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Abstract. While the worst-case computational properties of Allen's calculus for qualitative temporal reasoning 
have been analyzed quite extensively, the determination of the empirical efficiency of algorithms for solving the 
consistency problem in this calculus has received only little research attention. In this paper, we will demonstrate 
that using the ORD-Horn class in Ladkin and Reinefeld's backtracking algorithm leads to performance improve- 
ments when deciding consistency of hard instances in Allen's calculus. For this purpose, we prove that Ladkin 
and Reinefeld's algorithm is complete when using the ORD-Horn class, we identify phase transition regions of 
the reasoning problem, and compare the improvements of ORD-Hom with other heuristic methods when applied 
to instances in the phase transition region. Finally, we give evidence that combining search methods orthogonally 
can dramatically improve the performance of the backtracking algorithm. 

Keywords: qualitative temporal reasoning, Alien's interval calculus, path-consistency, ORD-Horn class, phase 
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I.  Introduct ion 

Representation of  qualitative temporal information and reasoning with it is an integral 
part of  many artificial intelligence tasks, such as general planning (Allen, 1991; Allen 
and Koomen, 1983), presentation planning in a multi-media context (Feiner et al., 1993), 
natural language understanding (Song and Cohen, 1988), and diagnosis of  technical systems 
(N6kel, 1991). Allen's (1983) interval calculus is well suited for representing qualitative 
temporal relationships and reasoning with it. In fact, it is used in all the applications 
mentioned above. 

While the worst-case computational properties of  Allen's calculus and fragments of  it 
have been quite extensively analyzed (Golumbic and Shamir, 1993; Ladkin and Maddux, 
1994; Nebel and Btirckert, 1995; van Beck and Cohen, 1990; Vilain and Kautz, 1986), 
design and empirical evaluation of  reasoning algorithms for Alien's calculus has received 
much less research attention. In this paper, we address the latter problem and analyze in 
how far using the ORD-Horn subclass (Nebel and Biirckert, 1995) of  Allen's relations can 
improve the efficiency of  existing reasoning algorithms. As it turns out, the ORD-Horn 
class can significantly enhance the performance in search-intensive cases, l 

Since reasoning in the full calculus is NP-hard (Vilain and Kautz, 1986), it is necessary 
to employ some sort of  exhaustive search method if one wants complete reasoning in the 
full calculus. Allen (1983) proposed in his original paper to search through all possible 
"atomic" temporal constraint networks that result from instantiating disjunctive relations to 
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one disjunct and to test for consistency using the path-consistency algorithm (Montanari, 
1974) that is incomplete for the full calculus, but complete for atomic relations. 

A more efficient algorithm has been proposed by Ladkin and Reinefeld (1992). This 
algorithm uses path-consistency as a forward checking technique (Haralick and Elliot, 
1980) during the backtrack search, which results in pruning the search tree significantly. 2 
As pointed out by Ladkin and Reinefeld (1992), this algorithm allows the instantiation 
of disjunctive relations not only by atomic relations but by any set of relations the path- 
consistency method is complete for, which can considerably reduce the branching factor 
in the backtrack search. However, if non-atomic relations are used, it is not any longer 
obvious that the backtracking algorithm is a complete reasoning method. As we show in 
Section 3, however, Ladkin and Reinefeld's suggestion is indeed correct. 

Since the ORD-Horn subclass of the qualitative relations in Allen's calculus is the unique 
maximal set containing all atomic relations such that path-consistency is sufficient for 
consistency (Nebel and Btirckert, 1995), it would seem that employing this set in the 
backtracking algorithm is clearly advantageous over using other subclasses. However, 
the experiments that have been performed so far do not seem to justify this conjecture. 
Ladkin and Reinefeld (1992, 1993) concluded from the experiments they performed that 
"in practice one can expect the number of path-consistency computation almost constant," 
i.e., in practice there won't be much search. Van Beek and Manchak (1996), who further 
developed Ladkin and Reinefeld's backtracking algorithm, were able to generate problem 
instances that led to significant search. However, they did not observe that using the 
ORD-Horn subclass led to an performance improvement over using the smaller pointizable 
subclass (Ladkin and Maddux, 1994; van Beck and Cohen, 1990). 

It may be the case, however, that Ladkin and Reinefeld (1992, 1993) missed generating 
hard instances and that van Beek and Manchak (1996) did not look for the fight performance 
indicators. In Section 5, we identify the phase transition region (Cheeseman et al., 1991) 
for reasoning in Allen's calculus, which contains arbitrarily hard instances. We use these 
problems to evaluate the usage of the ORD-Horn class in Section 6 and demonstrate its 
advantage. Further, we demonstrate in Section 7 that combining the ORD-Horn subclass 
with other search strategies in an orthogonal way can dramatically improve the performance 
on van Beek and Manchak's (1996) hard problem instances. 

2. Allen's Calculus 

Allen's (1983) approach to reasoning about time is based on the notion of time intervals 
and binary relations on them. A time interval X is an ordered pair (X-,  X +) such that 
X -  < X +, where X -  and X + are interpreted as points on the real line. Given two concrete 
time intervals, their relative positions can be described by exactly one of the elements of the 
set A of thirteen atomic interval relations. Atomic relations are, for example, - ,  -<, >-, and 
d, meaning that the first interval equals, is before, is after, or is strictly inside the second 
interval, respectively. These interval relations can be defined in terms of their interval 
endpoint relations, e.g., XdY can be defined by X-  > Y- A X + < Y+ (see Table 1). 

In order to express indefinite information; unions of the atomic interval relations are used, 
which are written as sets of atomic relations. The formula X{--, d}Y means, e.g., that X 
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Table 1. The set A of  the thirteen a tomic relations. The endpoint  
relations X -  < X + and Y -  < Y+ that are valid for  all relations have 

been omitted. 

Basic  Interval Sym-  Pictorial Endpoint  
Relat ion bol  Example  Relat ions 

X before Y -< xxx X -  < Y - ,  X -  < Y+ 
Y after  X >- y y y  X + < Y - ,  X + < Y+ 

X meets Y m xxxx X -  < Y - ,  X -  < Y+ 
Y met-by  X m v y y y y  X + = Y - ,  X + < Y+ 

X overlaps Y o xxxx X -  < Y - ,  X -  < Y+ 
Y over lapped-by X o v y y y y  X + > Y - ,  X + < Y+ 

X dur ing  Y d xxx X -  > Y - ,  X -  < Y+ 
Y includes X cl ~ y y y y y y y  X + > Y - ,  X + < Y+ 

X starts Y S xxx X -  = Y - ,  X -  < Y+ 
Y star ted-by X s v y y y y y y y  X + > Y - ,  X + < Y+ 

X finishes Y I xxx X -  > Y - ,  X -  < Y+ 
Y f inished-by X I v y y y y y y y  X + > Y - ,  X + = Y+ 

X equals  Y ~- xxxx X -  = Y - ,  X -  < Y+ 
y y y y  X + > Y - ,  X + = y +  

equals Y or is inside Y. Since there are 13 atomic relations, there are 213 possible unions of 
atomic relations, which form the set of binary interval relations (denoted by r)--including 

the empty relation 0 and the universal relation A. The set of all binary interval relations 2 A 
is denoted by .4. On this set, we can define the operations intersection (r M r'), relational 
converse (r-) ,  and relational composition (r o r'): 

VX, Y: X r V Y  ~ YrX 
VX, Y: X ( r f 3 r ' ) Y  ~ X r Y A X r ' Y  
u X (r or') Y ~-~ 3Z: (XrZ  A Zr'Y).  

Together with these operations, .4 forms an algebra, 3 which is called Allen's interval alge- 
bra. 

A qualitative description of an interval configuration is usually given as a set of formulae 
of the above form, or, equivalently, as a temporal constraint graph with nodes as intervals 
and arcs labeled with interval relations--the constraints. Such a graph is often represented 
as a matrix M of size n x n for n intervals, where Mij E -4 is the constraint between the 
ith and j th interval. Usually it is assumed (without loss of generality) that Mii = {----} and 

Mji : Mij v .  
The fundamental reasoning problem in this framework is to decide whether a given 

qualitative description of an interval configuration is satisfiable, i.e., whether there exists 
an assignment of real numbers to all interval endpoints, such that all constraints in the 
corresponding constraint graph are satisfied. This problem, called ISAT, is fundamental 
because all other interesting reasoning problems polynomially reduce to it (Golumbic and 
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Shamir, 1993) and because it is one of the most important tasks in practical applications 
(van Beck and Manchak, 1996). 

The most often used method to determine satisfiability of a temporal constraint graph is 
thepath-consistency method, 4 which was already proposed by Allen (1983). Essentially, it 
consists of computing repeatedly 

Mij ~ M;j n (Mik o Mkj) (1) 

for all i, j ,  k of the n x n matrix M until no more changes occur. Obviously, the restriction 
on Mij in Eq. (1) does not remove any possible assignment, but only deletes atomic relations 
that are not satisfiable in any way. This method--if  implemented in a sophisticated way- -  
runs in O(n 3) time, where n is the number of intervals. In the following_a matrix that has 
been--reduced" in this way is called path-consistent and is denoted by M. 

If Mij = 13 for some i, j ,  then it follows obviously that M is not satisfiable. The converse 
implication is not valid, however, as Allen (1983) already demonstrated using an example 
attributed to H. Kautz. Since ISAT is NP-complete (Vilain and Kautz, 1986), it is very 
unlikely that any polynomial algorithm can solve ISAT. However, there exist subsets of 
.A such that ISAT is a polynomial problem if only relations from these subsets are used. 
These subsets are the continuous endpoint class C (Ladkin and Maddux, 1994; van Beek 
and Cohen, 1990), the pointizable class 7=' (Ladkin and Maddux, 1994; van Beek and 
Cohen, 1990), and the ORD-Horn class 7-[ (Nebel and Btirckert, 1995), which form a strict 
hierarchy, i.e., we have 

C C 7 9 c 7~. (2) 

Interestingly, these classes lead also to completeness of the path-consistency method. 

3. The Backtracking Algorithm 

If an application needs more expressiveness than is granted by the above mentioned sub- 
classes and if complete reasoning is required, then some sort of backtracking search is 
necessary. The backtracking algorithm given below, which has been proposed by Ladkin 
and Reinefeld (1992), appears to be the most efficient version of such an algorithm. 

1. Input: Matrix C representing a temporal constraint graph 

2. Result: true iff C is satisfiable 

3. function consistent(C) 
4. path-consistency(C) 
5. i fC contains empty relation 

6. then return false 
7 .  else 
8. choose an unprocessed label Cij and split Ciy 
9. into ri . . . . .  rk s.t. all rt E Split 

10. if no label can be split then return true 
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11. end/f 

12. for all labels rl (1 < l < k) do 

13. C i j  ~ - "  r l 

14. /fconsistent(C) then return true 

15. endif 

16. endfor 

17. return false 

18. endif 

19. endfunction 

A 
The procedure "path-consistency" transforms a matrix C to C. The set Split is a subset of 

.,4 such that path-consistency is complete for ISAT. The algorithm deviates slightly from the 
one published in Ladkin and Reinefeld (1992) in that it makes the choice of the constraint 
to be processed next nondeterministic, but is otherwise identical. 

When the algorithm is implemented, a number of design choices are necessary that can 
influence the practical efficiency considerably (van Beek and Machak, 1996). Some of 
these choices will be discussed in Section 6 below. The choice of what subset of .A to 
use for the set Split seems obvious, however, namely, the largest such set, which is the 
ORD-Horn class (Nebel and Biirckert, 1995). This subclass covers 10% of Allen's interval 
algebra (compared with 1% for C and 2% for 79), and for this reason the ORD-Horn class 
should reduce the branching factor in the backtrack search much more than any other class. 
While a larger subclass will potentially lead to an increase of the depth of the search tree (by 
detecting inconsistencies later), experience tells us that this is usually overcompensated by 
the reduction of the braching factor. In fact, previous experiments using the atomic relations, 
C and 79 as the Split set, confirmed that this is true for qualitative temporal reasoning as 
well (Ladkin and Reinefeld, 1993; van Beek and Manchak, 1996). 

Unfortunately, the reduction of the brachning factor is less dramatic than the figures above 
suggest. Based on the assumption that the interval relations are uniformly distributed, a 
straightforward computer-based analysis gives the following average branching factors: 5 A 
6.5, C 3.551, 79 2.955, 6 ~ 2.533. 

The main problem with the algorithm is, however, that it is not obvious that it is complete 
if Split differs from the set of atomic relations. In this case, it is possible that during the 
backtrack search a constraint Mij that has been restricted to a relation from the set Split is 
further constrained by the path-consistency procedure to a relation that is not in Split. Hence, 
it is not obvious that all constraints belong to the class Split for which path-consistency is 
complete when the recursive function terminates, which may lead to incompleteness. 

In order to show that the above backtracking algorithm is nevertheless complete, we need 
first some definitions. We write M < N iff Mij C Nij for all i, j .  Further we denote by 
M[i, j / r ]  the matrix that is identical to M except that M[i, j /r]ij  = r. The following 
lemma is straightforward (Montanari, 1974). 

A ~ A 

LEMMA 1 M <_ M, M = M, and if M < N then M <_ N. 
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Now let at denote the k-th choice of the backtracking algorithm, i.e. the choice of the pair 
(i, j )  and the selected relation rt. Then M[at] denotes the replacement of the constraint 
Mij by rl. Assuming that C denotes the original temporal constraint graph, we define the 
following sequences of matrices: 

C O = C (3) 

C t = Ct-~-~l[at] (4) 

S O = C (5) 

S t = S t - ! [a t ]  (6) 

In other words, C k corresponds to the matrix C after the kth choice in the backtracking 
algorithm and S t reflects the first k choices without having applied path-consistency. 

A A 

LEMMA 2 C k = S t, for  all k. 

Proof: <: We prove C t < S t by induction, from which C k < S k follows by Lemma 1. 
The hypothesis holds for Ak = 0 by definition. Assume that it holds for k. From that it 
follows by Lemma 1 that C t < S t and C t [ a t + l l <  St[at+l], since the k + lth choice is 
always a subset of the corresponding relation in C k. By applying the definition of C and S, 
we get C t+l < St+I,A asdesired. 

>: We prove C k > S t by induction. The hypothesis holds for k = O  by definition and 
Lemma 1. Assuming thatit  holds for k, it follows that Ct[at+l] > St[at+l!.L(*). Since 
S t > Sk[at+l], we have S k > sk[ak+l]. Let at+l be rl at (i, j ) .  Clearly, sk[ak+l]ij C rl. 

A 

Hence, also St[at+l] > St[at+l]. From that and (*) it follows that C t+! > S k+l, from 
which the the claim follows by applying Lemma 1 twice. �9 

In other words, if the recursive function terminates, the temporal constraint graph is 
equivalent to one which results from applying all choices (which select constraints from 
Split) and using path-consistency in the end. Since soundness is obvious and completeness 
follows from Lemma 2, the backtracking algorithm described above is indeed sound and 
complete. 

THEOREM 1 The backtracking algorithm is sound and complete i f  the set Split is a subclass 
o f  Allen's interval algebra such that the path-consistency algorithm is complete. 

4. Test Instances and Measurement Methods 

In order to test empirically the usefulness of employing the ORD-Horn class in the back- 
tracking algorithm, some set of test instances is necessary. Ideally, a set of "benchmark" 
instances that are representative of problem instances that appear in practice should be 
used. However, such a collection of large benchmark problems does not exist for qualita- 
tive temporal reasoning problems (van Beek and Manchak, 1996). Furthermore, all existing 
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examples, which could be used to construct "benchmark" instances, lead to the same be- 
havior of the backtracking algorithm regardless of whether we use the pointizable subclass 
or the ORD-Horn class. 

The DNA sequencing instance from molecular biology (Benzer, 1959) that has been 
suggested by van Beek and Manchak (1996) is unfortunately not adequate for our purposes 
because the structure of constraints leads to identical results for 7 ~ and ~ (van Beek and 
Manchak, 1996). Similarly, all examples from planning (Allen, 1991; Allen and Koomen, 
1983) use only relations from the continuous endpoint class plus the disjunctive relations 
{-<, m, m - ,  >-} and perhaps {4, >-}, which are handled identically under C, T', and 7-/. 

For these reasons, the only possibility to evaluate the usefulness of the ORD-Horn class 
is to randomly generate temporal constraint networks as in Ladkin and Reinefeld (1992), 
Ladkin and Reinefeld (1993), and van Beek and Manchak (1996). We use three models to 
generate constraint networks, denoted by A(n, d, s), H (n, d), and S(n, d, s). 

For A(n, d, s), random instances are generated as follows: 

A graph with n nodes and an average degree of d for each node is generated. This is 
accomplished by selecting nd/2 out of the n(n - 1)/2 possible edges using a uniform 
distribution. 

2. If there is no edge between the ith and j th node, we set Mij = M j i  = A. 

. Otherwise a non-null constraint is selected according to the parameter s, such that the 
average size of constraints for selected edges is s. This is accomplished by selecting one 
of the atomic relations with uniform distribution and out of the remaining 12 relations 
each one with probability (s - 1)/13. 7 

For H(n, d), the random instances are generated as in steps 1-2 above, but in step 3, 
we select a constraint from a particular set of 3006 probably very hard constraints with a 
uniform distribution. The conjecture that these constraints are hard is based on the fact 
that their translation to a logical form requires clauses with at least three literals and the 
observation that the path-consistency algorithm is similar to positive unit-resolution on 
the logical form. 8 As our experiments demonstrate, these constraints lead indeed to hard 
reasoning problems. 

Finally, for S(n, d, s), the random instances are generated as in A(n, d, s), but in a post- 
processing step the instances are made satisfiable by adding atomic relations that result from 
the description of a randomly generated scenario, i.e., these instances are always satisfiable. 
This model was proposed by van Beek and Manchak (1996), and they reported that a large 
fraction of instances generated by S(100, 25, 6.5) are very hard, sometimes requiring more 
than half a day of CPU time on a Sun 4/20. 

Using these random models, we analyze the effect of varying the parameters and evaluate 
the runtime efficiency of different implementations of the backtracking algorithm. As the 
performance indicator we use CPU time on a SparcStation 20. Although this indicator is 
more dependent on the particular implementation and platform than indicators such as the 
number of compositions performed or the number of search nodes explored, it gives a more 
realistic picture of the effect of applying different search techniques. 



182 B. NEBEI.. 

Probability o! sal~;fial~ity for label sJze 6.5 

Figure 1. Probability of satisfiability for A(n, d, 6.5) (500 instances per data point). 

5. Phase Transitions for Reasoning in Allen's Calculus 

Cheeseman et al (1991) conjectured: 

All NP-complete problems have at least one order parameter and the hard to solve 
problems are around a critical value of this order parameter. This critical value (a 
phase transition) separates one region from another, such as over-constrained and 
under-constrained regions of the problem space. 

Instances in the phase transition are obviously particularly well suited for testing algorithms 
on search intensive instances. 

Ladkin and Reinefeld (1993) observed that reasoning in Allen's calculus has a phase 
transition in the range 6 < c x n < 15 for c > 0.5, where c is the ratio of non-universal 
constraints to all possible constraints and n is the number of intervals. This phase transition 
is, however, not independent of the instance size, and for this reason does not allow the 
generation of arbitrarily hard instances. 

Our conjecture was that the average degree of the constraint graph is one critical order 
parameter that can lead to a size-independent phase-transition. 9 In order to test this hypothe- 
sis, we fixed s = 6.5 and generated for varying size n and degree d 500 instances each using 
the A method. As Figure 1 demonstrates, our conjecture holds indeed for A(n, d, 6.5). 

The probability that the instance is satisfiable drops from 1 to 0 around d = 9.5. As 
expected, the typical instances around the phase transition are hard, meaning that the median 
value of CPU time has a peak in the phase transition region, as shown in Figure 2 (the solid 
line marks the phase transition). Further, the mean value has a peak there as well, as also 
shown in Figure 2. 

For other values of the average label size s, we get qualitatively similar results, as Figure 3 
shows for s = 7.0. The general picture that emerged from varying s from 5.0 to 8.0 was 
that with larger values of s the phase transition region moves to higher values of d and the 
runtime requirements grow. 

These results on phase transitions provide us with test cases On which we can evaluate 
different backtracking methods. However, the predictive value of the results is, of course, 
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Figure 2. CPU time for A(n, d, 6.5) (500 instances per data point). 
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Figure 3. Probability of satisfiability and median CPU time for A (n, d, 7.0). 

limited. The average label size together with the average degree gives indications of whether 
instances may be hard or easy to solve. However, the particular distribution of constraints 
is much more important than the average label size. If we use, for instance, a uniform 
distribution over the ORD-Horn relations--which results in an average label size of  6 .83- -  
no runtime peak is observable in the phase transition region. Using the "hard relations" 
from H(n,  d)--resulting in an average label size of 6 .97--one would expect significant 
more search and perhaps a move of the phase transition compared with A(n, d, 7.0). This 
expectation is confirmed by our experiments, as shown in Figure 4. 

6. Using the ORD-Horn Class 

Comparing the backtracking algorithm for Split = H and Split = 7 a in the phase transition 
region shows that the ORD-Horn class provides a significant performance enhancement in 
some cases (Figure 5). 

This means that contrary to previous observations, it can pay off for search intensive cases 
to use the ORD-Horn subclass instead of the pointizable subclass. The difference between 
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Figure 4. Probability of satisfiability and median CPU time for H(n, d) (500 instances per data point). 
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Figure 5. Comparison between T' and 7-{ for A(n, 9.5, 6.5) and H(n, 11.5) (500 instances per data point). 

A(n, 9.5, 6.5) and H(n, 11.5) is probably explainable by the fact that the distribution of 
labels in the two different random models lead to a reduction of the branching factor of 
15.3% in the former case and 9.3% in the latter case when going from the pointizable to 
the ORD-Horn class. 

One question might be, however, where the performance enhancements came from. As 
Figure 6 shows, the median CPU time value is almost identical for using 7-[ and 7:' and the 
main differences appear for the very hard instances. For this reason, the main value of using 
the ORD-Horn subclass seems to be that it reduces the runtime of extreme cases. 

The results described above were achieved by using all techniques described in van Beek 
and Manchak (1996) and varying only the set Split. So the question arises how changing 
the set Split in our backtracking algorithm compares to other design decisions. We varied 
the following design decisions in order to answer this question: 

ORD-Horn/pointizable: The subclass used for the set Split. 
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Figure 6. Comparison by percentiles (500 instances per data point). 
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Figure 7. Using ORD-Horn and other design choices (500 instances per data point). 

static/dynamic: Constraints are processed according to a heuristic evaluation of their con- 
strainedness which is determined statically before the backtracking starts or dynamically 
during the search. 

loeal/globah The evaluation of the constrainedness is based on a local heuristic weight 
criterion or on a global heuristic criterion (van Beek and Manchak, 1996). 

queue/no queue: The path-consistency procedure uses a weighted queue scheme for the 
constraints to be processed next (van Beek and Manchak, 1996) or the scheme described 
in Ladkin and Reinefeld (1992), which uses no queue. 

As it turns out, the improvement of using 7-/ instead of 79 is small compared with the 
improvements achievable by other means (Figure 7). 

The two lower curves in the graphs shown in Figure 7 correspond to the curves in Figures 5. 
The results show that node ordering and the heuristic evaluation of constrainedness can have 
a much more significant effect on the efficiency than the choice of the tractable subset used 
for the set Split in the algorithm. 
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Figure 8. 50% and 99% percentile of CPU time on S(n, d, 6.5) (500 instances per data point). 

7. The Power of Orthogonally Combined Strategies 

Van Beek and Manchak (1996) used S(n, d, 6.5)-instances for evaluating different strate- 
gies. They noted that in particular S(100, 25, 6.5) leads to a large fraction of extraordinarily 
hard instances. Interestingly, the median value of the CPU time does not vary much when 
varying the average degree. However, around d = 25 very hard instances occur that for 
n = 60 are several orders of magnitude harder to solve than the typical instances (see 
Figure 8), a phenomenon similar to what Gent and Walsh have also observed for kSAT in 
the satisfiable region (Gent and Walsh, 1994). 

When comparing ORD-Horn with the pointizable subclass on S(100, 25, 6.5), van Beek 
and Manchak did not observe any significant performance difference, which our experiments 
confirmed. When running the backtracking algorithm on 500 instances with a time limit of 
20 sec and varying the Split set and the strategy for selecting the constraints in the search, 
the number of solved instances as well as the runtime was almost the same for ORD-Horn 
and the pointizable set. The results of this experiment are displayed in Figure 9, in which 
the percentage of solved instances is plotted against the maximal CPU time necessary to 
solve one instance. 

However, it is, of course, not evident that the same instances are solved by all methods. 
As a matter of fact, it turns out that by using different search methods, different instances 
get solved. 

Based on this observation, we ran 16 different search strategies resulting from combining 
the four possible candidates A, C, 7 ~, 7-/for the split-set Split, with dynamic and static 
constraint ordering and local and global evaluation of the constrainedness. Using all of the 
16 methods on 500 generated instances with a time limit of 20 CPU sec on each method 
resulted in 98.6% solved instances, while the application of just one method using ORD- 
Horn, static ordering and global evaluation with a time limit of 1800 CPU sec solved only 
85%. 

In Figure 10, the results of this experiment are displayed, plotting the percentage of solved 
instances against the maximal CPU time necessary to solve one instance. The line for the 
combined strategies results from multiplying the minimum CPU time to solve a particular 



SOLVING HARD QUALITATIVE TEMPORAL REASONING PROBLEMS 187 

100 
time limit . . . .  

ORD-Hom, static, global 
ORD-Hom, dynamic, global 

po/cltizable, static, global 
pointizable, dynamic, global 

. . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . .  = - - - r r  . . . . . . . . . . . . . . . . .  

10 i ~  

10 20 30 40 50 60 70 80 90 100 
Percentage of instances 

Figure 9. Runtime performance on S(100, 25, 6.5) (500 instances overall). 
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Figure 10. The effect of combining strategies orthogonaUy (500 instances overall). 

instance by one method with 16, which would be the actual costs if all methods were applied 
in parallel. 

One should note that the combination of different search strategies is completely orthog- 
onal and does not require any communication, which makes it very well suited for parallel 
implementations. 

While this experiment demonstrates that combining different heuristic search strategies 
in parallel can be superior to applying a single strategy, it does not show that using the 
ORD-Horn subclass has significantly contributed to this result. In fact, when applying only 
the methods that do not use the ORD-Horn subclass, we still can solve 98% of the instances 
in a time limit of  20 CPU sec per method and instance. However, when classifying the 
solved instances according to the method that gave the fastest response, it turns out that the 
methods using the ORD-Horn subclass as the Split  set outperforms the other methods. As 
shown in Table 2, in almost 40% of the cases the ORD-Horn methods solved the instances 
first. 
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Table 2. Percentage of instances 
solved first by a particular set of meth- 
ods. 

Percentage of 
Methods first response 

ORD-Horn relations 39.2% 
pointizable relations 22.4% 
continuous relations 18.6% 
atomic relations 18.4% 

8. Conclusions and Outlook 

We showed that using the ORD-Horn subclass in the backtracking algorithm proposed 
by Ladkin and Reinefeld (1992) leads to a complete reasoning algorithm and has--as  
conjectured in Nebel and Biirckert (1995)--the effect of enhancing search efficiency. On 
instances in the phase transition, which we have identified in this paper, the ORD-Horn 
subclass leads to an additional performance enhancement over the already highly optimized 
version (van Beek and Manchak (1996) of Ladkin and Reinefeld's (1992) backtracking 
algorithm. For the hard satisfiable problems described in van Beek and Manchak (1996), the 
benefit of using the ORD-Horn class is not directly observable. However, when combining it 
orthogonally with other search strategies one notes that by using ORD-Horn some instances 
become solvable which are not solvable otherwise. Further, the ORD-Horn methods are 
also effective in solving a large percentage fast. 

An interesting question is, whether the orthogonal combination of search strategies as 
described above can also lead to a better performance in the phase transition region. Another 
interesting question is, whether local search methods similar to GSAT (Selman etal . ,  1992) 
can be applied to temporal reasoning. A direct application of GSAT, however, does not 
seem to be promising because translations from Allen's calculus to propositional logic lead 
to a cubic blowup (Nebel and Btirckert, 1995). 
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Notes 

1. The C-programs that were used for the evaluation are available by anonymous ftp from ftp.informatik.uni- 
freiburg.de as /pub/documents/papers/ki/allen-csp-solving.programs.tar.gz. 
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2. A weaker, but more efficient forward-checking technique, called circuit-consistency has been proposed by Isli 
and Bennaceur (1996). This leads to the exploration of more search nodes, but each forward-check is faster. 

3. Note that we obtain a relation algebra if we add complement and union as operations (Ladkin and Maddux, 
1994). 

4. An alternative method for a subset of Allen's interval algebra has been developed by Gerevini and Schubert 
(1993). 

5. As noted by Ladkin and Reinefeld (1993), this is a worst-case measure, because the interleaved path-consistency 
computations reduce the branching factor considerably. 

6. This number deviates from Ladkin and Reinefeld (1993) but has been confirmed by Peter van Beek in personal 
communication. 

7. This method could result in the assignment of a universal constraint to a selected link, thereby changing the 
degree of the node. As suggested by one of the reviewers, it would have been better to select one atomic 
relation with uniform distribution, to exclude one atomic relation from the remaining relations (in order to 
avoid the universal relations) with uniform distribution and to pick from the 11 remaining atomic relation each 
with probability (s - 2)/13. Since the probability of generating the universal constraint for a selected link is 
small for all cases we consider, e.g., for s = 9 it is less than 0.003, we ignore this subtlety in the following. 

8. See Nebel and Biirckert (1995) for a precise definition of logical form of a temporal constraint and for the 
similarity between path-consistency and positive unit resolution. 

9. Of course, other parameters could be such critical parameters as well. 
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