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Abstract. A general method is presented for analyzing how climatic conditions 
affect plant disease severity. An example of its application is given for the 
analysis of stripe rust (caused by Puccinia striiformis) data on winter wheat 
cultivar Gaines and climatic data collected at Pullman, WA. for 1968-1986. A 
computer program WINDOW was written to identify the climatic factors most 
highly correlated with disease. This program is designed to utilize meteorological 
data for an entire growing season of a crop as well as to include climatic condi- 
tions preceding planting. This program uses an iterative process to examine 
variable-length segments of meteorological data in a more exhaustive analysis 
than previously possible. Climatic factors considered include: mean maximum, 
minimum, and average temperature; total and frequency of precipitation; con- 
secutive days with and without precipitation; accumulation of negative and 
positive degree days; and number of days with extreme temperature events. 
Variables that were highly correlated with disease were the basis for regression 
models that were developed to predict disease severity index for each of the three 
cultivars. Two- and three-variable models explained, respectively, 75 and 76% of 
the variation in disease from year to year. Predictions (which could be made 
early enough in the growing season to allow application of chemical control) 
were evaluated on the basis of whether years with severe disease were accurately 
predicted. Models were validated using Allen's PRESS statistic and by applica- 
tion to new data. The method is potentially applicable to studies of how climatic 
conditions affect the populations or productivity of other types of organisms. 

1. Introduction 

For plant disease to occur, a susceptible host must be available to a pathogen 
capable of infecting it (or to an insect vector carrying the pathogen), and the 
environment must be simultaneously favorable for all of these organisms and 
their required interactions. Plant disease epidemics can significantly reduce 
potential crop yield. For such to occur, there must be a large population of 
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susceptible hosts and virulent pathogens, and the environment must be favor- 
able for a sufficient time at frequent enough intervals for development of wide- 
spread disease. Disease development stops if the environment is limiting for 
either the host or pathogen. The climatic factors that most frequently limit host- 
pathogen interactions and potential crop yields are temperature and moisture. 

Much is known about how ambient meteorological factors affect disease 
development and how climatic factors limit disease (Rotem, 1978). Past 
emphasis has largely been on using controlled environments to determine the 
optimum conditions for specific stages of disease development. Automation of 
data collecting and processing has enabled determination of micrometeorologi- 
cal conditions in the field that are associated with disease development through- 
out a growing season (Coakley, 1985; Jones et al., 1984; Sutton et al., 1984; 
Teng and Rouse, 1984). Nevertheless, such in-field monitoring is apt to be used 
only for research purposes or where high-value crops warrant the costs of 
specific predictive systems. 

For the most part, daily meteorological data routinely collected by the 
National Oceanic and Atmospheric Administration (NOAA) have been ignored 
for use in epidemiological studies because the data were not considered to 
accurately represent the microclimatic conditions associated with disease devel- 
opment. However, if one wants to study either year-to-year variation in disease 
severity over the short term (5-20 yr) or how longterm climatic variation may 
affect disease occurrence, such data is the only available. Since the historical 
weather data collected under the NOAA-National Weather Service Cooperative 
Observer Program give long time series for numerous locations (Coakley, 
1987), these were chosen for our investigation of the interaction between 
disease and climatic variation. 

In the first phase of our research, we determined that the frequency and 
severity of stripe rust epidemics (caused by Puccinia  str i i formis West.) on winter 
wheat (Tr i t i cum aes t ivum L. em Thell) in the Pacific Northwest (PNW) varied 
in direct relationship to climatic variation (Coakley, 1978, 1979). 

In the second phase, statistical models were developed to predict stripe rust 
severity on three cultivars at Pullman, WA (Coakley and Line, 198 la, b). These 
models were modified and subsequently used to predict disease severity at four 
other locations in the PNW (Coakley et al., 1982). The Pullman models were 
not as accurate at the other locations, therefore, regional models were developed 
for each cultivar using data from four locations (Coakley et al., 1983). 

The regional models were successfully verified in 1983 when the model 
version based on both winter and spring temperatures correctly predicted disease 
intensity for the three cultivars at five locations (including one location that was 
not included in the model development) (Coakley and Line, 1984). These 
models are used in the Pacific Northwest by researchers and extension personnel 
to predict stripe rust and as a basis of guidelines for use of fungicides. 

However, when the method of analysis for stripe rust was used to analyze 
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how climatic factors affect a different disease, Septoria tritici blotch (caused by 
Mycosphaerella graminicola) on wheat in Indiana, it was necessary to develop 
new procedures. The analytical approach for Septoria was to develop a method 
for exhaustively analyzing climate-disease interactions that would allow quanti- 
fication of how climatic variation affects plant disease epidemics. A statistical 
model that predicted Septoria tritici blotch severity on the basis of temperature 
and precipitation variables resulted from the initial development of the 
computer program WINDOW (Coakley et al., 1985). 

This new approach for analyzing how climatic conditions affect disease 
occurrence is presented with an example of how the method was used to analyze 
stripe rust severity data and climatic data at Pullman, WA. Only data on one 
wheat cultivar is presented with the intent that this example will facilitate 
researchers in other disciplines in transferring the analysis method to their own 
data bases. Results were similar for the analysis of two other cultivars grown in 
the Pacific Northwest (Coakley et al., 1988). The method includes a computer 
program WINDOW that identifies the climatic factors that are most highly 
correlated with the disease, the development of statistical models that show the 
relationship of climatic factors to plant disease severity, and validation of the 
models. This methodology should be applicable to investigations of the effect of 
climatic variation on populations of other organisms. Although our entire 
method is described, the unique part of it is the iterative program WINDOW we 
use to identify the meteorological factors most highly correlated with disease 
severity; the emphasis of our description of methods is on how WINDOW is 
used. 

2. Data Base 

Daily meteorological data for August 1967-July 1986 for Pullman, WA (lati- 
tude 46~ " N, longitude 117~ ' W, elevation 775 m) were obtained from the 
National Climatic Data Center, Asheville, NC. The data were for minimum and 
maximum temperature, and total precipitation. 

Stripe rust severity (percentage of the total leaf and glume surface covered by 
rust) and stage of growth were recorded for the winter wheat cultivar Gaines at 
Pullman, WA. A single value for disease severity along with infection type was 
recorded for each 1.5-3.0 m long row of wheat (>/100 plants) at various stages of 
plant growth. Disease severity was converted to a 0-9 disease index (DI) (Table 
I). When data were not available for plant growth stage 8 (dough stage) (Zadoks 
et al., 1974), the DI for growth stage 8 was estimated by extrapolation from the 
DI at growth stage 7 (milk stage), as described by Coakley et al., (1983, Table 
III). For each year, data were collected at one to four locations in Pullman; the 
data in Table I represents an average of all locations available for a given year. 
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TABLE I. Stripe rust severity index on winter wheat cultivar 
Gaines at Pullman, Washington. 

Year Actual disease index a Predicted disease index b 

Model I Model II 

1968 6.50 E 4.98 4.77 
1969 2.00 2.68 2.50 
1970 3.00 2.79 2.99 
1971 5.75 4.83 5.22 
1972 4.00 E 4.82 4.84 
1973 3.50 2.73 2.34 
1974 3.00 2.01 2.56 
1975 6.25 5.89 5.82 
1976 6.50 5.94 5.94 
1977 0.00 2.10 1.69 
1978 6.25 E 6.41 5.90 
1979 3.00 1.84 2.18 
1980 5.50 5.42 5.04 
1981 7.50 E 7.44 7.79 
1982 2.00 3.71 3.57 
1983 5.67 6.33 6.68 
1984 6.38 6.88 6.95 
1985 2.00 1.52 2.27 
1986 2.50 6.44 5.48 
Mean 4.52 4.49 4.50 

a Disease index (DI) was recorded at growth stage 8 (dough stage) 
except where indicated by the letter "E"; those were recorded at 
stage 7 and extrapolated for stage 8 as described in Coakley et al., 
1983. The 0-9 scale disease index (DI) is based on converting 
percent disease intensity to DI where 0 =0% disease, 1 =<1%, 
2 =  1-5%; 3 = 6-20%, 4 =21-40%, 5 =41-60%, 6 = 6 1 - 8 0 %  7 =  
81-95%, 8 = 96-99%, and 9 = >99%. 
b Predictions were made with Gaines models I and II described in 
Table IV. 

3. Identifying Limiting Climatic Factors [WINDOWI 

WINDOW is a Fortran program developed during this research project to 
identify the climatic variables that are most highly correlated with disease data. 
This section describes the way in which WINDOW is used to analyze for corre- 
lation between disease and climatic factors. 

3.1. Selection of  Climatic Factors 

The number of meteorological variables that can be considered at one time is 
flexible. Variables considered for all diseases include: precipitation frequency, 
total precipitation, total consecutive days with precipitation (CDWP), total 
consecutive days without precipitation (CDWOP), mean maximum, mean mini- 
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mum, and mean average temperature. Other variables are added depending on 
the disease being studied. For analysis of stripe rust data, the following were also 
used: accumulation of positive and negative degree days from a 7 ~ base (that 
temperature is the optimum for both in vivo germination of urediospores and 
infection of the wheat plant (Sharp, 1965); degree days were calculated as de- 
scribed (Coakley and Line, 1981a)); total consecutive days with minimum 
temperature less than 7 ~ total days (TD) with average temperature less than 0 
~ and TD with maximum temperature greater than 25 ~ 

3.2. Selection of Time Periods to Examine 

Day of Year. 
In WINDOW, all references to calendar dates are made to day of the year 
(DY), in which 1 January = DY 1 and 31 December = DY 365, except in leap 
years when it equals DY 366 (Stone, 1983). 

Beginning Date and Duration 
For this analysis, the starting date was 29 July (DY 210); ending date was on 28 
July of the following year, prior to harvest in August at Pullman. Each year, the 
plots at Pullman were planted in the first two weeks of October. 

Length of Window 
The next step is to set the number of days (Window length) for which the 
climatic data are averaged or summed; the WINDOW program can look simul- 
taneously at nine subsets of each Window set, the first subset being the full- 
length Window and the other eight being progressively smaller subsets (Figure 
1). During development of WINDOW, Window lengths of 105 to 25 days were 
examined, but Windows longer than 65 days did not substantially improve 
results. Window subsets are initially set from 65 to 25 days in length, with each 
subset five days shorter than the previous one (e.g., Figure 1, Window P). In sub- 
sequent runs, the Window subsets may be set only one day shorter than the 
previous one in order to identify the time period most highly correlated with 
disease severity. Figure 1 shows an example of how the data is sequentially 
examined: the first Window begins on DY 5, and ends on DY 69; data arrays are 
built for each of the nine subsets of Window A for each of the 12 climatic 
variables selected and then the Window is advanced. Data arrays are then built 
for the subsets of Window B which begin on DY 10 and end on DY 74. This is 
repeated until data arrays are built for Windows A-P. The amount that each 
Window is advanced is a variable. We use increments of one to five days, with 
five days used initially. In Figure 1, the last Window (P) begins on DY 80, and 
ends on DY 144. In an actual analysis, WINDOW is used to examine the data 
for the growing season in three segments. In Segment I, the first Window begins 
on DY 210 and the last begins on DY 365. In Segment II (part of which is 
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Fig. 1. Example of how meteorological data are considered by the WINDOW program. Window A 
has nine subsets; each start on DY 05 and are 65, 60, 55 .... ,25 days in length. AfLer the meteoro- 
logical data are assembled for Window A, the Window is advanced 5 days to Window B, where all 
subsets begin on DY 10. This is repeated for Windows C-P; Window P begins on DY 80 and ends on 
DY 144. 

shown in Figure 1), the first set begins on DY 5 and the last set begins on DY 
140. In Segment III, the first set begins on DY 145 and the last set begins on DY 
205. 

Defining Parameters 
A list of  parameters  is specified for each run of  W I N D O W  and allows the re- 
searcher to readily change the conditions of  analysis. Table  II lists those used for 
the analysis of  the data on Gaines. The  parameter  list is where the base tempera-  
ture for calculating degree days (e.g. negative degree days are calculated from a 
base of  7~ and the condit ion for counting the number  of  days less than or 
greater than some variable are set. 

Building Data Arrays 
Data arrays are built  for each year for each Window's  nine subsets according to 
the parameters  and selected variables. For  each variable, W I N D O W  either 
calculates a mean (e.g., mean max imum temperature),  counts (e.g., frequency of  
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T A B L E  II: Example  of  a list o f  parameters  to be set in W I N D O W  program. 

63 

Parameter  Example  o f  current  set value 

N u m b e r  o f  years in file 
N u m b e r  o f  variables 
Beginning Window Date 
Last  Window Date 
Inc rement  o f  W i ndow 
First year in file 
Last  year in file 
Degree day base 
Breakpoint  for t empera tu re  

N u m b e r  o f  days < 0 ~ 
N u m b e r  o f  days < 7 ~ 
N u m b e r  o f  days > 25 ~ 

N u m b e r  o f  years with miss ing disease data  
N u m b e r  o f  Subsets  in each W i ndow 
Lists Value  o f  each factor for each W i ndow 

and Subset 
Label for Listing 
Cul t ivar  

NYIF  = 17 
N F A C  = 12 
IBW = 005 
L W  = 140 
INC = 05 
IFIRST = 68 
L A S T  = 84 
POS = 7 

T D A V T  = 0 
T D M N T  = 7 
T D M X T  = 25 
MISSIN = 0 

N O F W  = 09 

LIST = NYIF  + 6 
PLACE = ' P U L L M A N '  
C U L T I  = 'GAINES '  

precipitation), or sums a cumulative total (e.g., positive degree days). The 
method of counting consecutive days is based on Shaner and Finney (1976), and 
only sequences of two or more days that meet the specified criteria are con, 
sidered; that is, two such consecutive days count as one period, three consecu- 
tive days count as two periods, etc. These periods are then summed for the 
Window subset being examined; for example, in a subset of 25 days with se- 
quences of 5, 3, and 4 days without precipitation, consecutive days without 
precipitation (CDWOP) would be counted as 4, 2, and 3 days, respectively, for a 
sum of 9 CDWOP. 

Correlation of Disease Data with Meteorological Variables 
Once the data arrays are built for the meteorological variables and the disease 
data, correlation analysis is done by WINDOW to determine any relationships 
between the two sets of data. Although a listing could be made for the value of 
each factor for each Window and its subsets, we conserve paper and our time by 
printing out only data arrays for Windows with a correlation coefficient that is 
significant at P ~< 0.05 for at least one variable. The results from an analysis are 
examined for a pattern of increasing and then decreasing correlation coefficients 
as the Window advances, and correlation coefficients with P ~< 0.01 are selected 
first. Figure 2 gives an example of a print-out for the Total Precipitation 
(TPREC) factor which begins on DY 75 (This is Window set O in Figure 1). In 
Figure 2, a peak area occurs in the Window subset that begins on DY 75 and ends 
25 days later (on DY 99). TPREC is correlated (r = 0.71) with disease severity at 
P~<0.01. A similar correlation exists between disease and TPREC for the 
Window subset that begins on DY 70 and ends on DY 94. 
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The next step is to identify the most precise time period for a variable that 
will give the highest correlation with disease severity. To do this for our example 
in Figure 2, the first Window in the next analysis was set to begin on DY 71, the 

TABLE III: Correlation between meteorological factors and stripe rust index on Gaines wheat at 
Pullman, Washington. The correlation coefficients (r) are significant at P~< 0.01 except when 'a'  
follows the r, P ~< 0.001. 

Factor a Window increment 

5 -day 1 -day 

Begin Length r Begin Length r 
Date b Date 

MMAX 365 (25) 
115 (65) 

MMIN 360 (25) 
120 (65) 

MAVE 360 (25) 
120 (65) 

PDD 115 (65) 

NDD 360 (25) 

DLOC 360 (25) 

DG25C 115 (65) 

TPREC 75 (25) 

PFREQ 65 (50) 
95 (60) 

140 (40) 

0.72 
-0.73a 

0.67 
-0.62 

0.70 
-0.62 

-0.76a 

-0.70 

-0.79a 

004 (21) 0.71 

363 (22) -0.81a 
001 (24) -0.74a 

-0.85a 

0.71 073 (23) 0.75a 

0.66 069 (49) 0.67 
0.69 073 (28) 0.66 
0.66 079 (69) 0.68 

080 (38) 0.64 
095 (59) 0.70 

CDWP 65 (50) 0.63 
80 (65) 0.62 
95 (60) 0.68 

140 (40) 0.66 

CDWOP 65 (60) -0.64 
80 (35) -0.63 

140 (45) -0.62 

Factors are: MMAX = mean maximum temperature in ~ MMIN = mean minimum temperature; 
M A V E =  mean average temperature; P D D =  positive degree days; N D D =  negative degree days; 
DLOC = total days that the average temperature was < 0 ~ DG25C = total days that the maximum 
temperature was > 25 *C; TPREC = total precipitation in cm; PFREQ = total number  of days with 
precipitation; CDWP = total consecutive days with precipitation; and CDWOP = total consecutive 
days without precipitation. 
b The Window began on this day of the year and was (x) days in length; e.g. MMAX 365 (25) was a 
Window that took the mean maximum temperature for 25 days beginning on day of year 365 
(31 December) and ending on 24 January. 
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last Window to begin on DY 79, and the Window increment to advance 1 day at 
a time. The length of the Window subsets were set at 21, 22, 23, ..., and 29 days 
to span the 25-day subset which had the peak correlation in the previous anal- 
ysis. Figure 3 gives the array with the highest correlation for TPREC; the 
Window begins on DY 73 and is 23 days long ( r=0.75,  and P~<0.001). The 
actual values of TPREC are printed out for each year along with the mean and 
standard deviation for all years with disease data (Figure 3). 

When the Windows were advanced in 5-day increments, twenty-one variables 
were found to be correlated (P ~<0.01) with disease severity (Table III). From 
Table III, variables were selected for multiple regression analysis to determine 
the mathematical form of the relationship between the meteorological variables 
and disease severity. Selection was restricted to those factors that ended by DY 
155 (4 June). This restriction was made to develop models for use in predicting 
disease in time for application of chemicals for control if needed. After selec- 
tion, the exact Window was identified for each variable by using Windows that 
were advanced in one-day increments (Table III); the variables listed on the 
right-hand side of Table III were used in regression analysis. 

4. Model Development 

Following selection of the meteorological factors to be included in model devel- 
opment, both meteorological and disease data are evaluated for normality to 
ensure that parametric methods are appropriate. Since the data for the stripe 
rust analysis were normally distributed, parametric methods were used. Varia- 
bles are plotted against time to determine whether disease or meteorological 
factors are time dependent; no relationship between time and variables was 
found in the analysis of the stripe rust data. 

4.1. Regression Analysis 

The discussion of the regression analysis is presented in a brief form because this 
part of our method is not unique to our research. However, because this method 
is often misused, we have included what we believe are the more important 
points to be considered in a study such as ours. Consulting with a statistician is 
advisable i fa  researcher is not familiar with regression analysis. 

Regression analysis is used to determine i fa  linear relationship exists between 
the variables identified by WINDOW (independent x-variables) and disease at a 
specified time (dependent y-variable). The Statistical Analysis System (SAS) 
procedures are used for the analysis and include REG, RSQUARE, and STEP- 
WISE (SAS, 1985). The meteorological x-variables used are listed in Table III. 
The disease index for the previous year was included as an x-variable; however, 
the correlation between the previous year's (PYS) and the current year's disease 
severity was low and since the inclusion of PYS in models did not significantly 
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improve disease predictions, PYS was not further considered. The dependent 
variable (y) was disease index (Table I) for 1968 through 1984. Data for 1985 
and 1986 were used for model validation. The SAS procedure RSQUARE is 
used to evaluate all possible models up to a maximum of three independent 
variables. A greater number of variables could have been used but we choose to 
limit the number to ensure simple equations that make biological sense. Because 
of the relatively few years of data (n = 17), it is important to limit the number of 
x-variables. The number is also limited because meteorological variables are 
often not independent of each other and it is necessary to limit a given model to 
ones that are not highly correlated with each other. RSQUARE provides the R 2 
and adjusted-R 2 for each of the models evaluated. For Gaines, 175 models were 
considered (120 three-variable, 45 two-variable, and 10 one-variable models). 
The SAS procedure STEPWISE uses four regression methods for generating 
models: forward, backward, stepwise and maximum R 2 improvement. The best 
models from STEPWISE are evaluated along with those listed from RSQUARE. 

4.2. Mode l  Evaluation 

A number of two- and three-variable models with the high adjusted-R 2 are 
selected for evaluation according to the rules we set. We choose to examine each 
of the models rather than to set default limits in the program because we believe 
that this way we are able to select the most useful model which may not have 
the highest R 2. The variable identities are considered, and models that have two 
overlapping or highly correlated variables are excluded from further evaluation. 
For example, one three-variable model included both DLOC 001 and MMAX 
004; these two variables are both measures of temperature for time periods that 
overlap and are highly correlated with each other (r--0.91). A correlation 
matrix is printed out to allow evaluation of correlation between all combination 
of x- and y-variables. 

The SAS procedure REG is used to develop the models that are selected. The 
models are evaluated for their performance in prediction for the years included 
in the model development. The mean disease index for Gaines was 4.52, 
whereas the mean predicted disease index was 4.49. The standard errors of the 
predictions are examined in order to select models that minimize these errors. 
Regression coefficients are examined for stability of sign; if the sign contradicts 
what is known about the biology of the pathogen, the variable may be excluded. 
Studentized residuals are plotted against predictions and time. The plots are 
examined for patterns, trends, or clustering. Ideally, the residuals will appear as 
a random scatter plot. Non-random residuals can be used as a diagnostic of 
model deficiencies, e.g., whether a transformation or a quadratic factor is 
needed, or whether non-linear regression techniques are appropriate (Armitage, 
1971; Daniel and Wood, 1980; Montgomery and Peck, 1982). For the Gaines 
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TABLE IV: Models for predicting stripe rust disease index (33) on Gaines winter wheat at Pullman, 
WA. Regression coefficients (/3), meteorological variables a (X), adjusted-R 2 (Adj-R 2), standard error 
of/~ [s(/3)], Variation Inflation Factor (VIF), and Range of(X) for each model are listed. 

t : / ~ 0  + ]~IX1 --1.- ~2X2 +/33X3 

Gaines (n = 17) 
I ~ = -2.188 + 0.270 [PFREQ 095] + 0.454 [MMAX 004] 
s(/3) 1.413 0.064 0.106 
VIF 0 1.078 1.078 
Range (X) 16-31 days -4.23-6.25 "C 
II fi =-1.334 + 0.182 [PFREQ 095] + 0.407 [MMAX 004] + 0.311 [TPREC 073] 
s(/~) 1.546 0.095 0.110 0.250 
VIF 0 2.440 1.224 2.748 
Range (X) 16-31 days -4.23-6.25 *C 0.69-7.03 cm 

Adj-R 2 = 0.75 

Adj-R 2 = 0.76 

a Meteorological variables are defined in Table III. 

models selected (Table IV), plots of the residuals appeared as random scatter 
plots. 

The variance inflation factor (VIF) measures the effect of multicollinearity 
between variables on the variances of estimated coefficients and is another 
measure of model stability. If a VIF > 5, the associated regression coefficients are 
poorly estimated (Draper and Smith, 1981; Montgomery and Peck, 1982). 

The models are also evaluated on the basis of the accuracy of the predictions 
made. For example, whenever the stripe rust disease index is >5.5, disease is 
severe and the economic feasibility of the application of chemical control would 

A C T U A L  D I S E A S E  INDEX 

(a) ~ 5.5 >5.5 (b) G A I N E S  M O D E L  I 

10 2 
DISEASE DISEASE II 

• M O D E R A T E  "' -<5.5 SEVERE i l l  iv 
OR LIGHT z NOT PREDICTED 

- PREDICTED 1 6 

w I II 03 m 
o III IV G A I N E S  M O D E L  II ...,, 

_o DISEASE DISEASE 1 1 2 
o M O D E R A T E  SEVERE w >5,5 II 
"" OR LIGHT PREDICTED 
'~ NOT PREDICTED IN iV 

0 6 

Fig. 4(a). A contingency table used to evaluate the accuracy of disease predictions relative to actual 
disease index. In quadrant I and IV, actual disease and predicted disease occurrence are in agreement. 
In quadrant II, an underprediction of disease occurs; in quadrant III, an overprediction of disease is 
made. (b) Actual number of years which fall in each of four quadrants (I, II, III, IV) defined in Figure 
4a. Model I and II correspond to the two- and three-variable model equations given in Table IV. 
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be considered on a case-by-case basis. Whenever the disease index is ~<5.5, 
disease severity is moderate or light, and application of chemical control would 
be less cost-effective. The models are evaluated using a contingency table 
(Figure 4a) for how accurately they predict severe disease. 

Based on all criteria, one two- and one three-variable model were selected as 
giving the best predictions of disease index (Table IV). 

5. Model Validation 

Model validation is essential for determining how it will function in its intended 
use. Techniques used include: (1) analysis of model coefficients and predicted 
values; (2) data splitting (Draper and Smith, 1981; Montgomery and Peck, 1982; 
Snee, 1977), and (3) collection of new data to check model predictions. 

Examination of the regression coefficients and standard errors of the estimates 
(Table IV) shows only how well the model predicts the data set from which it 
was developed (Teng, 1981, 1985). All coefficients had VIF's less than 2.75 
(Table IV), which indicates that the coefficients were properly estimated and 
stable. 

Allen's PRESS (Predicted Error Sum of Squares) statistic is used for model 
validation. This statistic is a form of data splitting (Draper and Smith, 1981) and 
can be calculated using the SAS procedure REG. PRESS is calculated in the 
following way: An observation, for example i, of n data points is deleted and the 
regression model is fitted to the remaining n - 1 data points. This model is used 
to predict the withheld observation Yi which is then called the predicted 33(i ). The 
prediction error for this point i is e( i  ) = Yi - Y ( i ) .  The first observation is returned 
to the data set and the procedure is repeated for each observation i--  I, 2, ..., n 
resulting in a set of n deleted residuals e(m), e (2 ) ,  . . . ,  e (n ) .  The PRESS statistic is 
thus defined by Montgomery and Peck (1982) as the sum of squares of the n 
deleted residuals as in 

n 

PRESS = ~ e~i ) = [ Y i -  33~i)]2. (1) 
i=1 i=1 

The PRESS statistic was calculated for each regression model evaluated. An 
example is given for Gaines model I (Table V). The magnitudes and signs of 
the B-coefficients are stable for all models. The prediction error for each year 
shows how well the model based on 16 yr of data predicts for that year. 

The models were also validated by making predictions for 1985 and 1986, 
years that were not included in model development, and comparing the pre- 
dicted disease (33) with observed disease (y) (Table I). The models accurately 
predicted disease index on all cultivars in 1985. In 1986, the two-variable 
Gaines model predicted a disease index that was significantly higher than that 
which occurred. A significant overprediction is when severe disease is predicted, 
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TABLE V: Calculation of Allens's PRESS statistic for the model 33 =-2.187 + 0.270X 1 + 0.454X2, 
where 33 = predicted disease index X I = precipitation frequency for 5 April to 2 June, and X 2 = mean 
maximum temperature for 4 to 24 January; y = observed disease index. 

Year y 33 (y_  33) ( y  __ 33)2 33 =/~0 +/~1 (X2) +/J2 (X2) a 

1968 6.50 4.73 1.77 3.13 
1969 2.00 2.77 -0.77 0.59 
1970 3.00 2.74 0.26 0.07 
1971 5.75 4.77 0.98 0.96 
1972 4.00 4.89 -0.89 0.79 
1973 3.50 2.60 0.90 0.81 
1974 3.00 1.80 1.20 1.44 
1975 6.25 5.85 0.40 0.16 
1976 6.50 5.87 0.63 0.40 
1977 0.00 2.53 -2.53 6.40 
1978 6.25 6.43 -0.18 0.03 
1979 3.00 1.09 1.91 3.65 
1 9 8 0  5 . 5 0  5 . 4 0  0.10 0 .01  

1981 7.50 7.42 0.08 0.01 
1982 2.00 3.88 1.88 3.53 
1983 5.67 6.61 -0.94 0.88 
1984 6.38 7.15 -0.77 0.59 

PRESS = 23.45 

-2.670 + 0.291 (20) + 0.408(3.87) 
- 1.986 + 0.264(19) + 0.441 (-0.61) 
-2.327 + 0.276(16) + 0.452(1.43) 
-2.269 + 0.272(22) + 0.447(2.35) 
-2.031 +0.265(21)+0.468(2.91) 
-2.588 +0.286(17)+0.455(0.71) 
-2.573 + 0.283(18) + 0.483(-1.48) 
-2.130 + 0.267(25) + 0.451 (2.89) 
-2.156 + 0.268 (24) + 0.444 (3.59) 
-1.132 + 0.232(17) + 0.418(-0.69) 
-2.209 + 0.272(25) + 0.458(4.04) 
-2.092 + 0.253(22) + 0.564(-4.23) 
-2.143 + 0.268(28) + 0.457(0.08) 
-2.160 + 0.269(28) + 0.453(4.52) 
-2.124 + 0.275(22) + 0.423(-0.11) 
-1.959 + 0.259(21) + 0.500(6.25) 
-2.682 + 0.296(31) + 0.443(1.49) 

a Coefficients are estimated for each year based on n -  1 observations (16 yr). For example, in 1968, 
observations for 1969 to 1984 were used to estimate the coefficients and the resulting equation was 
used to predict disease index 03) for 1968. 

bu t  on ly  light disease occur red ;  in contrast ,  a significant unde rp red ic t ion  wou ld  

be one in wh ich  light disease was predic ted  bu t  severe disease occurred.  T h e  

1985 and  1986 x-var iab les  were e x a m i n e d  for each mode l  and  c o m p a r e d  with 

the range given in Tab le  IV; all fell wi th in  the range o f  values for the x-var iables  
used in mode l  deve lopmen t .  

Figure  4b gives the s u m m a r y  o f  the predic t ions  m a d e  for all years using 

Models  I and  II. Based on  actual  (y)  and predic ted  (29) disease, the u p p e r  left 

q u a d r a n t  (I) represents  w h e n  bo th  y and  33 were ~<5.5 and  disease was light or  

modera te .  Q u a d r a n t  II  represents  when  severe disease was no t  predic ted,  bu t  it 

did occur .  Q u a d r a n t  I II  is when  severe disease was predic ted  by  ac tual  disease 

was light or  modera te .  Q u a d r a n t  IV indicates  the years in which  severe disease 

was predic ted  and  occur red  (29 and y >  5.5); in these cases, chemica l  cont ro l  

wou ld  have  been  r e c o m m e n d e d  and  justified on  the  basis o f  actual  disease index. 

T h e  mode l s  for stripe rust  were evalua ted  for a c c u r a c y  wi thou t  cons ider ing  the 

relat ive values o f  y and 29. For  example ,  with Ga ines  mode l  II, in one  year  the 

actual  y was 5.75 whereas  29 was 5.22; a l though  this unde rp red ic t ion  is reflected 
in Q u a d r a n t  I II  o f  Gaines  I (Figure 4b), this small  difference wou ld  p r o b a b l y  be 

negligible with respect  to the  decis ion to con t ro l  or  no t  cont ro l  disease. 

O n  the basis o f  adjus ted-R 2, the three-var iable  models  showed  on ly  a slight 

i m p r o v e m e n t  over  the two-var iab le  models .  However ,  the on ly  advantage  o f  
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using a two-variable rather than a three-variable model is that there is one less 
variable to calculate, a minimal advantage unless the variables have to be cal- 
culated by hand rather than by computer. 

On a statistical basis, misses in predictions are expected whenever regression 
models are used; however, the reason for the misses and the nature of the misses 
are important. The models presented were built on meteorological variables that 
occurred early enough in the growing season to be useful in making predictions 
at a time when disease control is still possible. The incorrect predictions of most 
concern were those in which the actual disease was higher than that predicted - 
in theory, a grower could suffer greater economic losses by not applying control 
when it is needed than by applying control that is not needed. To improve 
predictions, all variables under 5-day increments in Table III - regardless of 
when they ended - were subsequently considered in development of a model for 
Gaines. A large improvement was obtained by including a factor for the total 
number of days that the maximum temperature was greater than 25 ~ 
(DG25C). The three-variable model for Gaines that includes DG25C has the 
formula: 

p =  5.940 - 0.256 [DG25C 113] + 0.309 [MMAX 004] + 
0.039 [PFREQ 80] (2) 

where DG25C is summed for 66 days beginning DY 113. The Adjusted-R 2 is 
0.88, as compared with 0.76 for the early-season, three-variable Gaines model 
(Table IV). The predictions for 1985 and 1986 were 3.69 and 2.96, respectively, 
and were accurate predictions for the 2.0 and 2.5 disease indices that actually 
occurred. When this new model was evaluated for percent accuracy, 11 yr fell in 
quadrant I and the remaining 8 yr fell in quadrant IV. There were no cases in 
which disease was significantly over- or underpredicted. Unfortunately, because 
DG25C depends on data from 23 April to 27 June, this model has limited value 
in making predictions for disease control unless a reliable long-term temperature 
forecast becomes available for the month of June. 

6. Discussion and Conclusion 

The method presented has been developed and tested by analyzing data for two 
foliar diseases of winter wheat caused by two different fungal pathogens. Most of 
the variation in disease severity that occurs from year to year can be explained 
by variation in climate. The models we developed can be used to predict disease 
severity early enough in the growing season for chemical control when economi- 
cally beneficial. Economical factors that a grower must consider include the size 
of  field, the potential yield reduction caused by the disease, and cost of applica- 
tion relative to the projected value of the wheat crop. 

This research differs most significantly from previous studies on the effects of 
climatic conditions on disease in the way in which the meteorological data are 
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analyzed. In our earlier studies (1978 to 1983), meteorological data was 
examined on a monthly, seasonal, or in some cases, weekly basis. However, 
there is no biological reason for an organism to respond to climatic data on a 
calendar basis, and it is not surprising that attempts to relate biological events to 
such climatic data have been frequently futile. Although stripe rust occurrence 
was quantified on this basis, attempts to relate Septoria leaf blotch to monthly or 
seasonal data failed. The method that we developed (Program WINDOW) to 
analyze the meteorological data in variable-length segments relative to disease 
severity adds a new dimension to the possibility of quantifying the populations 
or productivity of many different organisms relative to climatic conditions. Such 
quantifications are especially valuable for considering the possible effects that 
climatic variation may have on the occurrence of an organism. 

A long-term objective of our research has been to develop the methods 
necessary to evaluate the effects of past and future climatic variation on the 
occurrence of important diseases on agricultural crops. Earlier attempts to 
develop a regional model for stripe rust were successful (Coakley et al., 1984) 
and research is currently underway to develop a general method for regional- 
izing statistical models such as we have described in this paper. 

Where data are available for non-meteorological variables, e.g., planting date, 
emergence date, heading date, fertilizer, irrigation etc., it would be appropriate 
to include these factors in model development. It is important that meteorologi- 
cal data for an entire growing season, and perhaps longer, be analyzed to ensure 
that any significant meteorological factors are identified. It is probable that 
organisms with life cycles of a year or less will reflect changes in climatic condi- 
tions more readily than those that mature over several years. This makes studies 
of pathogens and insects particularly attractive because there are multiple life 
cycles in a single growing season of the host, and these cycles are frequently 
limited by climatic conditions. The methodology described should also be appli- 
cable to quantification of the most important meteorological conditions neces- 
sary for maximum crop yields. 

In the development of an equation to show the relationship between depen- 
dent and independent variables, using an infinite number of data sets would give 
the most robust model. However, only a finite number of years are available and 
the size of the sample must be considered when evaluating the model developed. 
An equation may fit a few data points very closely as indicated by a high 
adjusted-R 2, but when tested on new data, it may not accurs predict disease. 
Our results suggest that a minimum of 8 years of data be used for model devel- 
opment. For locations in the Pacific Northwest with eight to ten years disease 
data, adjusted-R 2 > 0.90 for models are common, but the models frequently do 
not accurately predict disease for years not included in model development 
(Coakley and McDaniel, unpublished). Statistical models can be used validly 
only when then new variables are within the range of the variables included in 
model development. With only a few years of data, there is a greater chance that 
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future years will have conditions outside those used in model development. 
Predictions may be accurate outside the range of variables included in model 
development, but this must be constantly monitored. If extreme events occur 
and model predictions are inaccurate, it may be necessary to reformulate the 
models using the new data. 

Two- and three-variable models were compared using the adjusted-R 2 
statistic rather than R 2 because the adjusted-R 2 takes into account the number 
of variables in the model. R 2 always increases when a variable is added even 
when the variable does not contribute to improving the model. Comparison of 
models with different numbers of variables is facilitated by use of adjusted-R 2. 

The models described herein are similar to earlier models for stripe rust 
(Coakley et al., 1982, 1984) in that both have a winter temperature factor com- 
parable to that used in the earlier models, as well as a spring precipitation factor. 

Gaines model I and II explain, respectively, 75 and 76% of the variation in 
disease from year to year, which are essentially the same as that explained by the 
single factor model described in Coakley et al. (1982). To evaluate whether these 
models were an improvement over the one previously used in the PNW 
(Coakley et al., 1983), predictions for years not included in model development 
(1973, 1975, 1978, and 1981) were made using the Gaines model described in 
Coakley et al. (1983) and the Gaines model I (Table IV). When Figure 4a was 
used to evaluate the predictions, the Gaines model I correctly predicted whether 
or not disease was severe in all four years. The earlier model correctly predicted 
whether or not disease was severe in only two of the years. Hence, the new 
models developed using WINDOW are considered to be superior to those pre- 
viously used. 

In conclusion, the method described here should be of general use for anal- 
yzing how climatic conditions affect disease occurrence. They should also be 
useful in evaluation of how climatic conditions affect other organisms, such as 
needed if accurate assessment is to be made of how projected climatic variation 
will affect future agricultural production. 
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