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A L I M I T  F O R M  O F  T H E  E Q U A T I O N S  F O R  I M M I S C I B L E  
D I S P L A C E M E N T  I N  A F R A C T U R E D  R E S E R V O I R  

JIM DOUGLAS, JR. ,  1 PAULO JORGE PAES-LEME, 2 AND JEFFREY L. HENSLEY 3 

Abstract. We study a model for simulating the flow of an immiscible displacement (water- 
flooding) of one incompressible fluid by another in a naturally fractured petroleum reservoir 
when the matrix blocks are quite small. This model is equivalent to a transformed one for im- 
miscible flow in an unfractured reservoir with a reduced saturation and a saturation-dependent 
porosity. Existence and uniqueness of classical solutions are established. We present some 
numerical results and a comparison with a single porosity model. 

Key words. Immiscible displacement, fractured reservoir, single porosity model. 

1. I n t r o d u c t i o n .  Na tu ra l ly  f rac tured  reservoirs are formed by stress forces t h a t  occur  in 
slow deformat ions  of the  ea r th ' s  crust ,  w i th  f ractures  f requent ly  appea r ing  in a reasonably  
regular  pa t t e rn .  T h o u g h  the  void volume in the  f ractures  is smal l  in compar i son  to  t h a t  
in the  m a t r i x  blocks of the  sed imen ta ry  format ion,  the  very h igh  permeab i l i ty  associated 
wi th  the  f rac tures  requires t h a t  flow in f rac tured  reservoirs be  model led so as to  take the  
dua l  s t r u c t u r e  in to  account .  Several  models ,  each appropr i a t e  u n d e r  different a s sumpt ions  
on  the  geomet ry  of the  f ractures  have been  developed; see the  survey art icle  [6] for a 
descr ip t ion  of a collection of models  on  two-sheeted coverings of the  domain  (reservoir).  
Here,  we consider  the  case when  the  dimensions  of the  m a t r i x  blocks are  very small.  In  this  
s i tua t ion ,  we can  neglect  the  viscous a n d  gravi ty  forces in  t he  flow in ter ior  to  the  m a t r i x  
blocks; therefore,  we assume t h a t  the  only forces t h a t  act  on the  blocks are the  capil lary 
forces and  t h a t  these  forces are in equi l ibr ium across the  surface be tween  a block and  the  
su r round ing  fractures.  T he  model  proposed in this  paper  is o b t a i n e d  as a l imit  when  the  
size of the  m a t r i x  blocks tends  to zero in the  two-sheeted models  s tud ied  in [3], [4], [6], 
a n d  [7]. T h e  l imi t ing  process here  is based on  physical  considerat ions;  the  jus t i f ica t ion 
for the  resu l t ing  mode l  is ob ta ined  t h r ough  the  convergence of the  recovery curves  for the  
m e d i u m  and  smal l  block models  of [6], [7], and  [4] to  t h a t  compu ted  for the  l imit  model  
of th is  paper .  I t  should  be  noted,  in par t icular ,  t h a t  the  l imit  model  is no t  der ivable  by 
some type  of homogeniza t ion  or  averaging p rocedure  beginning  f rom the  m e d i u m  or small  
b lock models .  T h e  differential  equat ions  for the  l imi t ing model  can  be  t r ans fo rmed  to be  
equivalent  to  those  for a n  un f rac tu red  reservoir,  except  t h a t  a reduced  s a t u r a t i o n  mus t  be  
in t roduced  to account  for the  addi t ion  of a nonl inear  capac i tance  term. 

This  p a p e r  is organized in the  following way. In  w we in t roduce  the  l imit  model  and  
de t e rmine  some of i ts  propert ies .  We prove existence and  uniqueness  of classical solutions 
in w uniqueness  is proved in R 3 and  existence in R 2. (Exis tence  in R 3 for a weak solut ion 
has  qui te  recent ly  been  proved by  Arbogas t  [2]; thus ,  we have  made  no effort to find a 
second proof  for the  existence of a weak solut ion in this  case.) Then ,  w is devoted  to the  
p re sen t a t i on  of some numer ica l  s imulat ions;  these  calculat ions are in t ended  to provide the  
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justification of the model mentioned above and to illustrate some parametric dependencies 
of the model. An abbreviated derivation of the global pressure formulation of the equations 
describing incompressible, immiscible flow in an ordinary reservoir is given in w Finally, 
a nomenclature is given in w 

2. T h e  M o d e l .  We begin with the medium block model of [6], [7], and [8] that  is 
based on three families of parallel, equispaced, planar fractures. This model, which can be 
derived from a microscopic description of ordinary two-phase, incompressible, immiscible 
flow in a porous medium, is formulated on a two-sheeted covering of the physical reservoir, 
with the fracture sheet ~ coinciding with the reservoir. Over each point x E f~ a matrix 
block f 4  is at tached to the fracture sheet; these blocks are topologically distinct from each 
other. In general, these blocks have a rhomboidal shape. 

Following [6] and [8], the flow in the fracture system is governed by the following set of 
part ial  differential equations: 

r OS~Ot - Vx .  [ ~ ( V , P w r r r r -  + p,~gV, z)] = Q,,,,r + Q 

r OSOOt - v ~ .  [ ~ o ~ ~  (V~Po + pogV~z)] = Qo,, + Q 

S~ + So = 1, 

Po - Pw = Pc(SO), 

x E ~2, t > 0, (2.1) 

x E ft, t > 0, (2.2) 

where Q~o,, and Qo,, are the volumetric external flow rates (at wells in practice) of the 
water and oil phases, respectively. The terms Qw,m and Qo,m describe the volumetric 
flow rates of the water and oil phases resulting from flow out of the matr ix blocks into 
the fractures. As in [4], we prefer to use a global pressure formulation [1], [9], [5] of the 
equations, which we derive below. 

Let 
S = So = 1 - Sw. (2.3) 

Define the total  mobility to be 

A(S) = Kro(S) F Kr,~(S.___)) (2.4) 
#o #w 

and the phase mobilities to be 

A~(S)- K~o(S) (2.5) #0A(S) '  0 = o,w. 

Define the global pressure to be 

P :  �89 + + f0 (Ao- (2.6) 
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the global density to be 
p~(S) = Ao(S)po + Aw(S)p~,  (2.7) 

and the total  fluid velocity to be 

U = - K A ( V ~ P  + pfgV~z) .  (2.8) 

It is shown in w (and in [5], [9]) that (2.1)-(2.8) lead to the global pressure equation 

V ~ .  U = Q, = Q,o,r + Qo,~ (2.9) 

- -  o Q  e and, assuming that  Qo,e A + -Aomax(O,  Qe), a saturation equation 

ot + A'oU. v ~ s  - v ~  . ( K A A o A ~ P ' V ~ S )  - V ~ .  ( K A A o A ~ ( p o  - p ~ ) g V ~ z )  

= - A o Q  + + Q . . . .  (2.10) 

The initial saturation S(x ,  0) and boundary conditions must be specified. For simplicity, 
assume that no flow of either phase occurs across the external boundary 0~. It follows 
that  

u . t , o ~  = 0. (2.11) 

An additional boundary condition will be specified below in (2.33). 
Denote the coordinates on the matrix block ~2~ by (x, y, t), where y is the local spatial 

coordinate on the block. The flow on f ~  is described by the following differential equations: 

u = -kA(V~p + pmgVyz) ,  y 6 ~2z, t > 0, (2.12) 

V y - u = 0 ,  y 6 ~2~,t > 0, (2.13) 

and 

r  + ~,o~. V~s - v ~ .  ( k ~ o ~ p ' ~ V ~ s )  - v ~ .  (k~o~w(po - p~ )g%z)  = 0, (2.14) 
Ot 

where 

s = so ---- 1 - s~, (2.15) 

~ ( s ) -  kro(~) ~ krw(s___~) (2.16) 
tto #w 

kre(s) 0 = o,w,  (2.17) ;~o(s) = , e~( s ) '  

; o  - p~ = ;c(~o), (2.:s) 

1 ~0 p~ P = 5{Po q- Pw -4- (/~o -- ,Xw)(pcl(~))d~}, (2.19) 

pm(S) = ;~o(s)po + ~w(s)pw. (2.20) 
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The initial saturat ion in each matrix block is assumed to be consistent with capillary 
equilibrium between the fractures and the block; that  is, 

s (x ,y ,0)  = (p~-~ o Po)(S(x,0)),  x e ~ , y  e n , .  (2.21) 

At the boundary of the blocks, the oil saturations satisfy the relation 

$(x, y, t) = pcm(Pc(S(x, t))) = (pc 1 o Pc)(S(x, t)), x E Q, y E 0 ~ , ,  t > 0, 

and 

(2.22) 

It has been shown in [8] that  gravity can be neglected in the blocks for small blocks. 
The small block model described in [6] results from ignoring exactly these gravitational 
effects, with a consequent simplification in the differential system on the blocks. When the 
gravity term in (2.12) is omitted, (2.13) reduces to a homogeneous elliptic equation for p 
on Q,; since the boundary values given by (2.23) for p are constant for any fixed t, 

p(x, y, t) = P(x, t), y e ~ .  (2.24) 

Then, it follows that  
u(x, Y, t) = 0, Y Z n~. (2.25) 

Thus, pressure differences are neglected inside each matrix block, and the only relevant 
mechanism on a block is the effect of the capillary forces. The equations (2.12)-(2.14) 
governing the flow in the matrix blocks are then reduced to the single equation 

c o s _  
0t Vv.  (k~o~w#~ = 0, (2.26) 

subject to the boundary condition (2.22). The fracture equations (2.8)-(2.10) are coupled 
to (2.26) via the term 

1 
Jo k~)%~dq ,  x E ~,  t > 0. (2.27) Qo,m(x,t) = 1~1 n, 

Using Green's identity and conservation of mass in the oil phase, equation (2.27) can be 
rewritten as 

1 ~ Os 
Qo,m(x,t)- la~l r ~ a x ,  t > o .  (2.2s) 

x 

This model should be applicable for a small, but not necessarily vanishingly small, block. 
The object now is to find a limit form for the model as the blocks tend to zero size; 

that  is, as diam(Q~) --+ O, uniformly for all x E ~.  We assume that  the void space 
remains distributed in a fixed way; i.e., the porosities r of the matrix blocks and e2 of the 

p(x,y , t )= P(x,t), x E ~,y  E O ~ , t  >_ O. (2.23) 
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fractures are independent of the limit process. Similarly, assume that  the relative and total 
permeabilities in the fractures remain fixed, as well as the capillary pressure relations in 
both the fractures and the matrix blocks. The relaxation time for the saturation equation 
(2.12) in each of these small blocks will be much smaller than that  for the fractures; this 
is a statement of physical fact, though it can be verified in a semimathematical fashion 
by computing the first eigenvalue in a separation of variables solution for the differential 
systems that  would result from setting the coefficients in (2.8)-(2.10) and (2.12)-(2.14) to 
their average values and noticing the very large difference in the expected extents of the 
fracture domain and a typical matrix block. As a consequence, we can assume that  the 
delay in response in the saturation of a block can be ignored, and the solution of (2.25), 
(2.21) can be approximated very well by the relation 

(2.29) 

note that  this is the statement of the physical reality that  the time scale in the blocks is 
sufficiently faster than that  in the fractures that  equilibrium is reached in a block in a time 
increment that  is less than an increment of physical interest in the fractures. Under this 
hypothesis, it follows that  

Qo,m(x , t )  ~ - r  o Pc(S(x , t ) ) ] ,  x E ~ .  (2.30) 

Substitution of the limit for Qo,m(x, t) into (2.10) gives the modified saturation equation 

O [ r  + r o Pc(S)] + A'oU. V , S  - V , .  ( K A A o A ~ P ' V , S )  

- V , .  ( K A A o A w ( p o  - p ~ ) g V ,  z) = - A o Q  +. 
(2.31) 

The limit model is given by the pressure and saturation equations (i.e., by the system 
(2.8), (2.9) and (2.31)), subject to an initial condition 

S ( x , O ) = S ~  (2.32) 

and the (typical) boundary conditions (2.11) and 

K A A o A ~ [ P ' V ~ S  + (po - p~)gV~z]  . yon = O. (2.33) 

Equation (2.33) results from differencing weighted multiples of the Darey velocities for 
oil and water and requiring the flow across 0g / to  vanish for this combination. 

While this model was derived from models that impose restrictions of local periodicity on 
the families of fractures defining the blocks, the limit itself can be given a very reasonable 
interpretation under the sole constraint that  the blocks, of whatever shape, have small 
diameter. The absolute permeability tensor in the fractures can be derived from the 
micropermeability properties of the fractures and the blocks and the geometry of the 
fracture families in the periodic case (see [3], [6]); it would have to be determined entirely 
experimentally in the general case. 
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3. Ex i s t ence ,  Uniqueness and Regularity. In this section we assume that there exists 
a small positive constant e such that 

m i n K . o ,  m inKr~ ,  _> e > O, 

~ a =  IP'I < 1/~. 

This is not an inherent property of the model, but it will permit us to look at a nonde- 
generate mathematical problem. These conditions hold if the saturation remains in an 
interval bounded away from the residual saturations for both phases. 

Set 

r = ':I>S + r o Pc)(S), 0 < S < 1. (3.1) 

Rewrite the pressure equation (2.8)-(2.9) in the form 

where 

- V ~ -  (TV=P + 6V=z) = Q, ,  

7 = 7(x, S) = KA, 

5 = 6(x, S)  = K A p f g .  

The boundary condition becomes 

(7V=P + *V=z) �9 vn = 0, 

The saturation equation (2.31) becomes 

where 

(3.2) 

x E On. (3.3) 

~--~,( S) - V= . [o~V=S +/3U + (] = Q .... (3.4) 

ce = ce(x, S) = K A A o A ~ P ' ,  

/3= / 3 ( S ) = - A o ( S ) ,  

C = C(x, S) = KAAoAw(po  - pw)gV=z; 

the boundary condition becomes 

(~V=S+C)- ~' = 0, x E On. (3.5) 

Now, consider semi-classical solutions in the sense defined by Kru~kov and SukorjanskiY 
[9]; (., .) denotes the inner product in L2(n). This definition is applicable for either two- 
dimensional or three-dimensional domains n and is equivalent to the one given in [9]. 
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DEFINITION. A pair of functions {P(x , t ) , S ( x , t ) } ,  bounded and measurable in gl x J, 
J = [0, T], is called a semi-classicM solution of the problem (3.2)-(3.5) if  

i) P and S axe Lipschitz-continuous in ~ • J; 

ii) ('yV~P +SV~z ,  Vxq) = (Qe,q), q �9 H l ( ~ ) , t  �9 J;  

iii) (O~(S) ,v )  + ( a V ~ S + / ~ U +  ( , V ~ v )  = (Qo , (S) ,v) ,  v �9 g l ( ~ / ) ,  t �9 J. 
Ot 

Note tha t  Q~ = Qe(x, t) is given and it does not  depend on the solution, whereas Qo,e 
does. 

Let us consider uniqueness; the theorem below is valid for ~ a bounded domain  in either 
R 2 or  R 3. 

THEOREM 1. There exists at most one semi-classical solution of the problem (3.2)-(3.5) 
satisfying a given initial condition (2.32). 

PROOF: Let {P1, $1 } and {P2, $2} be solutions for the same da ta  S~ and Q~(x, t). Set 

I I = P 1 - P 2  and E = S 1 - S 2 .  

Then,  from ii) in the definition above, 

('~lVzI~, Vzq) -~- ((61 - ~2)Vxz, Vxq) -~- (('~1 - "~2)VxP2, V~q) = 0, q �9 H I ( ~ ) .  

Note  that ,  since A is a continuously differentiable function of S, there exists b �9 L~176  • J )  
such tha t  

(71 - "~2)VxP2 '~ (61 - ~2)VxZ -~- - b ( x ,  t)~~,. 

Thus,  
( ~ l v ~ n , v ~ q )  = (bs,  V~q), q �9 H x. (3.6) 

A useful equat ion for the difference in sa tura t ions  will require more effort. Firs t ,  

( O ~ ( S I )  O~(__~2),v~+(OLlVx~.~,+~I(UI_U2)+(~I_r 
Ot Ot J 

+ ((3/1 --  ( :x2)VzS2 -[- (]~1 - ]~2)V2,Vx v) = (Qo,e(S1) - Qo,e(S2),v) 

Note tha t  there  exist functions c, d, and e in L~176  x J )  such tha t  

(0~1 - o/2)VzS2 +/~I(U1 - [72) -~ (/~1 -/~2)U2 + (~1 - (2) = --c(X,t)~ -- d ( x , t ) v , n ,  

Qo,~(S1) - Qo,~(S2) = e(x, t )E.  

Thus,  

(O~(_S1) a~o(__S2), v~ 
Ot Oz ' , + ( a l V , S , V , v ) = ( c S + d V , I I ,  V z v ) + ( c S ,  v), v e i l  1. (3.7) 
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Now, we wish to choose q = H and v = P~. The first term in (3.7) can be handled by use 
of a transformation due to Dupont and Wheeler [10], w Let R : R ~ -+ 1~ be defined by 

f0 ~ a~  
R(S, ~) = -~-~(S -#)#dp. 

Note first that  

s R(S,~)dx= ~ 9~o ~ ~s(S-~)#d#dx> ~ ~tmin21--~2dx >__ ~tmin]]~'H2. 

Ne~t, co~ider ~ s R(&, Si - & ) ~ :  

d ~ .R(S1,S1- S2)dx -- ~ So'(S2)~t ~dx + ~ /oP" So"(Sl - bt)-~l.tdl.tdx 
far , 0S1 [~o (&)--~ ' o&l = - ~o  (&)-g/-j P,d= 

+ fa [~o'($2)- ~,'(S:t)] ~-.~--P.dx+ ~ ~o'~O"(S,-i.t)-~.-i.td#dx. 
Hence, 

Thus, 

d 
0~0~2).] Edx = -~ ~ R(S1,E)dx + ~ [~o'(S1)- ~o'($2)] ~-~Edx 

P" O& 

s f R(S1)Y])dx -}- (O~lVx~"~,, Vx~) 

= ( ~  + d v . n , v ~ )  + (~ ,~ )  + / . / o  ~ r  

1 2 < M~IIzII~ + M2IIV~Hllo 2 + ~.,~dlv~Zllo. 

Since it follows from (3.6) that 

IIv~nllo < M~llZlh 

then 
d r ,  1 
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The inequality fn R(S1, F~)dx > 1 , 2 _ ~Ominll~]l 0 and a Gronwall argument show that 

I1~,(0110 + II~llL=(0,,;.l) + IlnllL=(0,,;. ') --< M(011~'(0)ll0 -- 0, 

and uniqueness of the semi-classical solution has been established. 
A trivial modification in the argument above gives continuous dependence on the data 

for semi-classical solutions. With ~ and II the differences defined above, it follows that 

[I~IIL=(J;L=(n)) + II~,llL=(j;m(n)) + IlIIIIL=(J;m(m) 

< M(T)[H S~ - S~ + I IQ , , , -  Qu,,IIL=(J;,=(,))J. (3.8) 

The existence and regularity of the solution of the system given by (2.8), (2.9), and 
(2.31) will be demonstrated only in the case of a two-dimensional domain; see [2] for a 
proof of the existence of a particular type of weak solution in the three-dimensional case. 
Here, l e t  u s  assume that the function ~ of (3.1) is smooth (i.e., ~ E C2([0,1]), at least). 
Since qa' >_ ~, q~ is invertible. Let 

C = ~(S), (3.9) 

so that (3.4) can be rewritten as 

OC 
O--~ - V , -  (&V,C + 13U + ~) = - s  +, (3.10) 

where 

c~ = ~(=, c )  = ~(=, s ) / , ' ( s ) ,  

# = # ( c )  = #(s) ,  

= ~(=, c )  = r s), 

hi = h~(=, c )  = h~(=, s); 

if either of the porosities is spatially dependent, then the functions 5 and ~ will have slightly 
more complicated dependencies on x than indicated above, but for porosities bounded away 
from zero the form of (3.10) will remain the same. 

Equations (2.8) and (2.9) can be written analogously in terms of C in place of S: 

U = - ~ / V , P  - SV=z, (3.11) 

V=. U = Q~, (3.12) 

where 

= ~(=, c )  = ~(=, s),  

$ = $(=, c )  = ~(=, s). 
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The resulting system is of exactly the same form as that for a standard, unfractured 
immiscible displacement, except that C belongs to a different, still compact, interval. If 
initial values 

C(x, 0) = C~ x e a ,  (3.13) 

and the boundary conditions 

U.v=-(5VxC+~).v=0, xc0n, (3.14) 

are imposed, then the existence and regularity results of Kru~kov and Sukorjanski~ [9] can 
be applied directly to show that (3.10)-(3.14) has a unique classical solution for smooth, 
consistent data. 

Finally, invert C to find a function S that is a classical solution of the original problem. 
Since it is clearly a semi~:lassical solution as well, it is the unique solution. 

4 .  Some N u m e r i c a l  E x p e r i m e n t s .  While a recovery curve, the plot of the volume 
of the oil produced versus the volume of the water injected, gives only a gross indication 
of the flow of fluids within a reservoir, it is sufficient to illustrate important features of 
flows in naturally fractured reservoirs. Consider a rectangular reservoir f~ with height 10 
meters and length 300 meters. For computational simplicity, assume that the reservoir 
is uniform in the other direction, so that the fracture simulation can be considered to be 
two-dimensional, though the matrix simulation remains three-dimensional for each block 
~ .  

Let the capillary pressure functions be assumed in the forms 

P r  = (1 - S){7(S -1 - 1) + 8}, 

p~(,)  = ~ ( { ,o  - ,  + Z}~ - / ~ } ) ( ,  - ,,~)-, 
so = l - s~o, f l  s ~ )  -2, 

(4.1a) 

(4.~b) 

and let the relative permeabilities be taken in the forms 

~:~o( S) = ~ - s ,  t ( ~ (  s )  = s ,  

k ~ o ( ~ )  = ~ 0 ~ ( ~ o  - ~)~,  k ~ ( ~ )  = (~ - ~ r ~ ) ~ ( 1  - ~ ) - ~ .  

(4.2a) 
(4.2b) 
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Let the base case be described by the following data: 

Fluid Properties: 

Viscosity #w = .5 cP  

Density Pw = 1 g / c m  3 

Po = 2 cP 

Po = .7 g / c m  3 

Absolute Permeabilities: K = I  darcy k = 0.05 darcy 

Porosities: r = .01 r = .2 

Residual Saturations (matrix): 

Capillary Pressure Parameters: 

Sro = .15 

7 = 20,000 d y n e s / c m  2 

8 = 100 d y n e s / c m  2 

a = 1,500 d y n e s / c m  2 

Srw = .2 

The residual saturations in the fractures are zero. Assume that the reservoir contains 
76% oil and 24% water initiMly, in capillary equilibrium. For the base case, assume that 
the angle of inclination t9 of the reservoir is zero. The water injection rate is .2pv/yr,  
with uniform injection along the left edge and production at the upper right comer. The 
numerical experiments reported below used a finite difference method that has been de- 
scribed in [6]. Tests run earlier [6], [7] showed that a 40x10 grid suffices to give accurate 
recovery curves. A variable time step was used, beginning with one day and ending with 
twenty days. 

Other tests reported in [8] indicated quite clearly that the solution of both the medium 
and small block models produced recovery curves that converged to the corresponding 
recovery curve associated with the limit model of this paper. It was seen in [8] that, as the 
block size tends to zero, the recovery curves for the medium block model are very close to 
those of the limit model for block sizes below 50 cm and become almost indistinguishable 
from that for the limit model at about 10 cm. The recovery curves for the small block model 
fall in between the corresponding curves for the medium block model and the curve for 
the limit model. These convergences are the validations of the limit model, for the object 
of the model is to produce a mathematical model of greater computational simplicity than 
either the medium or small block models while retaining adequate engineering accuracy 
for very small block size. The conclusions of some of the experimental results in [8] differ 
from those reported earlier in [6] and [7]; there was a data representation error in the 
earlier calculations. 

Figure 1 indicates that a higher absolute permeability in the fractures leads to earlier 
and greater water production, a conclusion that appears to be correct physically, as it is 
easier for water to bypass the matrix blocks. Similarly, increasing the capillary pressure 
function in the fractures slows oil production, as it should; see Figure 2. Correspondingly, 
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increasing the capillary pressure function in the matrix blocks slows the production of 
water and improves oil recovery; see Figures 3 and 4. 

Figure 5 shows the physically reasonable behavior that  oil recovery is slowed by increas- 
ing oil viscosity. If the reservoir is inclined by an angle 0 (0 > 0 indicating that  the 
production corner is above the injection side of the reservoir), oil recovery is improved, the 
more so for more viscous oil. See Figures 6 and 7. 

Additional experiments indicated a greater sensitivity to the matrix porosity when the 
fracture porosity was .001 than when it was .01, with more rapid oil recovery (again for 
w- in jec ted  vs. w-recovered)  for a higher matrix porosity. 

5. G l o b a l  P r e s s u r e  F o r m u l a t i o n .  The derivation of the global pressure formulation of 
(2.1) and (2.2) is outlined here. See also [1], [9], [5]. It follows easily from (2.6) that  

V , P  = AoV=Po + A~V,Pw. 

With U being given by (2.8), the pressure equation (2.9) is immediate upon addition of 
(2.1) and (2.2). 

In order to obtain (2.10), first note that  

V~Po = V=P + A,,,V~P,, 
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as Ao + A~ = 1. Then, 

KAAoV~Po = -Ao(U + K A g p I V ~ z  ) + KAAoA,~V~Pc; 

(2.10) follows by substitution of this relation into (2.2) and using the assumption that 

Oo,c = - A o Q  +.  

6. N o m e n c l a t u r e .  

0 - p h a s e  = o (oil)  or w ( wa t er )  

/~0 - viscosity of phase 0 

- fracture porosity 

K - absolute permeability in the fractures 

Kr0 - relative permeability of phase 0 in the fractures 

Po - pressure of phase 0 in the fractures 

Pc - capillary pressure in the fractures (= Po - Pw) 

So - saturation of phase 0 in the fractures 

r - matrix porosity 

k - absolute permeability in the matrix 

kro - relative permeability of phase 0 in the matrix 

Po - pressure of phase 0 in the matrix 

pc - capillary pressure in the matrix (= Po - Pw) 

so - saturation of phase 0 in the matrix 
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