
Constraints, An International Journal, 1,175-190 (1997)
�9 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Solving Hard Qualitative Temporal Reasoning
Problems: Evaluating the Efficiency of Using the
ORD-Horn Class
BERNHARD NEBEL nebel @ informatik.uni-freiburg.de
Institut fiir Informatik, Albert-Ludwigs-Universittit Freiburg, Am Flughafen 17, D- 79110 Freiburg, Germany

Abstract. While the worst-case computational properties of Allen's calculus for qualitative temporal reasoning
have been analyzed quite extensively, the determination of the empirical efficiency of algorithms for solving the
consistency problem in this calculus has received only little research attention. In this paper, we will demonstrate
that using the ORD-Horn class in Ladkin and Reinefeld's backtracking algorithm leads to performance improve-
ments when deciding consistency of hard instances in Allen's calculus. For this purpose, we prove that Ladkin
and Reinefeld's algorithm is complete when using the ORD-Horn class, we identify phase transition regions of
the reasoning problem, and compare the improvements of ORD-Hom with other heuristic methods when applied
to instances in the phase transition region. Finally, we give evidence that combining search methods orthogonally
can dramatically improve the performance of the backtracking algorithm.

Keywords: qualitative temporal reasoning, Alien's interval calculus, path-consistency, ORD-Horn class, phase
transition, empirical evaluation

I. Introduct ion

Representation of qualitative temporal information and reasoning with it is an integral
part of many artificial intelligence tasks, such as general planning (Allen, 1991; Allen
and Koomen, 1983), presentation planning in a multi-media context (Feiner et al., 1993),
natural language understanding (Song and Cohen, 1988), and diagnosis of technical systems
(N6kel, 1991). Allen's (1983) interval calculus is well suited for representing qualitative
temporal relationships and reasoning with it. In fact, it is used in all the applications
mentioned above.

While the worst-case computational properties of Allen's calculus and fragments of it
have been quite extensively analyzed (Golumbic and Shamir, 1993; Ladkin and Maddux,
1994; Nebel and Btirckert, 1995; van Beck and Cohen, 1990; Vilain and Kautz, 1986),
design and empirical evaluation of reasoning algorithms for Alien's calculus has received
much less research attention. In this paper, we address the latter problem and analyze in
how far using the ORD-Horn subclass (Nebel and Biirckert, 1995) of Allen's relations can
improve the efficiency of existing reasoning algorithms. As it turns out, the ORD-Horn
class can significantly enhance the performance in search-intensive cases, l

Since reasoning in the full calculus is NP-hard (Vilain and Kautz, 1986), it is necessary
to employ some sort of exhaustive search method if one wants complete reasoning in the
full calculus. Allen (1983) proposed in his original paper to search through all possible
"atomic" temporal constraint networks that result from instantiating disjunctive relations to

176 B.~EBEL

one disjunct and to test for consistency using the path-consistency algorithm (Montanari,
1974) that is incomplete for the full calculus, but complete for atomic relations.

A more efficient algorithm has been proposed by Ladkin and Reinefeld (1992). This
algorithm uses path-consistency as a forward checking technique (Haralick and Elliot,
1980) during the backtrack search, which results in pruning the search tree significantly. 2
As pointed out by Ladkin and Reinefeld (1992), this algorithm allows the instantiation
of disjunctive relations not only by atomic relations but by any set of relations the path-
consistency method is complete for, which can considerably reduce the branching factor
in the backtrack search. However, if non-atomic relations are used, it is not any longer
obvious that the backtracking algorithm is a complete reasoning method. As we show in
Section 3, however, Ladkin and Reinefeld's suggestion is indeed correct.

Since the ORD-Horn subclass of the qualitative relations in Allen's calculus is the unique
maximal set containing all atomic relations such that path-consistency is sufficient for
consistency (Nebel and Btirckert, 1995), it would seem that employing this set in the
backtracking algorithm is clearly advantageous over using other subclasses. However,
the experiments that have been performed so far do not seem to justify this conjecture.
Ladkin and Reinefeld (1992, 1993) concluded from the experiments they performed that
"in practice one can expect the number of path-consistency computation almost constant,"
i.e., in practice there won't be much search. Van Beek and Manchak (1996), who further
developed Ladkin and Reinefeld's backtracking algorithm, were able to generate problem
instances that led to significant search. However, they did not observe that using the
ORD-Horn subclass led to an performance improvement over using the smaller pointizable
subclass (Ladkin and Maddux, 1994; van Beck and Cohen, 1990).

It may be the case, however, that Ladkin and Reinefeld (1992, 1993) missed generating
hard instances and that van Beek and Manchak (1996) did not look for the fight performance
indicators. In Section 5, we identify the phase transition region (Cheeseman et al., 1991)
for reasoning in Allen's calculus, which contains arbitrarily hard instances. We use these
problems to evaluate the usage of the ORD-Horn class in Section 6 and demonstrate its
advantage. Further, we demonstrate in Section 7 that combining the ORD-Horn subclass
with other search strategies in an orthogonal way can dramatically improve the performance
on van Beek and Manchak's (1996) hard problem instances.

2. Allen's Calculus

Allen's (1983) approach to reasoning about time is based on the notion of time intervals
and binary relations on them. A time interval X is an ordered pair (X-, X +) such that
X - < X +, where X - and X + are interpreted as points on the real line. Given two concrete
time intervals, their relative positions can be described by exactly one of the elements of the
set A of thirteen atomic interval relations. Atomic relations are, for example, - , -<, >-, and
d, meaning that the first interval equals, is before, is after, or is strictly inside the second
interval, respectively. These interval relations can be defined in terms of their interval
endpoint relations, e.g., XdY can be defined by X- > Y- A X + < Y+ (see Table 1).

In order to express indefinite information; unions of the atomic interval relations are used,
which are written as sets of atomic relations. The formula X{--, d}Y means, e.g., that X

SOLVING HARD QUALITATIVE TEMPORAL REASONING PROBLEMS 177

Table 1. The set A of the thirteen a tomic relations. The endpoint
relations X - < X + and Y - < Y+ that are valid for all relations have

been omitted.

Basic Interval Sym- Pictorial Endpoint
Relat ion bol Example Relat ions

X before Y -< xxx X - < Y - , X - < Y+
Y after X >- y y y X + < Y - , X + < Y+

X meets Y m xxxx X - < Y - , X - < Y+
Y met-by X m v y y y y X + = Y - , X + < Y+

X overlaps Y o xxxx X - < Y - , X - < Y+
Y over lapped-by X o v y y y y X + > Y - , X + < Y+

X dur ing Y d xxx X - > Y - , X - < Y+
Y includes X cl ~ y y y y y y y X + > Y - , X + < Y+

X starts Y S xxx X - = Y - , X - < Y+
Y star ted-by X s v y y y y y y y X + > Y - , X + < Y+

X finishes Y I xxx X - > Y - , X - < Y+
Y f inished-by X I v y y y y y y y X + > Y - , X + = Y+

X equals Y ~- xxxx X - = Y - , X - < Y+
y y y y X + > Y - , X + = y +

equals Y or is inside Y. Since there are 13 atomic relations, there are 213 possible unions of
atomic relations, which form the set of binary interval relations (denoted by r)--including

the empty relation 0 and the universal relation A. The set of all binary interval relations 2 A
is denoted by .4. On this set, we can define the operations intersection (r M r'), relational
converse (r-) , and relational composition (r o r'):

VX, Y: X r V Y ~ YrX
VX, Y: X (r f 3 r ') Y ~ X r Y A X r ' Y
u X (r or') Y ~-~ 3Z: (XrZ A Zr'Y).

Together with these operations, .4 forms an algebra, 3 which is called Allen's interval alge-
bra.

A qualitative description of an interval configuration is usually given as a set of formulae
of the above form, or, equivalently, as a temporal constraint graph with nodes as intervals
and arcs labeled with interval relations--the constraints. Such a graph is often represented
as a matrix M of size n x n for n intervals, where Mij E -4 is the constraint between the
ith and j th interval. Usually it is assumed (without loss of generality) that Mii = {----} and

Mji : Mij v .
The fundamental reasoning problem in this framework is to decide whether a given

qualitative description of an interval configuration is satisfiable, i.e., whether there exists
an assignment of real numbers to all interval endpoints, such that all constraints in the
corresponding constraint graph are satisfied. This problem, called ISAT, is fundamental
because all other interesting reasoning problems polynomially reduce to it (Golumbic and

178 B. NEBEL

Shamir, 1993) and because it is one of the most important tasks in practical applications
(van Beck and Manchak, 1996).

The most often used method to determine satisfiability of a temporal constraint graph is
thepath-consistency method, 4 which was already proposed by Allen (1983). Essentially, it
consists of computing repeatedly

Mij ~ M;j n (Mik o Mkj) (1)

for all i, j , k of the n x n matrix M until no more changes occur. Obviously, the restriction
on Mij in Eq. (1) does not remove any possible assignment, but only deletes atomic relations
that are not satisfiable in any way. This method--if implemented in a sophisticated way- -
runs in O(n 3) time, where n is the number of intervals. In the following_a matrix that has
been--reduced" in this way is called path-consistent and is denoted by M.

If Mij = 13 for some i, j , then it follows obviously that M is not satisfiable. The converse
implication is not valid, however, as Allen (1983) already demonstrated using an example
attributed to H. Kautz. Since ISAT is NP-complete (Vilain and Kautz, 1986), it is very
unlikely that any polynomial algorithm can solve ISAT. However, there exist subsets of
.A such that ISAT is a polynomial problem if only relations from these subsets are used.
These subsets are the continuous endpoint class C (Ladkin and Maddux, 1994; van Beek
and Cohen, 1990), the pointizable class 7=' (Ladkin and Maddux, 1994; van Beek and
Cohen, 1990), and the ORD-Horn class 7-[(Nebel and Btirckert, 1995), which form a strict
hierarchy, i.e., we have

C C 7 9 c 7~. (2)

Interestingly, these classes lead also to completeness of the path-consistency method.

3. The Backtracking Algorithm

If an application needs more expressiveness than is granted by the above mentioned sub-
classes and if complete reasoning is required, then some sort of backtracking search is
necessary. The backtracking algorithm given below, which has been proposed by Ladkin
and Reinefeld (1992), appears to be the most efficient version of such an algorithm.

1. Input: Matrix C representing a temporal constraint graph

2. Result: true iff C is satisfiable

3. function consistent(C)
4. path-consistency(C)
5. i fC contains empty relation

6. then return false
7 . else
8. choose an unprocessed label Cij and split Ciy
9. into ri rk s.t. all rt E Split

10. if no label can be split then return true

SOLVING HARD QUALITATIVE TEMPORAL REASONING PROBLEMS 179

11. end/f

12. for all labels rl (1 < l < k) do

13. C i j ~ - " r l

14. /fconsistent(C) then return true

15. endif

16. endfor

17. return false

18. endif

19. endfunction

A
The procedure "path-consistency" transforms a matrix C to C. The set Split is a subset of

.,4 such that path-consistency is complete for ISAT. The algorithm deviates slightly from the
one published in Ladkin and Reinefeld (1992) in that it makes the choice of the constraint
to be processed next nondeterministic, but is otherwise identical.

When the algorithm is implemented, a number of design choices are necessary that can
influence the practical efficiency considerably (van Beek and Machak, 1996). Some of
these choices will be discussed in Section 6 below. The choice of what subset of .A to
use for the set Split seems obvious, however, namely, the largest such set, which is the
ORD-Horn class (Nebel and Biirckert, 1995). This subclass covers 10% of Allen's interval
algebra (compared with 1% for C and 2% for 79), and for this reason the ORD-Horn class
should reduce the branching factor in the backtrack search much more than any other class.
While a larger subclass will potentially lead to an increase of the depth of the search tree (by
detecting inconsistencies later), experience tells us that this is usually overcompensated by
the reduction of the braching factor. In fact, previous experiments using the atomic relations,
C and 79 as the Split set, confirmed that this is true for qualitative temporal reasoning as
well (Ladkin and Reinefeld, 1993; van Beek and Manchak, 1996).

Unfortunately, the reduction of the brachning factor is less dramatic than the figures above
suggest. Based on the assumption that the interval relations are uniformly distributed, a
straightforward computer-based analysis gives the following average branching factors: 5 A
6.5, C 3.551, 79 2.955, 6 ~ 2.533.

The main problem with the algorithm is, however, that it is not obvious that it is complete
if Split differs from the set of atomic relations. In this case, it is possible that during the
backtrack search a constraint Mij that has been restricted to a relation from the set Split is
further constrained by the path-consistency procedure to a relation that is not in Split. Hence,
it is not obvious that all constraints belong to the class Split for which path-consistency is
complete when the recursive function terminates, which may lead to incompleteness.

In order to show that the above backtracking algorithm is nevertheless complete, we need
first some definitions. We write M < N iff Mij C Nij for all i, j . Further we denote by
M[i, j / r] the matrix that is identical to M except that M[i, j /r]ij = r. The following
lemma is straightforward (Montanari, 1974).

A ~ A

LEMMA 1 M <_ M, M = M, and if M < N then M <_ N.

180 B. NEBEL

Now let at denote the k-th choice of the backtracking algorithm, i.e. the choice of the pair
(i, j) and the selected relation rt. Then M[at] denotes the replacement of the constraint
Mij by rl. Assuming that C denotes the original temporal constraint graph, we define the
following sequences of matrices:

C O = C (3)

C t = Ct-~-~l[at] (4)

S O = C (5)

S t = S t - ! [a t] (6)

In other words, C k corresponds to the matrix C after the kth choice in the backtracking
algorithm and S t reflects the first k choices without having applied path-consistency.

A A

LEMMA 2 C k = S t, for all k.

Proof: <: We prove C t < S t by induction, from which C k < S k follows by Lemma 1.
The hypothesis holds for Ak = 0 by definition. Assume that it holds for k. From that it
follows by Lemma 1 that C t < S t and C t [a t + l l < St[at+l], since the k + lth choice is
always a subset of the corresponding relation in C k. By applying the definition of C and S,
we get C t+l < St+I,A asdesired.

>: We prove C k > S t by induction. The hypothesis holds for k = O by definition and
Lemma 1. Assuming thatit holds for k, it follows that Ct[at+l] > St[at+l!.L(*). Since
S t > Sk[at+l], we have S k > sk[ak+l]. Let at+l be rl at (i, j) . Clearly, sk[ak+l]ij C rl.

A

Hence, also St[at+l] > St[at+l]. From that and (*) it follows that C t+! > S k+l, from
which the the claim follows by applying Lemma 1 twice. �9

In other words, if the recursive function terminates, the temporal constraint graph is
equivalent to one which results from applying all choices (which select constraints from
Split) and using path-consistency in the end. Since soundness is obvious and completeness
follows from Lemma 2, the backtracking algorithm described above is indeed sound and
complete.

THEOREM 1 The backtracking algorithm is sound and complete i f the set Split is a subclass
o f Allen's interval algebra such that the path-consistency algorithm is complete.

4. Test Instances and Measurement Methods

In order to test empirically the usefulness of employing the ORD-Horn class in the back-
tracking algorithm, some set of test instances is necessary. Ideally, a set of "benchmark"
instances that are representative of problem instances that appear in practice should be
used. However, such a collection of large benchmark problems does not exist for qualita-
tive temporal reasoning problems (van Beek and Manchak, 1996). Furthermore, all existing

SOLVING HARD QUALITATIVE TEMPORAL REASONING PROBLEMS 181

examples, which could be used to construct "benchmark" instances, lead to the same be-
havior of the backtracking algorithm regardless of whether we use the pointizable subclass
or the ORD-Horn class.

The DNA sequencing instance from molecular biology (Benzer, 1959) that has been
suggested by van Beek and Manchak (1996) is unfortunately not adequate for our purposes
because the structure of constraints leads to identical results for 7 ~ and ~ (van Beek and
Manchak, 1996). Similarly, all examples from planning (Allen, 1991; Allen and Koomen,
1983) use only relations from the continuous endpoint class plus the disjunctive relations
{-<, m, m - , >-} and perhaps {4, >-}, which are handled identically under C, T', and 7-/.

For these reasons, the only possibility to evaluate the usefulness of the ORD-Horn class
is to randomly generate temporal constraint networks as in Ladkin and Reinefeld (1992),
Ladkin and Reinefeld (1993), and van Beek and Manchak (1996). We use three models to
generate constraint networks, denoted by A(n, d, s), H (n, d), and S(n, d, s).

For A(n, d, s), random instances are generated as follows:

A graph with n nodes and an average degree of d for each node is generated. This is
accomplished by selecting nd/2 out of the n(n - 1)/2 possible edges using a uniform
distribution.

2. If there is no edge between the ith and j th node, we set Mij = M j i = A.

. Otherwise a non-null constraint is selected according to the parameter s, such that the
average size of constraints for selected edges is s. This is accomplished by selecting one
of the atomic relations with uniform distribution and out of the remaining 12 relations
each one with probability (s - 1)/13. 7

For H(n, d), the random instances are generated as in steps 1-2 above, but in step 3,
we select a constraint from a particular set of 3006 probably very hard constraints with a
uniform distribution. The conjecture that these constraints are hard is based on the fact
that their translation to a logical form requires clauses with at least three literals and the
observation that the path-consistency algorithm is similar to positive unit-resolution on
the logical form. 8 As our experiments demonstrate, these constraints lead indeed to hard
reasoning problems.

Finally, for S(n, d, s), the random instances are generated as in A(n, d, s), but in a post-
processing step the instances are made satisfiable by adding atomic relations that result from
the description of a randomly generated scenario, i.e., these instances are always satisfiable.
This model was proposed by van Beek and Manchak (1996), and they reported that a large
fraction of instances generated by S(100, 25, 6.5) are very hard, sometimes requiring more
than half a day of CPU time on a Sun 4/20.

Using these random models, we analyze the effect of varying the parameters and evaluate
the runtime efficiency of different implementations of the backtracking algorithm. As the
performance indicator we use CPU time on a SparcStation 20. Although this indicator is
more dependent on the particular implementation and platform than indicators such as the
number of compositions performed or the number of search nodes explored, it gives a more
realistic picture of the effect of applying different search techniques.

182 B. NEBEI..

Probability o! sal~;fial~ity for label sJze 6.5

Figure 1. Probability of satisfiability for A(n, d, 6.5) (500 instances per data point).

5. Phase Transitions for Reasoning in Allen's Calculus

Cheeseman et al (1991) conjectured:

All NP-complete problems have at least one order parameter and the hard to solve
problems are around a critical value of this order parameter. This critical value (a
phase transition) separates one region from another, such as over-constrained and
under-constrained regions of the problem space.

Instances in the phase transition are obviously particularly well suited for testing algorithms
on search intensive instances.

Ladkin and Reinefeld (1993) observed that reasoning in Allen's calculus has a phase
transition in the range 6 < c x n < 15 for c > 0.5, where c is the ratio of non-universal
constraints to all possible constraints and n is the number of intervals. This phase transition
is, however, not independent of the instance size, and for this reason does not allow the
generation of arbitrarily hard instances.

Our conjecture was that the average degree of the constraint graph is one critical order
parameter that can lead to a size-independent phase-transition. 9 In order to test this hypothe-
sis, we fixed s = 6.5 and generated for varying size n and degree d 500 instances each using
the A method. As Figure 1 demonstrates, our conjecture holds indeed for A(n, d, 6.5).

The probability that the instance is satisfiable drops from 1 to 0 around d = 9.5. As
expected, the typical instances around the phase transition are hard, meaning that the median
value of CPU time has a peak in the phase transition region, as shown in Figure 2 (the solid
line marks the phase transition). Further, the mean value has a peak there as well, as also
shown in Figure 2.

For other values of the average label size s, we get qualitatively similar results, as Figure 3
shows for s = 7.0. The general picture that emerged from varying s from 5.0 to 8.0 was
that with larger values of s the phase transition region moves to higher values of d and the
runtime requirements grow.

These results on phase transitions provide us with test cases On which we can evaluate
different backtracking methods. However, the predictive value of the results is, of course,

SOLVING HARD QUALITATIVE TEMPORAL REASONING PROBLEMS | 83

Median CPU time for label size 6.5

CPU sec /~

~ 1
0.35 ~ i i , ~
03 :

0.25
0,2 ~ _ ~

0.15 ~,; ~,:~" =7"

0 " ~ ' : ~ ' ~ : - i~ 30 35
~ ~.;T-::: ~ ~ 2' nodes

10 average degree

Mean CPU time for label size 6.5

CPU sec
1 t' 1 /

10 ~ / /

5

5 1 20 2530 3nS?des
0

Figure 2. CPU time for A(n, d, 6.5) (500 instances per data point).

Probability of satisliability for label size 7
Median CPU time for label size 7

CPU sec
, i ! 1:[

, j ,

0.5

O 30354045:~
5 25 nodes

Figure 3. Probability of satisfiability and median CPU time for A (n, d, 7.0).

limited. The average label size together with the average degree gives indications of whether
instances may be hard or easy to solve. However, the particular distribution of constraints
is much more important than the average label size. If we use, for instance, a uniform
distribution over the ORD-Horn relations--which results in an average label size of 6 .83- -
no runtime peak is observable in the phase transition region. Using the "hard relations"
from H(n, d)--resulting in an average label size of 6 .97--one would expect significant
more search and perhaps a move of the phase transition compared with A(n, d, 7.0). This
expectation is confirmed by our experiments, as shown in Figure 4.

6. Using the ORD-Horn Class

Comparing the backtracking algorithm for Split = H and Split = 7 a in the phase transition
region shows that the ORD-Horn class provides a significant performance enhancement in
some cases (Figure 5).

This means that contrary to previous observations, it can pay off for search intensive cases
to use the ORD-Horn subclass instead of the pointizable subclass. The difference between

1 8 4 B. NEBEL

Probab

tO0-

50-

Probability of satlsfiability for hard relations
Median CPU time Ior hard relations

CPU sec i
t

7 i

4
3 ' ~i ' ; : .

40
1 35
0 3O

5 1 20 25 nodes

Figure 4. Probability of satisfiability and median CPU time for H(n, d) (500 instances per data point).

'.it
3,5

3

2.5

2

1.5

1

0.5

010 115

Mean CPU time for label size 65 and degree 9.5

pointizable
ORD*Hom

20 25 20 30 35 40 45 50 55
nodes

Mean CPU lime for hard relations and degree 11.5
5O

,5 I
40

35

30

25

20

15

10

5

0
tO 15

pointizable
ORD-HOm

r

Y

25 30 35 40 45
nodes

Figure 5. Comparison between T' and 7-{ for A(n, 9.5, 6.5) and H(n, 11.5) (500 instances per data point).

A(n, 9.5, 6.5) and H(n, 11.5) is probably explainable by the fact that the distribution of
labels in the two different random models lead to a reduction of the branching factor of
15.3% in the former case and 9.3% in the latter case when going from the pointizable to
the ORD-Horn class.

One question might be, however, where the performance enhancements came from. As
Figure 6 shows, the median CPU time value is almost identical for using 7-[and 7:' and the
main differences appear for the very hard instances. For this reason, the main value of using
the ORD-Horn subclass seems to be that it reduces the runtime of extreme cases.

The results described above were achieved by using all techniques described in van Beek
and Manchak (1996) and varying only the set Split. So the question arises how changing
the set Split in our backtracking algorithm compares to other design decisions. We varied
the following design decisions in order to answer this question:

ORD-Horn/pointizable: The subclass used for the set Split.

SOLVING HARD QUALITATIVE TEMPORAL REASONING PROBLEMS 1 85

CPU time (percentile) for label size 6.5 and degree 9.5

10

1

0.1

0,01
10

poirdizable - 99% ~

ORD-Horn - 99% ~ i " pointizable - 90% .o ,'~
ORD-Hom - 90% �9 , ".'~"
pointizab~e - 70% -- -. ,~J
ORD-Hom - 70% - , - s ,:
pointizable - 5O% * ~ ' "5
ORO-Hom-50%r . ~ t ~

. . . .

15 20 25 30 35 40 45 50 55
nodes

CPU thrle (percefdile) for hard relations and degree 11.5

Figure 6. Comparison by percentiles (500 instances per data point).

Mean CPU time for label size 6 5 and degree 9.5

25

20

15

10

5

0
10

ORD-Hom, static, local,
pointizable, dynamic, local, no
ORD-Hom, dynamic, local, no

ORD*Hom, dynamic, local,
pointizable, static, global,
ORD-Hom, static, global,

16

14

12

10

Mean CPU time for hard r elaticP, s and degree 11 5

base rsts., d namic
ORD-~-~m, st~

elrdizable. dyrmmic
RD-Hom. dynamic

ORD-Hom, dynan
elelizable, slat
RD-Hom, stst

15 20 25 30 35 40 45 50 55 10 15 20 25 30 35
nodes nodes

Figure 7. Using ORD-Horn and other design choices (500 instances per data point).

static/dynamic: Constraints are processed according to a heuristic evaluation of their con-
strainedness which is determined statically before the backtracking starts or dynamically
during the search.

loeal/globah The evaluation of the constrainedness is based on a local heuristic weight
criterion or on a global heuristic criterion (van Beek and Manchak, 1996).

queue/no queue: The path-consistency procedure uses a weighted queue scheme for the
constraints to be processed next (van Beek and Manchak, 1996) or the scheme described
in Ladkin and Reinefeld (1992), which uses no queue.

As it turns out, the improvement of using 7-/ instead of 79 is small compared with the
improvements achievable by other means (Figure 7).

The two lower curves in the graphs shown in Figure 7 correspond to the curves in Figures 5.
The results show that node ordering and the heuristic evaluation of constrainedness can have
a much more significant effect on the efficiency than the choice of the tractable subset used
for the set Split in the algorithm.

186 n: NEBEL

Median CPU time for van Beek's problem

CPU sec

0.5

0.4

0.3

0.2

0.1 55 60

100 15
~0 35 "~ nodes

99% percentile of CPU time 1or van Beek's prob)em

CPU sen:

2OOO

101111 6 0

4045 50
1~176 15 2o 5

2 5 - -

Figure 8. 50% and 99% percentile of CPU time on S(n, d, 6.5) (500 instances per data point).

7. The Power of Orthogonally Combined Strategies

Van Beek and Manchak (1996) used S(n, d, 6.5)-instances for evaluating different strate-
gies. They noted that in particular S(100, 25, 6.5) leads to a large fraction of extraordinarily
hard instances. Interestingly, the median value of the CPU time does not vary much when
varying the average degree. However, around d = 25 very hard instances occur that for
n = 60 are several orders of magnitude harder to solve than the typical instances (see
Figure 8), a phenomenon similar to what Gent and Walsh have also observed for kSAT in
the satisfiable region (Gent and Walsh, 1994).

When comparing ORD-Horn with the pointizable subclass on S(100, 25, 6.5), van Beek
and Manchak did not observe any significant performance difference, which our experiments
confirmed. When running the backtracking algorithm on 500 instances with a time limit of
20 sec and varying the Split set and the strategy for selecting the constraints in the search,
the number of solved instances as well as the runtime was almost the same for ORD-Horn
and the pointizable set. The results of this experiment are displayed in Figure 9, in which
the percentage of solved instances is plotted against the maximal CPU time necessary to
solve one instance.

However, it is, of course, not evident that the same instances are solved by all methods.
As a matter of fact, it turns out that by using different search methods, different instances
get solved.

Based on this observation, we ran 16 different search strategies resulting from combining
the four possible candidates A, C, 7 ~, 7-/for the split-set Split, with dynamic and static
constraint ordering and local and global evaluation of the constrainedness. Using all of the
16 methods on 500 generated instances with a time limit of 20 CPU sec on each method
resulted in 98.6% solved instances, while the application of just one method using ORD-
Horn, static ordering and global evaluation with a time limit of 1800 CPU sec solved only
85%.

In Figure 10, the results of this experiment are displayed, plotting the percentage of solved
instances against the maximal CPU time necessary to solve one instance. The line for the
combined strategies results from multiplying the minimum CPU time to solve a particular

SOLVING HARD QUALITATIVE TEMPORAL REASONING PROBLEMS 187

100
time limit

ORD-Hom, static, global
ORD-Hom, dynamic, global

po/cltizable, static, global
pointizable, dynamic, global

.

. = - - - r r

10 i ~

10 20 30 40 50 60 70 80 90 100
Percentage of instances

Figure 9. Runtime performance on S(100, 25, 6.5) (500 instances overall).

10000 ORD-Hom, stalic, foal -*--
time Hmit(. ofn~nedl iC'~d~) - - -]

Aft strategies combined oahogonally +]

r
1000

/

I
10 20 30 40 50 60 70 80 90 1 CO

Percentage of instances

Figure 10. The effect of combining strategies orthogonaUy (500 instances overall).

instance by one method with 16, which would be the actual costs if all methods were applied
in parallel.

One should note that the combination of different search strategies is completely orthog-
onal and does not require any communication, which makes it very well suited for parallel
implementations.

While this experiment demonstrates that combining different heuristic search strategies
in parallel can be superior to applying a single strategy, it does not show that using the
ORD-Horn subclass has significantly contributed to this result. In fact, when applying only
the methods that do not use the ORD-Horn subclass, we still can solve 98% of the instances
in a time limit of 20 CPU sec per method and instance. However, when classifying the
solved instances according to the method that gave the fastest response, it turns out that the
methods using the ORD-Horn subclass as the Split set outperforms the other methods. As
shown in Table 2, in almost 40% of the cases the ORD-Horn methods solved the instances
first.

188 B. NEBEL

Table 2. Percentage of instances
solved first by a particular set of meth-
ods.

Percentage of
Methods first response

ORD-Horn relations 39.2%
pointizable relations 22.4%
continuous relations 18.6%
atomic relations 18.4%

8. Conclusions and Outlook

We showed that using the ORD-Horn subclass in the backtracking algorithm proposed
by Ladkin and Reinefeld (1992) leads to a complete reasoning algorithm and has--as
conjectured in Nebel and Biirckert (1995)--the effect of enhancing search efficiency. On
instances in the phase transition, which we have identified in this paper, the ORD-Horn
subclass leads to an additional performance enhancement over the already highly optimized
version (van Beek and Manchak (1996) of Ladkin and Reinefeld's (1992) backtracking
algorithm. For the hard satisfiable problems described in van Beek and Manchak (1996), the
benefit of using the ORD-Horn class is not directly observable. However, when combining it
orthogonally with other search strategies one notes that by using ORD-Horn some instances
become solvable which are not solvable otherwise. Further, the ORD-Horn methods are
also effective in solving a large percentage fast.

An interesting question is, whether the orthogonal combination of search strategies as
described above can also lead to a better performance in the phase transition region. Another
interesting question is, whether local search methods similar to GSAT (Selman etal . , 1992)
can be applied to temporal reasoning. A direct application of GSAT, however, does not
seem to be promising because translations from Allen's calculus to propositional logic lead
to a cubic blowup (Nebel and Btirckert, 1995).

Acknowledgments

I would like to thank the two anonymous reviewers for their comments on this paper,
two ECAI-referees for helpful comments on an earlier version of this paper, Peter Ladkin
for discussions concerning the problems discussed in this paper and Peter van Beek for
discussions and making available the programs he used to evaluate different search strategies
on temporal reasoning problems.

Notes

1. The C-programs that were used for the evaluation are available by anonymous ftp from ftp.informatik.uni-
freiburg.de as /pub/documents/papers/ki/allen-csp-solving.programs.tar.gz.

SOLVING HARD QUALITATIVE TEMPORAL REASONING PROBLEMS 189

2. A weaker, but more efficient forward-checking technique, called circuit-consistency has been proposed by Isli
and Bennaceur (1996). This leads to the exploration of more search nodes, but each forward-check is faster.

3. Note that we obtain a relation algebra if we add complement and union as operations (Ladkin and Maddux,
1994).

4. An alternative method for a subset of Allen's interval algebra has been developed by Gerevini and Schubert
(1993).

5. As noted by Ladkin and Reinefeld (1993), this is a worst-case measure, because the interleaved path-consistency
computations reduce the branching factor considerably.

6. This number deviates from Ladkin and Reinefeld (1993) but has been confirmed by Peter van Beek in personal
communication.

7. This method could result in the assignment of a universal constraint to a selected link, thereby changing the
degree of the node. As suggested by one of the reviewers, it would have been better to select one atomic
relation with uniform distribution, to exclude one atomic relation from the remaining relations (in order to
avoid the universal relations) with uniform distribution and to pick from the 11 remaining atomic relation each
with probability (s - 2)/13. Since the probability of generating the universal constraint for a selected link is
small for all cases we consider, e.g., for s = 9 it is less than 0.003, we ignore this subtlety in the following.

8. See Nebel and Biirckert (1995) for a precise definition of logical form of a temporal constraint and for the
similarity between path-consistency and positive unit resolution.

9. Of course, other parameters could be such critical parameters as well.

References

1. Allen, J. E, & Koomen, J. A. (1983). Planning using a temporal world model. In Proceedings of the 8th
International Joint Conference on Artificial Intelligence (IJCAI-83), pages 741-747.

2. Allen, J. E (1983). Maintaining knowledge about temporal intervals. In Communications of the ACM
26(11):832-843.

3. Allen, J. E (1991). Temporal reasoning and planning. In J. E Allen, H. A. Kautz, R. N. Pelavin, and J. D.
Tenenberg, editors, Reasoning about Plans, pages 1-67, Morgan Kaufmann.

4. Benzer, S. (1959). On the topology of the genetic fine structure. In Proc. Nat. Acad. Sci. USA 45:1607-1620.

5. Cheeseman, P., Kanefsky, B., & Taylor, W. M. (1991). Where the really hard problems are. In Proceedings
of the 12th International Joint Conference on Artificial Intelligence (IJCAI-91), pages 331-337.

6. Feiner, S. K., Litman, D. J., McKeown, K. R., & Passonneau, R. J. (1993). Towards coordinated temporal
multimedia presentation. In M. Maybury, editor, Intelligent Multi Media. AAAI Press.

7. Gent, I. P., & Walsh, T. (1994). The hardest random SAT problems. In B. Nebel and L. Dreschler-Fischer,
editors, KI-94: Advances in Artificial Intelligence, pages 355-366, Springer-Vedag.

8. Gerevini, A., & Schubert, L. (1993). Efficient temporal reasoning through timegraphs. In Proceedings of
the 13th International Joint Conference on Artificial Intelligence (IJCAI-93), pages 648-654.

9. Golumbic, M. C., & Shamir, R. (1993). Complexity and algorithms for reasoning about time: A graph-
theoretic approach. In Journal of the Association for Computing Machinery 40(5):1128-1133.

10. Haralick, R. M., & Elliot, G. L. (1980). Increasing tree search efficiency for constraint satisfaction problems.
In Artificial Intelligence 14:263-313.

11. Isli, A., & Bennaceur, H. (1996). Networks of qualitative interval relations: Combining circuit consistency
and path consistency in the search for a solution. In Proceedings of Third International Workshop on Temporal
Representation and Reasoning.

12. Ladkin, P. B., & Maddux, R. (1994). On binary constraint problems. In Journal of the Association for
Computing Machinery 41 (3):435-469.

13. Ladkin, P. B., & Reinefeld, A. (1992). Effective solution of qualitative interval constraint problems. In
Artificial Intelligence 57(1):105-124.

190 B. NEBEL

14. Ladkin, E B., & Reinefeld, A. (1993). A symbolic approach to interval constraint problems. In J. Calmet
and J. A. Campbell, editors, Artificial Intelligence and Symbolic Mathematical Computing, volume 737 of
Lecture Notes in Computer Science, pages 65-84, Springer-Verlag.

15. Montanari, U. (1974). Networks of constraints: Fundamental properties and applications to picture process-
ing. In Information Science 7:95-132.

16. Nebel, B., & Biirckert, H-J. (1995). Reasoning about temporal relations: A maximal tractable subclass of
Alien's interval algebra. In Journal of the Association for Computing Machinery 42(1):43-66.

17. N6kel, K. (1991). Temporally Distributed Symptoms in Technical Diagnosis, Volume 517 of Lecture Notes
in Artificial Intelligence. Springer-Verlag.

18. Selman, B., Levesque, H. J., & Mitchell, D. (1992). A new method for solving hard satisfiability problems.
In Proceedings of the lOth National Conference of the American Association for Artificial Intelligence
(AAAI-92), pages 440--446.

19. Song, E, & Cohen, R. (1988). The interpretation of temporal relations in narrative. In Proceedings of the
7th National Conference of the American Association for Artificial Intelligence (AAAI-88), pages 745-750.

20. van Beck, P., & Cohen, R. (1990). Exact and approximate reasoning about temporal relations. In Computa-
tional Intelligence 6:132-144.

21. van Beck, P., & Manchak, D. W. (1996). The design and experimental analysis of algorithms for temporal
reasoning. In Journal of Artificial Intelligence Research 4:1-18.

22. Vilain, M. B., & Kautz, H. A. (1986). Constraint propagation algorithms for temporal reasoning. In Pro-
ceedings of the 5th National Conference of the American Association for Artificial Intelligence (AAA1-86),
pages 377-382.

