends on in-
consistency (Levesque, 1984), or that incompleteness is a combination of
syntax and semantics (Fagin and Halpem, 1985).

Hadley (Hadley, 1986) suggests that the issue of differentiating beliefs
should be based on a theory of intensions. Perhaps such a theory can be
combined with a syntactic theory of reasoning limitations. The role of the
intensional theory is to differentiate beliefs by defining equivalence classes.
The role of the syntactic theory of reasoning limitations is to reason about
how an agent can make inferences from one equivalence class to another.

The chief advantage of LNT is its flexibility in reasoning about limitations.
Konolige's deductive model of belief (Konolige, 1986a) is similar to LNT
in many respects. A difference is that limitations are defined procedurally in
(Konolige, 1986a), whereas LNT permits defining limitations declaratively.
A declarative specification of limitations may be an advantage for user mod-
eling. Furthermore, in (Konolige, 1986a), the metalevel does not refer directly
to the rules of inference, and therefore cannot reason about these. The limi-
tations are fixed. In contrast, LNT can be used to reason about agents whose
limitations are changeable.

Some work on logical omniscience has the goal of providing tractable KR
tools (Levesque, 1984; Lakemeyer, 1987). The goal of LNT is to provide
a flexible user modeling tool. LNT's implementation is efficient (based on
resolution), but LNT is kept general so that inherently-difficult problems can
be stated.

Achieving worst-case tractability comes at the cost of flexibility. For ex-
ample, Levesque's explicit belief does not permit chaining as LNT does.
Thus LNT can represent agents with more powerful reasoning (that is limited
nevertheless). Furthermore, our implementation takes computational advan-
tage of the defined limitations. The limitations specify when a proof can be
terminated, enabling the implementation to avoid generating the whole proof
tree.

A shortcoming of our approach is that we are restricted to using linear
resolution as the underlying form of reasoning. Motivation for this is lacking,

286 PAUL VAN ARRAGON

except that it was easy to modify our existing code for NT to implement LNT.
Our solution successfully defines a tool that allows a flexible specification
of limitations, instead of being bound to using a fixed kind of limitation.
However, to take full advantage of this approach, more work can be done to
find other useful underlying reasoning methods.

12. Conclusions

NT is a formal tool that is a default reasoner that can reason about a default
model of belief. NT is useful for user modeling as examples show: NT can
build and maintain a model, and NT can reason about how a user reasons
by default. Making this distinction between levels of reasoning, where each
level can reason by default, provides a tool in which much of user modeling
work can be incorporated. Furthermore, reasoning about how a user revises
her default beliefs is more naturally accomplished.

The lesson we draw from this work is that user modeling research can
make use of tools of formal AI, such as Theorist, but such tools may need
to be augmented, as with NT. The goal of Theorist is an abstract version
of a goal of user modeling: how to predict what is true in the world given
incomplete knowledge. But Theorist itself does not specify a way to model
an agent's reasoning, hence we augmented Theorist to form NT.

To permit s to assume exceptions to object-level defaults, we augmented
NT to form PNT. PNT also allows the use of prioritized defaults for organizing
knowledge. To permit reasoning about u's reasoning limitations, we formed
LNT. LNT enables s to assume u is able to make an inference unless s knows
of limitations on u's reasoning.

Implementation

NT has been implemented using a general technique to derive a nested rea-
soner from an interpreter written in Prolog (van Arragon, 1990). The technique
uses metaprogramming. An interpreter for Theorist is converted into a The-
orist meta-interpreter. This allows a Theorist interpreter to have as its facts
and defaults a Theorist meta-interpreter. The Theorist interpreter corresponds
to the reasoning of s, and the Theorist meta-interpreter corresponds to the
reasoning of u.

The underlying implementation is based on linear resolution, and therefore
is reasonably efficient. However, metaprogramming introduces overhead,
since each step of inference on the object level requires several steps on the
metalevel, van Arragon (1990) shows how this overhead can be removed
using partial evaluation techniques. The overhead can be removed regardless

MODELING DEFAULT REASONING USING DEFAULTS 287

o f h o w m a n y levels o f nested reasoning are present. However , this more
efficient vers ion is not fully explored or implemented . In any case, we can

look fo rward to better pe r fo rmance in the future, s ince advances in logic
p r o g r a m m i n g research can be applied to NT.

Acknowledgements

Thanks for f eedback f rom m e m be r s o f the L P A I G group at the Univers i ty
o f Water loo, especial ly Dav id Poole , R a n d y Goebel , Rob in Cohen , Scot t

G o o d w i n , Fah iem Bacchus , and Peter van Beek.

References

Appelt, Douglas E. and Konolige, Kurt: 1988, 'A Practical Nonmonotonic Theory for Rea-
sorting About Apeech Acts'. In: Proceedings of the Twenty-sixth Annual Meeting of the
Association for Computational Linguistics, Buffalo, NY, pp. 170-178.

Brewka, Gerhard: 1989, 'Preferred Subtheories: An Extended Logical Framework for Default
Reasoning'. In: Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, 1989, pp. 1043-1048.

Chin, David N.: 1988, 'Exploiting User Expertise in Answer Expression'. In: Proceedings of
the Seventh National Conference on Artificial Intelligence, Saint Paul, MN, pp. 756-760.

Chin, David N.: 1989, 'Knome: Modeling What the User Knows in UC'. In" Alfred Kobsa and
Wolfgang Wahlster (eds.): User Models in Dialog Systems. Springer, Berlin-New York.

Cohen, Robin, Jones, Marlene, Sanmugasunderam, Amar, Spencer, Bruce and Dent, Lisa:
1989, 'Providing Responses Specific to a User's Goals and Background'. The International
Journal of Expert Systems: Research and Applications 2, 135-162.

Etherington, David W.: 1988, Reasoning with Incomplete Information. Pitman Research Notes
in Artificial Intelligence, London: Pitman / San Mateo, CA: Morgan Kaufmann.

Fagin, Ronald and Halpern, Joseph Y.: 1985, 'Belief, Awareness, and Limited Reasoning:
Preliminary Report'. In: Proceedings of the Ninth International Joint Conference on
Artificial Intelligence, 1985, pp. 491-501.

Fagin, Ronald and Halperu, Joseph Y.: 1988, 'Belief, Awareness, and Limited Reasoning'.
Artificial Intelligence 34(1), 39-76.

Finin, Tim W. and Drager, David: 1986, 'GUMSI: A General User Modeling System'. In:
Proceedings of the Sixth Canadian Conference on Artificial Intelligence, 1986, pp. 24-30.

Goebel, Randy: 1989, 'A Sketch of Analogy as Reasoning with Equality Hypotheses'. In:
K. Jantke (ed.): Analogical and Inductive Inference, Volume 397 of Lecture Notes in
Computer Science, Berlin: Springer-Vedag, pp. 243-253.

Hadley, Robert E: 1986, 'Fagin and Halpem on Logical Omnisciences: A Critique with an
Alternative'. In: Proceedings of the Sixth Canadian Conference on Artificial Intelligence,
1986, pp. 49-56.

Hadley, Robert F.: 1988, 'Logical Omniscience, Semantics and Models of Belief'. Computa-
tional Intelligence 4(1), 17-30.

Halpern, Joseph Y. and Moses, Yoram O.: 1985, 'A Guide to the Modal Logics of Knowledge
and Belief'. In: Proceedings of the Fifth International Joint Conference on Artificial
Intelligence, 1985.

Hayes, Patrick J.: 1977, 'In Defence of Logic'. In: Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, Cambridge, MA, pp. 559-565.

288 PAUL VAN ARRAGON

Hocnkamp, Edward: 1987, 'An Analysis of Psychological Experiments on Non-monotonic
Reasoning'. In: Proceedings of the Tenth lnterr~tional Joint Conference on Artificial
Intelligence, 1987, pp. 115-117.

Jones, Marlene and Poole, David: 1985, 'An Expert System for Educational Diagnosis Based
on Default Logic'. Proceedings of the Fifth International Conference on Expert Systems
and Their Applications, pp. 673-683.

Joshi, Aravind K., Webber, Bonnie, and Weischedel, Ralph M.: 1984, 'Preventing False
Inferences'. In: Proceedings of the Tenth International Conference on Computational
Linguistics, Stanford, CA, pp. 134-138.

Konolige, Kurt: 1982, 'A First-order Formalisation of Knowledge and Action for a Multi-agent
Planning System'. Machine Intelligence 10, 41-72.

Konolige, Kurt: 1985, 'Belief and Incompleteness'. In: Jerry R. Hobbs and Robert C.
Moore (eds.): Formal Theories of the Commonsense World, Ablex Publishing Corporation,
Norwood, NJ, pp. 359--404.

Konolige, Kurt: 1986a, A Deduction Model of Belief. Pitman Research Notes in Artificial
Intelligence, London: Pitman / San Mateo, CA: Morgan Kaufmann.

Konolige, Kurt" 1986b, 'What Awareness Isn't: A Sentential View of Implicit and Explicit
Belief'. In" Joseph Y. Halpern (ed.): Proceedings of the First Conference on Theoretical
Aspects of Reasoning about Knowledge, Monterey, CA, pp. 241-250.

Lakemeyer, Gerhard: 1987, 'Tractable Meta-reasoning in Propositional Logics of Belief'. In:
Proceedings of the Tenth International Joint Conference on Artificial Intelligence, 1987,
pp. 402--408.

Levesque, Hector J.: 1984, 'A Logic of Implicit and Explicit Belief'. In: Proceedings of the
Fourth National Conference on Artificial Intelligence, Austin, TX, pp. 198-202.

Levesque, Hector J. and Brachman, Ronald J.: 1985, 'A Fundamental Tradeoff in Knowledge
Representation and Reasoning'. In: Ronald J. Brachman and Hector J. Levesque (eds.):
Readings in Knowledge Representation, Morgan Kaufmann Publishers, Inc., Los Altos,
CA, pp. 42-70.

Perrault, C. Raymond: 1988, 'An Application of Default Logic to Speech Act Theory'.
Technical Report CSLI-87-90, Center for the Study of Language and Information.

Poole, David: 1988, 'A Logical Framework for Default Reasoning'. Artificial Intelligence
36(1), 27-47.

Poole, David, Goebel, Randy, and Aleliunas, Romas: 1987, 'Theorist: A Logical Reasoning
System for Defaults and Diagnosis'. In" Nick Cercone and Gordon McCalla, editors, The
Knowledge Frontier: Essays in the Representation of Knowledge, New York: Springer,
pp. 331-352.

Reiter, Raymond: 1980, 'A Logic for Default Reasoning'. Artificial Intelligence 13, 81-132.
Rich, Elaine: 1979, 'User Modelling Via Stereotypes'. Cognitive Science 3, 329-354.
Shoham, Yoav and Moses, Yoram O.: 1989, 'Belief as Defeasible Knowledge'. In: Proceedings

of the Eleventh International Joint Conference on Artificial Intelligence, 1989, pp. 1168-
1172.

van Arragon, Paul: 1990, 'Nested Default Reasoning for User Modeling'. Technical Report
CS-90-25, University of Waterloo, Waterloo, Ontario, Canada.

Wilks, Yorick and Ballim, Afzal: 1987, 'Multiple Agents and the Heuristic Ascription of Be-
lief'. In: Proceedings of the Tenth International Joint Conference on Artificial Intelligence,
1987, pp. 118-124.

Wilks, Yorick and Bien, J. S.: 1983, 'Beliefs, Points of View, and Multiple Environments'.
Cognitive Science 7, 95-119.

