
Transport in Porous Media 5: 215-229, 1990. 215 
�9 1990 Kluwer Academic Publishers. Printed in the Netherlands. 

Origin and Quantification of Coupling 
Between Relative Permeabilities for 
Two-Phase Flows in Porous Media 

F R A N C O I S  K A L A Y D J I A N  
Institut Franqais du Pdtrole, BP 311, 92506 Rueil-Malmaison Cedex, France 

(Received: 12 August 1988: Revised: 9 January 1989) 

Abstract. An extended formulation of Darcy's two-phase law is developed on the basis of Stokes' 
equations. It leads, through results borrowed from the thermodynamics of irreversible processes, to a 
matrix of relative permeabilities. Nondiagonal coefficients of this matrix are due to the viscous 
coupling exerted between fluid phases, while diagonal coefficients represent the contribution of both 
fluid phases to the total flow, as if they were alone. The coefficients of this matrix, contrary to 
standard relative permeabilities, do not depend on the boundary conditions imposed on two-phase 
flow in porous media, such as the flow rate. 

This formalism is validated by comparison with experimental results from tests of two-phase flow in 
a square cross-section capillary tube and in porous media. Coupling terms of the matrix are found to 
be nonnegligible compared to diagonal terms. Relationships between standard relative permeabilities 
and matrix coefficients are studied and lead to an experimental way to determine the new terms for 
two-phase flow in porous media. 
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O. Nomenclature 

Roman letters 

(Bi) 
B* 
C(z) 
G 
(ci) 
det(Bi) 
k 
ki 

P, 
Pc 
qi 

inverse of the (Ci)  matrix 
flow constant  
fluid/fluid interface curva tu re  

curva tu re  of the meniscus ~ i ;  Ci = C(Zi) ;  i = 1, 2 
matr ix of flows 
de te rminan t  of the (Bi)  matr ix 
intrinsic permeabi l i ty  of the medium 
mobili ty of phase i, i = 1, 2 

relat ive permeabi l i ty  of phase i, i = 1, 2 
coefficient  of relat ive permeabi l i ty  matrix i, j = 1, 2 
coefficient  of mobili ty matrix i, j = 1, 2 
fluid/fluid interface in a cross-sect ion 
pressure exer ted  by the system upon phase i, i = 1 ,2  
capil lary pressure (Pc = P1 - P2) 
flow rate of phase i, i = 1,2 
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o 
r(z) 
si 

Si 
5e 
T 

z, 

absolute value of q~ 
half-side of a cross-section at position z 
saturation of phase i, i = 1, 2 
capillary cross-section at position Zi, i = 1, 2 
solid surface 
temperature of the system 
velocity of phase i, i = 1, 2 
position of meniscus El, i = 1,2 

Greek letters 
o~ 

T 
Ai 

2 
Pi 
0 

function of /2 and 0 
shape factor 
interfacial tension of fluid/fluid interface 
flow constant i = 1,2 
viscosity of fluid phase i, i = 1, 2 
visocity ratio: t2 =/Xl//X2 
mass per unit volume of fluid phase i, i = 1,2 
contact angle 
meniscus i of oil ganglion i = 1, 2 
porosity 

Subscripts 
1 nonwetting fluid 
2 wetting fluid 
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1. Introduction 

The standard description of two-phase flow in porous media is based on the 
generalization of Darcy's law. This law is rigorous for the flow of one fluid phase 
in a porous medium. It has been generalized (Wyckoff and Botset, 1936) by 
considering a permeability reduction factor for each fluid phase, called relative 
permeability. This term has been introduced on the basis that the porous medium, 
associated with one fluid phase, is seen as constituting a new porous medium for 
the other fluid phase. This approach assumes that fluid/solid and fluid/fluid 
interfaces should act in the same way, which is obviously not true. The viscous 
coupling effect between fluid phases has to be taken into account. 

This idea is not new. Rose (1972, 1974, 1988) promoted it. De Gennes (1983) 
and, more recently, Auriault and Sanchez-Palencia (1986), Auriault (1987) by 
use of a method of spatial homogenization, and Whitaker (1986) by use of a 
method of volume averaging, have established coupled Darcy's laws. This same 
result has been underlined by the author too (Kalaydjian, 1987) by use of the 
thermodynamics of irreversible processes. A quantitative estimation of coupling 
terms for two-phase flow in square cross-section capillary tubes (Kalaydjian and 
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Legait, 1987b) has shown that they are nonnegligible in front of diagonal terms. 
This paper describes an experimental approach to achieve this purpose on both 
microscopic and macroscopic levels. Coupling terms are thus quantified and 
shown to be nonnegligible, even on a macroscopic scale. 

Capillary displacements are situations for which coupling drag between fluid 
phases is predominant. This is the case, for instance, and within the framework of 
oil-recovery processes, for displacement of oil by water in countercurrent flow 
during spontaneous imbibition (for water-wet porous media), just as it is for the 
remobilization of oil ganglia by water. 

An analysis of possible relationships between the standard and the extended 
formulation of Darcy's laws gives an experimental way to determine all the 
coefficients of the matrix of relative permeabilities by using only two experiments 
performed in porous media, with capillarity being negligible or preponderant. 

2. Study at the Pore Level 

2.1. THEORY 

A porous medium, when considered at the pore level, is constituted by a complex 
succession of pores and throats (Figure 1), with pore walls being rough and 
irregular. 

To simulate this geometry, a capillary tube with a square cross-section (Legait, 
1983a,b) and having an axial constriction has been used (Figure 2a,b). This 
geometry, because of the corners, allows the simultaneous flow of the two fluid 
phases in each cross-section. It is preferred to a triangular section (Singhal and 
Somerton, 1970) because it optimizes saturation of the wetting fluid in a cross- 
section; but, qualitatively, results do not depend on the geometry of the cross- 
section. 

X•++ § 

+q q + . +  
/ /+  § 

Fig. 1. Fluid distribution at pore scale: (~) non-wetting fluid; (~) wetting fluid; (~) solid phase. 
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Fig. 2a. 
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1 

Cross-section of the capillary tube. 

C1, Z I C2, Z2 
Fig. 2b. Longitudinal section of the capillary tube. 

The following assumptions are made to model the flow: 

Ha The capillary tube is slender, z-orthogonal components of fluid phase velo- 
cities are thus neglected. 

/-/2 Flow is slow enough to make inertial and time-dependent terms negligible. 
/43 Fluid/fluid interface curvature is a function only of z. Fluid/fluid interface 

is constituted by four arcs of a circle. 

Under these assumptions, the ruling equations are Stokes' equations with stan- 
dard boundary conditions: 

[ O 2 O 2 \ 1 OPi 
i=1,2; ~2x2+~y2) U'=--'/x, Oz' V(x,y)6l),, (i) 

(B.C.1) ul = u2 = 0 along 9~ the solid surface, 
(B.C.2) /xlVUl.n = tx2Vu2.n; u~ = u2 along ~ ,  
(B.C.3) ( e , -  P2)(z) = vC(z), 

where Oi is the domain occupied by fluid phase i in a cross-section. 
Since /-/2, pressure gradients are linear functions of the flow rates qi: 

qi --- 1A(z) ~ Ci L OBj. (2) 
j= l ,2  /'s OZ 

Coefficients Ci depend on the distribution of fluids in a cross-section (e.g. 
saturation sl and contact angle 0) and viscosity ratio/2. They can be numerically 
calculated by using a finite elements method (Legait, 1983a; Kalaydjian and 
Legait, 1987a). It must be underlined that matrix (Ci) is found to be symmetrical 
from numerical calculations. 

2.2. EXPERIMENTAL 

Spontaneous capillary displacement of a nonwetting fluid ganglion by a wetting 
fluid is typically due to viscous interaction between fluid phases. The experiment 
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consists of first positioning the capillary tube horizontally (to avoid gravity effects) 
and then filling it with water. Then an oil-ganglion is positioned in such a way 
that one of its menisci is in the section of half-side R1 and the other in the section 
of half-side R2 (R2 > R1) (Figure 2a). Since the fine section has been closed, oil- 
ganglion moves spontaneously towards the big section because of the differential 
of capillary pressures (proportional to curvature). This countercurrent displace- 
ment (oil and water moving in opposite directions, and total flow being nul) 
ends when both of the curvatures become equal. The measurements concern the 
positions of one of the menisci as a function of time. 

2.3. ESTIMATION OF VISCOUS COUPLING ON T H E  PORE SCALE 

Integration of Equation (2) along the ganglion, leads to: 

z2 Bl l~ l -  Bl  t~2 dz + q2 dz. (3)   c2-c,j=ql r4(z) r4 ; 
1 1 

Matrix (B!) is the inverse of matrix (C{), while C~ is the curvature of the 
meniscus 5;i and is given by the following result (Mayer and Stowe, 1965): 

ci = F( o), 
Ri 

0 + cos 2 (0) - ~'/4 - sin (0) cos (0) 

F(O) cos(0)-~/Tr/4-  0+sin(0) cos(0) (4) 

Considering that the total flow is nul, Equation (3) can be used to calculate, for a 
given position of the ganglion, flow rate O (O = Iqll = [q21), from assumptions as 
to fluid distribution in a cross-section, e,g. concerning contact angle values 0. For 
this experiment, the contact angle must be 13 ~ in order to match theoretical and 
experimental results (Figure 3). For other pairs of fluid with different viscosity 
ratios varying from 1 to 100, contact angles vary between 10 ~ and 15 ~ These 
values are in good agreement with experimental values of contact angles esti- 
mated in porous media for displacements in imbibition (Ngan and Dussan, 1982). 

With the modelling thus being validated, Equation (2) may be interpreted in 
terms of relative permeabilities since it gives a relationship between flow rates 
and pressure gradients. By taking average values of each velocity ui of fluid 
phase i in the domain f~, this formalism does not lead to the standard for- 
mulation of Darcy's laws but to an extended formulation of these laws by means 
of a matrix of relative permeabilities (k~) also referred to as the matrix of 
interaction: 

ql  ~-- 
oeq + opt), 

/d,l 11s 

k. + k.k  ( _  (5) 
q2 = /~1 02 ] /.L 2 \ OZ ]"  
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Kinetics of counter-current flow, theory versus experiment, influence of contact angle. 

Diagonal terms k, 1 and k~ represent the permeability available to the flow of each 
fluid phase if it were alone, while nondiagonal terms kr~ and kr~ represent the 
viscous coupling effect exerted between fluid phases. They are linked by the 
following equation: 

kd k 4 
11-1,2 /-s 

(6) 

This result may be justified from Onsager's reciprocity equations, assuming that 
the thermodynamics of irreversible processes is applicable. This assumption is 
possible if thermodynamic relationships are assumed to remain identical on 
microscopic and macroscopic scales. Equation (6) may also be justified by the 
generalization, on the macroscopic scale, of the result obtained on the micro- 
scopic one (Equation (2)), using calculations for the capillary tube. This general- 
ization comes from the iinearity of the equations involved. 

Comparison between Equations (2) and (5) explicitly determines the 
coefficients of the matrix: 

- B * B  i 
kr~' det(B!) '  

B * B i  
k~=det (Bi)  ( i , j = l , 2 ; i S j ) .  (7) 

It is then possible to calculate the variations of the relative permeability matrix 
coefficients versus the state of saturation in a cross-section for a given Contact 
angle and a given viscosity ratio. These results are shown in Figure 4a for a zero 
contact angle and for a viscosity ratio equal to one. Results obtained with values 
of saturation Sl of less than 0.785, for which there is no longer any contact 
between the fluid/fluid interface and the solid surface, have to be carefully 
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Fig. 4a. Relative permeability matrix (~ = 1). Calculations refer to flow in a capillary tube. 
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Fig. 4b. Relative permeability matrix (/2 = 10. Calculations refer to flow in a capillary tube. 

extrapolated because of considerations of stability. But, what can be seen is that, 
in any case, coupling terms are never negligible compared to diagonal terms. 
Otherwise, it could be said that coupling terms are definitely negligible. This kind 
of displacement is an overestimation of what could be viscous coupling in porous 
media given the size of the fluid/fluid interface. 

A similar calculation can be made for a viscosity ratio greater than one (Figure 
4b). In this figure the diagonal term kr: exceeds one, which can be attributed to a 
lubrication effect (Danis and Jacquin, 1983). 
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3. Study on a Macroscopic Level 

3.1. RELATIONSHIPS BETWEEN STANDARD TERMS AND COEFFICIENTS FOR THE 
RELATIVE PERMEABILITY MATRIX 

Since the two approaches (the standard one and the one using a matrix of 
interaction) are available to describe two-phase flow in porous media, it may be 
useful to examine the possible relationships between the parameters involved in 
these descriptions. This is achieved in the scalar case by writing the evolution 
equation verified by the saturation in both of the descriptions. 

In the standard case, for nonnul total flow, saturation s~ is governed by the 
following equation, where ki = kri/ l~i, i = 1, 2 

U0 • [ ~xl]q-OS1 ~'~-0, (8) 
4 ax x ) -  x) 

with 

�9 /d0~ /,/l'q- U2~ 

kl k lk~  k(x) 
�9 r -- kt + k2 + kl q- k2 u ~ (pl - p2) g 

klk2 k(x) dP~ 
kl + k2 u ~ ds~ 

while, in the case where coupling terms are explicitly taken into account, this 
equation becomes 

u*~ 0 [ Os']+OS'=o,  (9) 
4 ax  r  X) -- ~*(Sl, X) ~XJ O~- 

with 

�9 U *0 IA~ q- U* 

�9 r  k l + k  z Ak(x)  

g k(x) dPc 
�9 th*-,Z u ~ d&' 

where coefficients k! (i, j = 1,2) equal to k~/l-~j and A and s are defined by 

(k l  k21~ 
A = d e t  k~ k~/'  (10) 

~ = \ k ~  k22]'(1 11)" (l l) 

Both of these approaches would be equal if the parameters of Equations (8) and 
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(9) were simultaneously identical, e.g. 

u ~  u *~ g' = q~*, 0 = 0* 

which would lead to 

A ,5 
u ~  *~ k , - k ~ + k ~ ,  k 2 = k I + k  ~. (12) 

But the equations of this system are not verified simultaneously (Kalaydjian, 
1988). More precisely, assuming the last two equations of system (12) to be true, 
it is not possible (Appendix 1) to obtain equality between u ~ and u *~ But they 
lead to the following equation for the coupling term k 2 

k~ = ~/(kl k~)(k2- k~). (13) 

Relatiohships between parameters can be established for a nonnul total flow only 
if there is no capillary pressure effect (for high flow velocities, for instance) 

k, = k] + k~, k2= k21+ k~. (14) 

In return, for zero total flow (countercurrent conditions), by very similar cal- 
culations it is possible to find parameters for both of the approaches, which lead 
to the same evolution equation. Relationships existing between parameters are 
again given by the last two equations of (12). 

In passing, an interesting result stems from Equations (12) and (14), since it 
can easily be shown that standard mobilities are not equal for the two displace- 
ments. Mobilities estimated in countercurrent conditions are less than those 
estimated in cocurrent conditions for a high flow rate. 

By using relationships obtained for these two kinds of displacement, the 
following equations between the two couples (k~, k2) and (k'~, k;), respectively 
characterizing a flow in cocurrent conditions with no capillary effect and a 
countercurrent displacement with zero total flow, and a unique triplet 
(kl,  k 2, kl 2) are derived 

, A , A 
k2= x/(k,-  k~)(k2-'k2), k, - k2 + k ~, k2= kl + k 2. (15) 

Starting from Equations (15), it is possible (Appendix 2) to express coefficients 
kl, k~ and k~ as a function of the standard mobilities 

klk2 k l ~ (  k l k , \  
k ~ -  kt + k~ + 1 - ~-~l + ~2J,  (16) 

k ~ - k l + k 2 +  1+ (17) 

(k; - k2)(kl - k'~) 
k~ = (k'2- k2)k'~ (k'l - kl)k'2" (18) 

t- 
kl k'l 
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Equations (17) and (18) associated with Equation (10) lead to the following 
relationship between 2i and k2~ 

A = k~(k ' ,  + k'a) + k'l k'2. (19) 

Thus, by knowing the pairs (kl, k2) and (k'l, k~), the method for determining the 
coefficients of the matrix of interaction consists first in calculating k 2 by Equation 
(18) then in calculating A by Equation (19). Likewise, diagonal terms are 
obtained by Equations (16) and (17). 

3.2. EXPERIMENTAL 

Very few studies have dealt with experimental studies of displacements in co- and 
countercurrent conditions for the same pair of fluids in the same porous medium. 
Leli~vre (1966) has clone such a study, though applied to flow in an artificial 
porous medium, and more recently experiments performed in natural porous 
media (Bourbiaux and Kalaydjian, 1988) have shown the same trend, e.g. relative 
permeabilities are smaller when measured in countercurrent conditions than in 
cocurrent conditions (Figure 5a). This result cannot be explained within the 
framework of the standard theory of relative permeabilities. But it provides an 
opportunity to estimate coupling terms for two-phase flow in porous media. By 
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Fig. 5a. Comparison of relative permeabilities measured in natural porous media, in co- and 
countercurrent conditions (from Bourbiaux and Kalaydjian, 1988). 
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Calculation of the relative permeability matrix associated with curves of Figure 5a. 

using the method presented above, the coefficients of the matrix of interaction 
can be calculated. Coupling terms appear to be smaller than for flow in a 
capillary tube, but cannot however, be neglected in the face of diagonal terms 
(Figure 5b). 

4. Conclusions 

The flow of two immiscible and incompressible fluid phases has been studied on 
the pore level under Stokes' approximation. This study leads to a formulation 
similar to an extended two-phase Darcy's law involving a symmetrical matrix of 
mobilities (and therefore three terms of mobilities) instead of the two standard 
scalar ones. Coupling terms (nondiagonal terms) represent the viscous coupling 
exerted between fluid phases. On the macroscopic level, the analysis of the 
relationships between the standard formulation of two-phase flow and the exten- 
ded formulation developed in this paper provides an experimental way of 
determining the coefficients of the matrix, which remain identical as macroscopic 
boundary conditions, such as flow rate, are changed. This determination is based 
on two experiments. The first one is a cocurrent displacement without any 
capillary effect; the second one is a countercurrent flow (with zero total flow). 
Application to flow in porous media shows that coupling terms are nonnegligible 
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and give an explanation for discrepancies measured between standard co- and 
countercurrent mobilities. 

Appendix 1 

For a nonnul total flow, the standard approach and the approach using a matrix 
of interaction are equivalent if and only if the following three equations are 
simultaneously verified: 

A A 
u ~  u *~ kl - k22 + k2, k2 = k l + k2 ~ " 

In the following, all the coefficients are assumed to be positive. 
Identity between u ~ and u *~ leads to 

(OP, p ,g )  OP2 
kl \ ~ - -  x - + k z ( ~ x  - P2g ) 

Then, by using the equations for kl and k2 as function of the coefficients of the 
matrix, we find 

+ k l + k ~  J \ O x  

which is equivalent to 

(0Pi i a _  (0P  
\ Ox - P i g  + k~ + k~ \ Ox - P2g = 0 .  

Thus, since A ~ 0 (theory of irreversible processing indicating that A > 0 (Glans- 
dorff and Prigogine 1971)) 

2 2~ r /OP~ P~g~] OP2 

or  

2 ~ uO kl. x.  =0 .  

But, since N > 0 (because of the assumption made above) and since the total flow 
is nonnul, this equation implies that k 2 is nul, which is not true. 

Therefore, there is no equivalence between the two approaches in the case of a 
nonnul total flow with capillary effects. 
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Appendix 2 

Relationships between mobilities in co- and countercurrent flow and coefficients 
of the matrix of mobilities are given by the following equations: 

k~ = x/(kl - k~)(k2 - k22), (A2.1) 

A 
k] - kl 2+ kz 2, (A2.2) 

k ~ -  kl + k 2' (A2.3) 

where A is expressed in terms of the matrix of mobilities (see Equation 10) by 

A = klk 2 - (k2) 2. (A2.4) 

From Equations (A2.2) and (A2.3), we find 

A 
k ] = - k 12 + - -  (A2.5) 

k~' 

A 
k 2 = -k• + k-~" (A2.6) 

Moreover, by taking the square of (A2.1) and by using the Equation (A2.4) for A, 
we find 

A = klk~+ k2kl - klk2. (A2.7) 

Then, by introducing Equations (A2.5) and (A2.6) into Equation (A2.7), the 
following equation is derived: 

k, (~ , l -  k12)+ k2(~G 2 - k12)-klk2 = A, 

which leads to 

klk2+ k2 A (-~'1 ~'2 1) (A2.8) k12- kl + k ~ - ~  + - " 

From Equations (A2.5), (A2.6) and (A2.8), the following equations of kl and k 2 
can be obtained: 

k l k , +  k~ ~ - ~  ~ + (A2.9) 

k,k2 A ( l+k2  k2 ) 
k22 -- k, + k2 q - ~  k; ~ " (A2.10) 

On the other hand, by introducing Equations (A2.5) and (A2.6) into (A2.5), the 
following equation between A and k12 is derived: 
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A = k2(k ', + k'2)+ k;k'2. 

Therefore, the combination of Equations 
equation for k~ : 

( k ~ -  k2) (kl -  k'0 
k2 = ( k'2 T k2~) k~ + (--k-~ _ -s 

k'2 k{ 

Equations (A2.9), (A2.10) and (A2.12) 
coefficients ki as a function of standard 
countercurrent conditions. 

(A2.8) 
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(A2.11) 

and (A2.11) leads to the 

(A2.12) 

thus give the equations for the 
mobilities determined in co- and 

References  

Auriault J. L., 1987, Nonsaturated deformable porous media: Quasistatics, Transport in Porous Media 
2, 45-64. 

Auriault, J. L. and Sanchez-Palencia, E., 1986, Remarques sur la loi de Darcy pour les 6coulements 
diphasiques en milieu poreaux, J. Theor. Appl. Mech. special issue, pp. 141-156. 

Bourbiaux, B. and Kalaydjian, F., 1988, Experimental study of cocurrent and countercurrent flows in 
natural porous media, Soc. Petr. Eng. No. 18283. 

Danis, M. and Jacquin, C., 1983, Influence du contraste des viscosit6s sur les perm6abilit6s relatives 
lors du drainage. Exp6rimentation et mod61isation, Rev. Inst. Franc. Petrol. 38, 723-733. 

De Gennes, P.-G., 1983, Theory of slow biphasic flows in porous media, Phys. Chem. Hydr. 4, 
175-185. 

Glansdorff, P. and Prigogine, I., 1971, Structures, stabilitd et fluctuations, Masson, Paris. 
Kalaydjian, F., 1987, A macroscopic description of multiphase flow in porous media involving 

space-time evolution of fluid/fluid interface, Transport in Porous Media 2, 537-552. 
Kataydjian, F., 1988, Couplage entre phases fluides dans les 6coulements diphasiques incompressibles 

en milieu poreux, Thesis Univ. Bordeaux I. 
Kalaydjian, F. and Legait, B., 1987a, Ecoulement lent ~t contre-courant de deux fluides non miscibles 

clans un capillaire pr6sentant un r6tr6cissement, C. R. Acad. Sc. Paris Ser. H 304, 869-872. 
Kalaydjian, F. and Legait, B., 1987b, Perm6abilit6s relatives coupl6es darts des 6coulements en 

capillaire et en milieu poreux, C. R. Acad. Sc. Paris Set. H 304, 1035-1038. 
Kalaydjian, F. and Legait, B., 1988, Effets de la g6om6trie des pores et de la mouillabilit6 sur le 

d6placement diphasique ~ contre-courant en capillaire et en milieu poreux, Rev. Phys. Appl. 23, 
1071-1081. 

Legait, B., 1983a, Interpr6tation de certains types d'6coulements diphasiques en milieu poreux 
partir des 6coulements en capillaires, Thesis. Univ. Bordeaux I. 

Legait, B., 1983b, Laminar flow of two phases through a capillary tube with variable square 
cross-section, J. Colloid Interface Sci. 96, 28-38. 

Leli~vre, R.-F., 1966, Etude d'6coulements diphasiques permanents 5 contre-courants en milieu 
poreux, comparaison avec les 6coulements de m6me sens. Thesis, Univ. Toulouse. 

Mayer, R. P. and Stowe, R. A., 1965, Mercury porosimetry - breakthrough pressure for penetration 
between packed spheres, J. Colloid Interface Sci. 20, 893-911. 

Ngan, C. G. and Dussan, V., E. B., 1982, On the nature of the dynamic contact angle: An 
experimental study, J. Fluid Mech. 118, 27-40. 

Rose, W., 1972, Petroleum reservoir engineering at the crossroads (Ways of thinking and doing), The 
Iran. Pet. Inst. Bull. 46, 23-27. 

Rose, W., 1974, Second thoughts on Darcy's law, The Iran. Pet. Inst. Bull. 48, 25-30. 
Rose, W., 1988, Measuring transport coefficients necessary for the description of coupled two-phase 

flow of immiscible fluids in porous media, Transport in Porous Media 3, 163-17l. 



COUPLING BETWEEN RELATIVE PERMEABILITIES 229 

Singhal, A. K. and Somerton, W. H., 1970, Two-phase flow through a non-circular capillary at low 
Reynolds numbers, J. Can. Petrol. Technol. 197-205. 

Whitaker, S., 1986, Flow in porous media II: The governing equations for immiscible, two-phase 
flow, Transport in Porous Media 1, 105-125. 

Wyckoff, R. D. and Botset, H. G., 1936, Flow of gas-liquid mixtures through unconsolidated sands, 
Physics 7, 325-345. 


