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Abstract. A semi-analytical method for describing the mean wind profile and shear stress within plant 
canopies and for estimating the roughness length and the displacement height is presented. This method 
incorporates density and vertical structure of the canopy and includes simple parameterizations of the 
roughness sublayer and shelter factor. Some of the wind profiles examined are consistent with first-order 
closure techniques while others are consistent with second-order closure techniques. Some profiles show 
a shearless region near the base of the canopy; however, none displays a secondary maximum there. 
Comparing several different analytical expressions for the canopy wind profile against observations suggests 
that one particular type of profile (an Airy function which is associated with the triangular foliage surface 
area density distribution) is superior to the others. Because of the numerical simplicity of the methods 
outlined, it is suggested that they may be profitably used in large-scale models of plant-atmosphere 
exchanges. 

1. Introduction 

One-dimensional turbulent diffusion methods are presently being employed in both 
satellite-based observations of land surface processes (e.g., Taconet et al., 1986) and 
global atmospheric circulation models (e.g., Sellers et al., 1986) for describing the 
exchange of momentum, heat, and moisture between the atmosphere and vegetated 
surfaces. Important components of these large-scale models are the aerodynamic 
resistance terms which are determined from the mean wind speed above the canopy, 
the zero-plane displacement height, and the roughness length. In general, these parame- 
ters are functions of foliage structure and density, modulated by the mean wind speed 
and shear stress profiles within the canopies. Although the deficiencies of these models 
are well known (e.g., Shaw, 1977 and Finnigan, 1985), they do have the advantage of 
being computationally much simpler than many of the more recent second-order closure 
models, e.g. (Yamada, 1982; Meyers and Paw U., 1986) or some of the more realistic 
first-order closure models, e.g. (Li et al., 1985). The purposes of this study are (1) to 
examine and compare against data analytical expressions for the within-canopy proflles 
of mean wind speed and shear stress as derived from both first- and second-order 
closure methods and (2) to estimate roughness lengths and displacement heights in a 
unified manner consistent with these profiles. The results may help in parameterizing 
bulk formulation of aerodynamic resistances for use within large-scale plant-atmosphere 
exchange models. 
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2. First-Order Closure 

The method is adapted from Seller et al. (1986). Momentum transfer within a canopy 
for the simpler first-order closure methods is described using a turbulent diffusivity, K, 
and a drag coefficient, C,. Following the convention of Seginer (1974) K and C, are 
defined as: 

du 
z=pK-, 

dz 

(2) 

where r is the shear stress within the canopy, p is the density of air, u is the mean 
horizontal wind speed, z is the height above the ground surface, and a(z) is the foliage 
distribution or foliage area density (the one-sided leaf area per unit volume of the 
canopy) here considered as a function of height. In this study, C, is assumed to be 
constant throughout the depth of the canopy following den Hartog and Shaw (1975) and 
Raupach and Thorn (1981). This assumption will be discussed in the closing section. 

Assuming that profiles of horizontal wind speed and eddy diffusivity are similar 
within the plant canopy, Cowan (1968) showed that (1) and (2) could be solved for a 
constant foliage distribution to yield the following profile for the mean wind: 
u/z+, = [(sinh /??J/sinh fi] ‘/’ Here uh is the mean horizontal wind speed at the top of the . 
canopy, 5 = z/h with h being the height of the canopy, and p is the profile extinction 
coefficient. The exact expression for /Iarises from decoupling (1) and (2) and normalizing 
the resulting equation for the canopy mean horizontal wind speed. Therefore, 
Equation (2) can be written: 

(3) 

where x = u’/u,‘, f(r) is a(z) normalized by the maximum value of the foliage area 
density and the extinction coefficient is given as: 

(4) 

where p = Jh f(t)dr an d (r expresses Cowan’s (1968) similarity condition between the 
mean wind speed profile and turbulent diffusivity; i.e., o = Klhu = KJhu, with 
Kh = K(h). Here o is taken as an unknown; like p it will be computed as a function of 
C,LAI and foliage distribution. LA1 denotes the leaf area index. 

In addition to Cowan’s (1968) solution for the canopy mean wind speed profile, 
another solution is given by U/Z+, = e -PC1 - e)i2 which was first proposed by Inoue (1963) 
and Cionco (1965) and results from a slightly different lower boundary condition on U. 
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Fig. 1. Normalized hyperbolic cosine-like canopy wind speed profiles for C,LAI = 0.6 for constant and 
three triangular foliage distribution functions. The uppermost curve is for the constant foliage distribution; 
below it are the triangular distributions with the ratio of the height of the maximum foliage density to the 

height of the canopy equal to 0.8, 0.5, and 0.2, respectively. 

However, since these two forms are not consistent with the frequency observed zero 
wind gradient within the lower region of the canopy (e.g., Shaw, 1977), a more 
appropriate profile is u/z+ = [(coshj?a)/coshj3]“2 which results from imposing a lower 
boundary condition of zero shear at z = 0 on u (all other assumptions remaining the 
same). In addition to these wind profiles, associated with a constant foliage distribution, 
there are direct analogs to each for the case of a triangular foliage distribution. These 
profiles are related to Airy functions (e.g., Abramowitz and Stegun, 1964) with a slightly 
different Airy’s equation being valid for each region above and below the point of 
maximum foliage density. Therefore, in order to compute a complete profile throughout 
the depth of the canopy, it is necessary to match these two solutions and their first 
derivatives at the point of maximum foliage density. Figure 1 shows an example of the 
cash wind profile associated with constant foliage distribution and three examples of 
the Airy-cash wind profiles associated with the triangular distribution with heights of 
the maximum foliage density at 0.8, 0.5, and 0.2 h, respectively. All profiles shown in 
this figure assume that C,LAI = 0.6. 

The corresponding within-canopy shear stress profile can be found from (1) and (2) 
for each of the wind profiles and foliage distributions discussed above given appropriate 
boundary conditions. In this work the lower boundary condition on z is chosen similar 
to that of Wilson and Shaw (1977) and Shaw and Pereira (1982). The upper boundary 
condition on r, like the extinction coefficient, /3, is a model unknown which will be 
determined as a function of C,LAI by matching z above the canopy to r within the 
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Fig. 2. Canopy shear stress profiles associated with hyperbolic cosine-like wind profiles corresponding to 
those shown in figure 1. 

canopy. Figure 2 shows the shear stress profiles corresponding to the wind speed 
profiles given in Figure 1. 

The model equations are now closed by assuming: (a) that the displacement height 
corresponds to the effective level of mean drag upon the canopy elements (Thorn, 1971) 
and (b) that the turbulent diffusivity at the top of the canopy, Kh, is greater than it would 
be ifthe inertial sublayer were joined directly at h to the flow within the canopy (Raupach 
and Thorn, 1981). Therefore, Kh is given as, 

K,, = clku,(h - d), (5) 

where a is a constant between about 1.0 and 2.0 which accounts for the presence of the 
roughness sublayer (Raupach and Thorn, 198 1); in the following, the roughness sublayer 
disappears entirely if c1 = 1.0 and it becomes progressively deeper as a increases (see 
Appendix). The friction velocity, U* = &p, is assumed to be constant above the 
canopy, k is the von Kkrman constant (taken to be 0.41), and d is the displacement 
height. A value of a = 1.5 used throughout the discussion of the first-order closure model 
was estimated from observed wind profiles within several different canopies. 

Therefore, given the lower boundary conditions on wind speed and shear stress 
profiles for a specified foliage distribution and a value for tl, Equations (2) through (5) 
are solved by iteration to determine, /I, (u’,/u~),=~, d/h, and cr as functions of C,LAI. 
Figure 3 shows the extinction coefficient, p, for the cash wind profile as a function of 
C,LAI; to a very close approximation /I = 2C,LAI/C,, where C, = a2k2/2. Both 
Cowan (1968) and Pereira and Shaw (1980) show a similar monotonic increase in pwith 



STUDY OF MATHEMATICAL MODELS OF THE MEAN WIND STRUCTURE 183 

8.0 

6.0 

c 

4.0 

2.0 

0.0 I I I I 

0.0 0.4 0.8 1.2 1.6 2.0 

cd LAI 

Fig. 3. Extinction coefficient, b, associated with the hyperbolic cosine wind profile for constant foliage 
distribution as a function of C,LAI. 

C,LAI. The extinction coefficients for the Airy-cash wind profiles associated with the 
triangular foliage distribution are similar to Figure 3 and hence are not shown. Figure 4 
shows the stand drag coefficient Cf = 2(ui /u,‘), = h for the hyperbolic-cosine-like wind 
profiles. The uppermost curve is for the constant foliage case and the other three curves 
are associated with the triangular distribution. All solutions reach a plateau at a value 
very nearly equal to C,. 

Figure 5 shows the normalized displacement height, d/h, as a function of C,LAI for 
the same wind speed profiles and foliage distributions as used in the previous figure. 

Once C, and d/h have been determined as functions of C,LAI, the normalized 
roughness length, 2,/h, is estimated from the following relation: 

z,,/h = A,(1 - d/h)e-kJ(cf’2), (6) 

where A, = 1.07. The parameter &, discussed in the Appendix, arises from the 
roughness sublayer; in general, it is determined by a and height dependence of the 
turbulent diEusivity within this region. For example, Raupach et al. (1980) assume that 
the diffusivity is constant throughout the roughness sublayer whereas Garratt (1980) 
suggests that it is linearly related to height. For the purposes of this work, the distinction 
is unimportant because either choice results in similar values for I, (see Appendix). 

Figure 6a shows the normalized roughness length, zo/h, as a function of C,LAI for 
the foliage distribution discussed in the previous figures. The roughness lengths 
presented here resemble those of Shaw and Pereira (1982) except that they do not 
decrease as fast with decreasing C,LAI as do those of Shaw and Pereira (1982). 
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Fig. 4. Stand drag coefficient, C, = 2(u *,,/u,,)~ as a function of C,LAI for the hyperbolic cosine-like wind 
profiles. The uppermost curve is associated with constant foliage distribution and the lower three curves 
are associated with the triangular foliage distribution with C, curves decreasing with decreasing positions 

of the maximum foliage density. 
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Fig. 5. Normalized displacement height, d/h, as derived from hyperbolic cosine-like wind profiles as a 
function of C,LAI for the constant and three triangular foliage distributions discussed in Figure 1. 
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Fig. 6a. Normalized roughness height, z,,/h, as derived from the hyperbolic cosine-like wind profiles as a 
function of C,LAI for the constant and the three triangular foliage distributions discussed in Figure 1. 

0.16 

0.12 

f 0.08 
N" 

0.04 

0.00 I- 
0.0 0.2 0.4 0.6 0.8 1.0 

1 --d/h 

Fig. 6b. Normalized roughness height, z,/h, vs (1 - d/h) as derived from the hyperbolic cosine-like wind 
profiles for the constant and the three triangular foliage distributions discussed in Figure 1. The box in the 
upper left-hand corner is the region which typically characterizes full canopy cover: 0.10 I z,Jh I: 0.13 and 

0.67 I(1 - d/h) 5 0.75. 
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Fig. 7. u = K,/hu, vs .z,Jh for the hyperbolic cosine wind profile. 

However, recently Dolman (1986) found that the roughness lengths associated with a 
foliated and non-foliated oak forest were nearly identical, which qualitatively agrees with 
Figure 6a. Figure 6b shows zo/h vs (1 - d/h). The box in the upper left-hand corner gives 
the range of expected values for a full canopy, i.e., 0.10 I zo/h I 0.13 and 
0.67 < d/h I 0.75. The slope of the line where all curves merge is about 0.28, which is 
similar to Shaw and Pereira’s (1982) result. However, as x increases, the slope also 
increases as do the maximum values of the peaks. Hence another choice of CI or 1, would 
cause several of the solutions to pass directly through the box and produce a greater 
slope in the region where zo/h = n(l - d/h) is most appropriate. 

Results associated with the hyperbolic sine-like wind profiles are not shown because 
they do not always give reasonable results; for the exponential-like wind profiles, the 
results are quite similar to those presented above. Although the results presented here 
are computed for small values of C,LAI, more research is necessary on sparse canopies 
in order to characterize the lower limit of C,LAI at which this model fails due to the 
inappropriateness of the lower boundary conditions. 

Finally, Figure 7 shows o vs zo/h for the hyperbolic cosine wind profile and is typical 
of all wind profiles : except for the nonlinearities associated with small values of C, LAI, 
which vary somewhat with the various profiles, 0 and z,/h are linearly related. 
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Fig. 8. Same as 1 except for the Albini model. 

3. A Quasi-Second-Order Closure Model 

In this section the model of Albini (1981) is extended in two important ways in order 
to compare it to the first-order closure models outlined earlier. Both extensions involve 
simple methods of parameterizing the influence of the shear stress at the ground for 
small values of C,LAI. The original Albini model assumes that the ground shear stress 
is zero, which is a good approximation for full canopies, i.e., large values of C,LAI. For 
sparse canopies, however, the ground shear stress becomes increasingly important and 
hence its influence must be included; but a generalization of the Albini model to a 
non-zero shear stress at the ground is not possible if the simplicity of the original model 
is to be preserved. Therefore, the extensions used in this work are heuristic; nevertheless, 
they do give surprisingly good results; because the ground shear stress is assumed small 
in all cases, these extensions do not introduce any significant inconsistencies into the 
equations. The first extension involves defining an appropriate stand drag coefficient, 
C,, and the second involves including the effect of a non-zero shear stress at the ground 
on estimates of the displacement height. 

The canopy wind profile for the Albmi model is a generalization of the exponential 
wind profile discussed earlier and is given as follows (again assuming C, is a constant): 
,& = e-B’Ccd-AK1 - C) , where the vertical coordinate [ is the cumulative leaf area 
normalized by the total LA1 and /?’ is determined from the parameterization of the stand 
drag coefficient. By requiring that the canopy shear stress of the Albini model when 
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Fig. 9. Same as 2 except for the Albini model. 
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Fig. 10. Same as 6b except for the Albini model. 
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evaluated at the top of the canopy have a form similar to that shown in Figure 4 for the 
stand drag coefficient as a function of C,LAI, it is straightforward to show that 
#I’ = 4/(3C,). With th is new extinction coefficient, it was found that a better choice for 
a was 1.67 rather than 1.50 used earlier. 

Figures 8 and 9 show the wind and shear stress profiles for this modified Albini model 
for C,LAI = 0.6 and for the constant foliage distribution as well as for the three 
triangular distributions with t,,, = 0.8, 0.5, and 0.2. The similarity with Pereira and 
Shaw (1980) for both the wind and shear profiles is evident. The tendency to produce 
a wind profile with no shear within the lower portions of the canopy is also clearly 
shown. Finally, for the non-constant foliage distributions, the Albini model qualitatively 
reproduces the observations of Shaw et al. (1974) and Wilson et al. (1982) in that near 
the top of the canopy the wind profile is characterized by d2u/dz2 < 0. The first-order 
closure models do not display this feature. 

The displacement height for the Albini model is calculated in the same manner as in 
the previous section, except a nonzero stress at the ground is used directly rather than 
assuming it to be zero in accordance with the original Albini model. Again the 
ground-level stress was chosen similar to Wilson and Shaw (1977) and Shaw and 
Periera (1982). The roughness length for the Albini model used Equation (6) above. 

Figure 10 shows zo/h vs (1 - d/h) for the Albini model. The influence of a slightly 
different choice of a is most notable when compared to the corresponding figure in the 
previous section. As a increases, the estimates of d/h decrease slightly while those of 
z,,/h increase slightly; the curves of z,,/h vs (1 - d/h) in Figure 10 pass through the 
expected ranges of zo/h and d/h. Unlike the cash-like solutions, this extended Albini 
model shows that the roughness length decreases quite rapidly with decreasing C,LAI. 

The Albini wind profile given above, in addition to being consistent with second-order 
closure methods, can also be derived within the context of the first-order closure 
methods (Stewart and Lemon, 1969), recasting (1) and (2) appropriately. However, 
Legg and Long (1975) found that this approach was not consistent with observations. 
It is likewise possible to assume the Albini wind protile and to formulate the method 
outlined in a previous section consistent with it, but there is then a very serious 
conceptual problem. If the wind speed is characterized by the functional dependence 
suggested by the Albini model, then when the turbulent difIusivity is introduced 
(Equation (l)), it is easily shown that for the triangular foliage distribution the shear 
stress must vanish at z = h because the foliage distribution vanishes there. As a result, 
a discontinuity is introduced when attempting to match the roughness sublayer flow to 
the canopy flow. It is possible to eliminate the discontinuity by assuming that u(h) is 
small and non-zero similar to Perrier (1975); however, when this was done and a 
consistent solution was sought in the manner outlined in Section 1, signihcant numerical 
problems resulted in the computations which could only be eliminated if a(h) was 
assumed to be large. Given these serious problems encountered when trying to formulate 
a wind profile similar to the Albini profile within the first-order closure methods, one 
concludes that wind protiles which are functions of the cumulative leaf area may be 
inconsistent with first-order closure methods. 
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The next section uses a variety of observed wind profiles to determine optimal 
extinction coefficients associated with the exponential, the cash, the Albini, and the Airy 
cash wind profiles and, therefore, to estimate the parameter a, as well as to explore the 
influence that the shelter factor (Thorn, 1971) has upon these extinction coefficients. 

4. Phenomenology 

The wind profiles used in this section are taken from: (1) Inoue (1963) - a rice canopy; 
(2) Thorn (1971) - a snap bean crop; (3) Legg (1975) - a wheat crop; (4) Shaw (1977) 
- a maize crop; (5) Wilson et al. (1987) - a maize crop using the 3-dimensional wind 
speed as determined with split film anemometers; (6) Li et al. (1985) - a Ponderosa pine 
canopy from Raupach and Thorn (1981); (7) Halldin and Lindroth (1986) - a mature 
Sots pine canopy. Table I gives a summary of the data along with the root-mean-square 

TABLE I 

Canopy characteristics and mean wind profile error statistics 

Researchers LA1 C, C,LAI R.m.s. error R.m.s. R.m.s. R.m.s. error Shelter 
Exponential error error Airy cash factor 

Cosh Albini 

Inoue (rice) - - 0.34” 0.072 0.053 0.157 0.037 
Thorn (nap bean) 6.25 0.15 0.93 0.030 0.029 0.062 0.017 3.5 
Legg (wheat) 7.00 0.25b 1.75 0.076 0.075 0.076 0.069 4.0d 
Shaw et al. (maize) 3.00 0.17 0.51 0.053 0.039 0.031 0.03 1 
Wilson et al. (maize) 2.90 0.17 0.49 0.058 0.05 1 0.047 0.024 
Li et al. (pine) 10.0 0.30” 3.00 0.098 0.066 0.127 0.039 5.6d 
Halldin and Lindroth (pine) 2.5 0.30” 0.75 0.060 0.047 0.101 0.03 1 

a Estimated from Inoue’s (1963) equation (7) and Table I. 
b From Finnigan and Mulhearn (1978a). 
’ Estimated from Landsberg and Thorn (197 1). 
d Estimated by linearly extrapolating with respect to LA1 from Thorn’s value of 3.5 for LA1 = 6.25. 

error associated with the best fit found for each of the different types of analytical wind 
profiles. In the case of the Albini profile, the accumulated leaf area was estimated from 
the data provided by each researcher, except for Inoue (1963) and Li et al. (1985). For 
Inoue’s rice canopy, the foliage distribution was assumed to be constant and C,LAI was 
estimated indirectly from his Equation (7) and the data from his Table I. For the work 
of Li et al. (1985), the foliage distribution was taken from Gary (1976) for a lodgepole 
pine and the drag coefficient (assumed to be 0.30) was taken from Landsberg and Thorn 
(1971) for a twig of blue spruce composed of several needles. For Legg’s data, C, was 
assumed to be 0.25 from observations on a wheat canopy made by Finnigan and 
Mulhearn (1978a). Although the optimal fits are far from perfect, it should be noted that 
the Airy-cash wind profile uniformly produces the best fit and is frequently significantly 
better than any or all of the other simple profiles. Figure 11 shows the optimal wind 
profiles for the pine canopy of Li et al. (1985) for each of the four different types of wind 
profiles. 
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Fig. 11. Optimal (least-squares) fits ofobserved wind profile from a Ponderosa pine canopy. Observations 
are denoted by an open circle and are taken from Raupach andThorn (1981). Curves are for the exponential, 

cash, and Airy cash, and Albini profiles. 

Figure 12 is a comparison between the extinction coefficients for the cash profile and 
those predicted from first-order closure methods for a = 1.50 and CI = 2.00. Those 
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Fig. 12. Comparison of predicted (lines denoted by a = 1.50 and a = 2.00) and computed extinction 
coefficients (denoted by letters) for the hyperbolic cosine wind profile. For full explanation, see text. 
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alphabetic characters subscripted with an asteriks (*) include the effects of the shelter 
factor which tends to reduce the effective value of C,LAI below the value computed 
in Table I. The shelter factor was used only for values of LA1 greater than Thorn’s 
reported value of 6.25 for a mature snap-bean canopy and was estimated by linearly 
extrapolating with respect to LA1 from his corresponding value of 3.5 for the shelter 
factor. The extinction coefficient for C,LAI = 3.0 for the pine canopy of Li et al. is not 
shown on Figure 12 because it is off scale. However, the effective value for C,LAI 
(which includes the shelter effect) is shown and is denoted by M, . All other results are 
denoted by the first initial of the researchers. If the ‘cup’ wind speed of Wilson et al. 

(1982) had been used, it would almost exactly coincide with Shawls data. It is also 
possible to estimate a shelter factor for canopies with lower values of LA1 than Thorn’s 
snap bean crop, i.e., for the corn canopies of Shaw and Wilson et al. and the pine canopy 
of Halldin and Lindroth. Again linearly extrapolating from Thorn’s value suggests that 
the effective C,LAI should be about 0.3 for these two corn canopies and about 0.54 
for the pine canopy. However, these new values of C,LAI do not alter the general 
conclusions of this section. 

Although this method of comparison is admittedly crude, it does suggest that a variety 
of data for several different types of plant canopies are broadly consistent with cx = 1.50 
or perhaps slightly less. Furthermore, the comparison made in Figure 12 broadly 
suggests that mature canopies have effective values of C,LAI that fall into a fairly 
narrow range, leading, therefore, to the following hypothesis: all full canopies can be 
characterized by the inequality 0.25 I C,LAI (effective) I 0.50. Within this region, the 
analytical prediction for the extinction coefficient associated with the exponential wind 
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Fig. 13. Shear stress profiles associated with the exponential, cash, Airy cash, and Albini wind profiles 
as compared with the observations of Shaw (1977) taken within a maize canopy. 
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profile is 2.6 < /I I 5.2, which agrees well with Cionco’s (1978) compilation of observed 
extinction coefficients for a variety of full canopies. A comparison similar to Figure 12 
was also made for the exponential and the Albini’s wind profiles. For the exponential 
wind profile, a z 1.50 was likewise suggested; for the Albini profile, a w 1.67 seemed 
more appropriate. 

In addition to fitting the wind profiles, it is also possible to examine the shear stress 
profiles for three of the canopies. Using the shear stress profiles corresponding to the 
optimal wind profile for each of the four types of profiles considered in Table I, the 
predicted shear stress profiles were compared to those observed by Legg (1975), Shaw 
(1977) and Wilson et al. (1982). Figure 13 gives an example of the results for Shaw’s 
data and Table II summarizes the three cases. Again the Airy-cash profile is sigr&cantly 
better than any of the other simple expressions. 

TABLE II 

Canopy mean shear stress error statistics 

Researchers 

Legg (wheat) 
Shaw et al. (maize) 
Wilson ef al. (maize) 

R.m.s. error R.m.s. error 
Exponential Cosh 

0.105 0.138 
0.356 0.333 
0.199 0.195 

R.m.s. error 
Albini 

0.062 
0.242 
0.135 

R.m.s. error 
Airy cash 

0.059 
0.130 
0.089 

5. Summary aud Conclusions 

First-order closur? techniques have been used to derive simple analytical expressions 
for the mean wind speed and shear stress profiles within plant canopies for both the 
constant and triangular foliage distributions. Using some of the results from the 
first-order methods, another analytical model for these profiles based upon second- 
order closure techniques is outlined. Both closure methods produce wind speed profiles 
which display shearless regions within the lower 25% of the canopy. By adapting the 
method of Sellers et al. (1986) for use with these profiles, it was possible to estimate the 
displacement height and roughness lengths as functions of C,LAI and foliage structure. 
All the profiles examined in detail in this work produce the expected unimodal structure 
for the roughness length and the monotonically increasing behavior of the displacement 
height. In general, the second-order closure techniques produced results in better 
agreement with those of Shaw and Pereira (1982) and Pereira and Shaw (1980) than 
did the first-order methods. However, the first-order methods are in better qualitative 
agreement with Dohnan’s (1986) observations which suggest that the roughness length 
may be relatively insensitive to C,LAI - at least for a certain region of C,LAI values. 

Comparing the different types of profiles shows that one particular wind profile - the 
Airy hyperbolic cosine - and its associated shear stress pro6le fit the data much better 
than any of the other wind profiles. Furthermore, comparisons between optimally fitted 
values of the extinction coefficients for different wind profiles within a variety of 
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canopies and those predicted by the methods outlined in this work suggest that the 
shelter factor acts in a way to restrict the range of effective values for C,LAI which 
characterize full canopies. Tentatively it is suggested that 0.25 I C,LAI I 0.50 may be 
sufficient to characterize full canopies. Before this can be definitely established, however, 
it is necessary to have a better quantitative understanding of the shelter factor. In 
particular, the shelter factor should also be modeled as a function of the foliage 
distribution of the canopy; thus the shelter factor will modulate the effects that the 
vertical distribution of the foliage has upon the canopy wind profile. In fact, assuming 
that the shelter factor is directly related to a(z) will tend to produce a foliage distribution 
which is aerodynamically more uniform than the observed a(z). 

Fundamental to all results presented here is the assumption that C, is independent 
of wind speed within the canopy. Without this assumption, analytical expressions for 
the wind speed and shear stress profiles may no longer be possible. On the other hand, 
because the methods outlined do not directly incorporate canopy flexibility and the 
related phenomenon of fluttering, streaming, and honami (Monteith, 1963; Finnegan 
and Mulhearn, 1978b; Cionco, 1978; Raupach and Thorn, 1981), model estimates for 
the roughness lengths and displacement heights are not influenced by the wind speed. 
However, if C, varies abruptly with the wind speed from one flow regime to another, 
remaining relatively constant throughout a given regime - similar to what Grant 
(1983, 1985) has suggested for spruce, then the methods outlined here can still be used. 
Thus, for a full canopy, low wind speeds would suggest that the effective C,LAI would 
be lower than at high wind speeds. Furthermore, low wind speeds would be associated 
with lower extinction coefficients for the wind profile within the canopy, with greater 
values of the roughness length and with smaller values of the displacement height than 
those associated with higher wind speeds. Here the shelter factor is assumed to be 
independent of wind speed in accordance with Thorn (1971) and Grant (1984). 

In summary, within certain limits, the methods outlined seems broadly consistent 
internally, as well as consistent with previous modeling and observational studies, 
especially for full canopies. Because of their computational simplicity, these methods 
can profitably be used for estimating resistances to transfer for use within large-scale 
plant-atmosphere exchange models. 
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Appendix 

The purpose of this appendix is to derive Equation (6) and explore how 1, varies with 
different parameterizations of the roughness sublayer. 

Raupach et al. (1980) assume that the diffusivity within the roughness sublayer is 
constant with the height; they show that the mean wind speed at the top of the roughness 
sublayer where it joins the inertial sublayer is as follows: 

uh = dz,n) - % &h) , (AlI 

where x,, = (h - d)/(z, - d) and g(xJ = (1 - x,J and z, is the top of the roughness 
sublayer. Substituting the identity u(z,) = u */k In (z,,, - d)/z, into (Al) and solving for 
z,/h yields Equation (6) of the main text with 1, = ePgCXh)/x,,. Furthermore, from the 
definition of Kh, it follows that xh = l/a. Therefore, for a given value of a, both x,, and 
A, can easily be evaluated as is shown in Table IA. In this and the following table, 
A E ;1, ,-k/d=. 

TABLE IA 

Values of 1 using Raupach et al. assumption 

1.20 0.83 1.02 0.19 
1.30 0.77 1.03 0.22 
1.40 0.71 1.05 0.25 
1.50 0.67 1.07 0.29 
1.60 0.63 1.10 0.32 
1.70 0.59 1.13 0.35 
1.80 0.56 1.15 0.38 
1.90 0.53 1.18 0.41 
2.00 0.50 1.21 0.45 

On the other hand, Garratt (1980) assumes that the ditksivity within the roughness 
sublayer is linearly related to height and for a neutrally stable atmosphere uses an 
influence function, &, to account for the presence of the sublayer. This assumption 
results in the following expression for g(x,): 

g(xh) = a lnx, - aa,(l - xh) - : (1 - x:) - 2 (1 - ~2) - . . . 

where a, = 0.7 and a = e-“I g 0.5. For all practical purposes, the series can be 
truncated after the (1 - xif ) term. Likewise, the relationship between xh and a is different 
than for the case of Raupach et al. Specifically xh = 1 - lna/u, for Garratt’s model. 
Therefore, given a, and a, it is again possible to compute xh and 1, for his model; the 
results are shown in Table IIA. 
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TABLE HA 

Values of I using Garratt assumption 

1.20 0.74 1.03 0.19 
1.30 0.63 1.06 0.23 
1.40 0.52 1.12 0.27 
1.50 0.42 1.19 0.31 
1.60 0.33 1.30 0.37 
1.70 0.24 1.47 0.45 
1.80 0.16 1.75 0.58 
1.90 0.083 2.37 0.83 
2.00 0.0098 6.77 2.49 

Comparing these two tables shows that within the range for a suggested by the results 
of Section 4 (i.e., 1.40 I CI I 1.70), the two formulations are quite similar with xh smaller 
for Garratt’s aproach (i.e., the depth of the roughness sublayer is greater) and that A, 
and A are somewhat larger than given by Raupach’s et al. method. The difficulty with 
Garratt’s approach at higher values of a results from the choice of a, = 0.7. Had a, been 
chosen as 0.8, the two tables would be closer for all values of a. It is also worth noting 
that for any given u(z,J, the corresponding uh of Raupach’s et al. approach will always 
exceed that associated with Garratt’s method by about 20%. 
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