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Abstract. A robust test set for analog circuits has to detect faults under maximal masking effects due to variations 
of circuit parameters in their tolerance box. In this paper we propose an optimization based multifrequency test 
generation method for detecting parametric faults in linear analog circuits. Given a set of performances and a 
frequency range, our approach selects the test frequencies that maximize the observability on a circuit performance 
of a parameter deviation under the worst masking effects of normal variations of the other parameters. Experimental 
results are provided and validated by HSpice simulations to illustrate the proposed approach. 
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1. Introduction 

Analog testing is a difficult and expensive task. The 
difficulty stems from the fact that, unlike in digital cir- 
cuits, the physical quantities of analog circuits vary 
over time in a continuous range. This implies a con- 
tinuum of possible defects. In consequence, there is a 
lack of adequate fault models, since the output values 
of analog circuits can not be considered as either tiigh 
or low levels as in the digital world where a large class 
of defects can be modeled by stuck-at-0/lfaults. Ana- 
log circuits are traditionally tested by verifying their 
function, which is known to be costly. Indeed, the esti- 
mated cost of analog testing may represent 30% of the 

total manufacturing cost [1]. To minimize the test time 
and thus the cost of production testing of analog cir- 
cuits, test generation techniques based on fault-models 
are required. 

In general, faults in analog circuits can be classified 
into hard and parametric faults. Hard faults are caused 
by catastrophic variations in parameter values such 
shorts and opens, and usually induce a complete loss of 
correct functionality. Parametric faults are caused by 
an abnormal deviation of parameter values and result 
in altered performance. Both types of faults have to 
be detected by a test set. Milor et al. [2] reported on 
a test generation algorithm for detecting catastrophic 
faults under normal parameter variations. In [3, 4] 
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an approach based on a statistical process fluctuation 
model was derived to select a subset of circuit spec- 
ifications that detect parametric faults and minimize 
the production testing time. Test generation is formu- 
lated in [5] as a quadratic programming problem. This 
approach was developed for parametric faults and it 
determines an input stimulus x(t) that maximizes the 
quadratic difference of responses from the good and the 
faulty circuits with other parameters at their nominal 
values. A test generation approach for hard and para- 
metric faults based on sensitivity analysis and tolerance 
computation was exposed in [6]. In this approach the 
worst case performance was expressed in terms of sen- 
sitivity and parameter tolerance. However, frequency 
analysis was not considered and the model was a lin- 
earization obtained from first order partial derivatives. 

The method presented in [7] is founded on a fault- 
model and sensitivity. For a given fault-list, perturba- 
tion of sensitivity with respect to frequency is used to 
find the direction toward the best test frequency. In [8] 
the authors derived a multifrequency test generation 
technique based upon testability analysis and a fault 
observability concept. The test frequencies selected 
are those where the output performance sensitivity is 
maximum with respect to faulty component deviation. 
In the above approaches [7-8] the masking effects due 
to variations of the fault-free components in their toler- 
ance box are not considered and the test frequencies 
may be not optimal. A DC test generation technique 
for catastrophic faults was developed in [9]. This tech- 
nique is fault-based and test generation is formulated 
as an optimization problem including the effects of pa- 
rameter variations. 

Any robust test set has to detect parametric and hard 
faults under maximal masking effects due to normal 
variations of parameters~ Indeed, only in this case the 
quality of a test set may be correctly measured and 
guaranteed. In this paper we propose a novel test gener- 
ation approach for detecting hard and parametric faults 
in linear analog circuits. This method is based on mul- 
tifrequency testing which is, in general, more suited 
for subtle parameter variations than DC testing. As in 
[9], the test generation is formulated as an optimiza- 
tion problem taking into account the maximal masking 
effects due to normal parameter variations. In general, 
the resulting optimization problem is highly non-linear 
and is solved iteratively. 

The paper is organized as follows: 
In the next section, the proposed approach is out- 

lined. A precise problem formulation is elaborated 

in Section 3. The test generation algorithm is pre- 
sented in Section 4. Experimental results are reported 
in Section 5. Conclusions and a description of our 
future work appear in Section 6. 

2. The Proposed Approach 

2.1. Objectives 

The purpose of our work is to generate the smallest 
set of robust tests that maximize the observability on 
a circuit performance of a parameter deviation under 
the worst masking effects of normal variations of the 
other parameters. This means that for each parameter 
we determine a) its smallest absolute possible devia- 
tion outside which its detectability can be guaranteed 
under any variation of the other parameters within their 
tolerances, and b) the frequency of the input signal (the 
test) which guarantees this detection. 

A circuit is declared faulty if a test of the test set 
produces a performance outside its acceptance range. 
In this case, the parameter deviation associated with 
the fault is said to be observable. We consider single 
parametric faults here. 

2.2. Problem Analysis 

The number of tests depends on the input space, the 
output space (test points) and the performance space. 
First, we have to select these spaces. In this paper, 
the input space consists of an extended range of oper- 
ating frequencies. Multifrequency testing is more ap- 
propriate for parametric faults than DC testing which 
is more suitable for hard faults. For instance, an AC 
test is needed to detect a variation in a capacitance 
value. The output space may be obtained by parti- 
tioning a circuit into functional blocks. Each block 
output can be considered as a possible test point. A 
performance space has to be selected depending on 
the selected input space. We thus assume that a set 
of performances such as gain, Q-factor, phase, cut-off 
frequency, etc., a set of test points and a frequency 
range are given. The goal of minimizing testing time 
may be viewed as minimizing the number of perfor- 
mances, the number of test points where these perfor- 
mances should be measured, and the number of fre- 
quencies at which they should be observed. This goal 
can be reached if we are able to answer the following 
questions. (1) How can we select a performance to be 
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measured? (2) How can we choose a test point where 
this measurement should be performed? (3) Finally, 
what frequency should be selected for the best obser- 
vation? Assuming that the answers to the first two 
questions are given, we address here the third ques- 
tion. 

Let Tk(f ,  xl  . . . . .  Xm), k = 1 . . . . .  n, be a given set 
of n performances of the circuit under test, where 
X = [xlx2.. .  Xm] r is the vector of parameters of the 
circuit. Let T represents one of these n performances 
and Tmax(f) and Tmin(f) are the extreme values of 
T under the normal parameter variations that deter- 
mine the acceptance range of T at frequency f .  We 
emphasize that each component (i.e., parameter) of 
a circuit should be covered by at least one perfor- 
mance. The question now is: how can we decide if 
a performance T may be selected or not as a test per- 
formance? It is obvious that some performances are 
more sensitive to variations of a parameter than oth- 
ers. Those performances that are the most sensitive 
to parameter variations should be selected as test per- 
formances. More precisely, a performance may be se- 
lected as a test performance if it detects the smallest 
absolute minimum observable deviation of at least one 
parameter xi (i = 1 . . . . .  m) of a circuit at some fre- 
quency f .  

3. Problem Formulat ion  

Let T ( f ,  X )  = T ( f ,  X 1 , . . . .  X m )  , be a performance to 
observe, function of frequency f in [fmin, fm~x], X = 
[x lx2""Xm]  r the vector of parameters of the cir- 
cuit, and Xn = [ x l n x 2 , . . . x m , ]  T the nominal value 
of X. Let the normal tolerance of a parameter xi 
be the interval [xil, xiu], i = 1 . . . . .  m, and the total 
possible range of values xi can be from the interval 
[Xil, Xiu] such that x__it < Xu and 2i~ >__ Xiu. Let Xt = 
[XltX2l.. .  Xmt] r and X, = [XluX2u'" Xmu] r,  henceun- 
der normal circumstances X/ < X < X,, and XI < X~ 

Xu. 

3.1. Valid Range Determination 

Let Train(f, X) and Tm,x(f, X) be the extreme values of 
T at frequency f under the variation of X c [Xt, Xu]. 
These extreme values can be obtained as the solution 
of the following optimization problems. 

For a given frequency f ,  

Tm~(f)  = max Tk(f, X) subject to X~ _< X < X.  
x 

and 

Train(f) = m~n Tk(f, X) subject to Xt < X < Xu 

The envelope delimited by Tmax ( f )  and Tmin ( f )  con- 
stitutes the acceptance range of T. 

3.2. Absolute Minimum Observable 

Parameter Variation 

Without loss of generality, let Xm be the parameter 
whose changes we wish to observe at performance 
T. Let Xm_min(f) ~ [Xml,Xml] (resp., Xm_max(f) E 
[Xmu,Xmu]) be the smallest (resp., largest) value 
of Xm such that T ( f )  is outside of the interval 
[Tr~n (f) ,  Trnax(f)] for allxm in [Xmz, Xm_min(f)] (resp., 
for all X m in [Xm_max(f), -~mu]. 

Graphically, we can visualize the various intervals 
of values of Xm as shown in Fig. 1. 

Given some frequency f ,  the objective is to deter- 
mine the values Xm_min(f) (resp., Xm_max(f)) regard- 
less the values of the other xi, i ~ m, within their 
respective normal intervals. As a result, this gives us a 
limit on the deviation Of Xm outside its normal tolerance 
box, such that if Xm is smaller than Xm_min(f) (larger 
than Xm_ max ( f ) ) ,  then this (faulty) deviation is guaran- 
teed to be detected at f (i.e., T would be outside the 
range [Train(f), Tmax(f)]) independently of the other 
parameter values within their normal variations. Fur- 
thermore, we wish to find the frequency under which 
we can detect the largest value x m*_max of Xm_min(f) 
(resp., the smallest value X*_min of Xm_~ax(f)), i.e., 

-Xml Xm-min 0r Xral Xmu Xm_max ~ Xmu 

I I I ,I I I I 
�9 . - ,r '  ~ '  ~ r  ' . ~ v m ? l  % ~r t .  . 

T ts not T may or tolera'nce T may or T is not 
valid may not box o f  x m may not valid 

be valid be valia 

Fig,. 1. Total possible range of a parameter x m under normal variations 
ofxi, i r  
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the frequency which makes a faulty deviation of Xm 
most observable. This problem can be formulated as 
a max-min (resp., min-max) optimization problem as 
follows: 

Let Xm be the parameter vector Xm = [ x l x2 . . .  
Xm_l] T, and let ~ be the resolution of the test equip- 
ment with respect to T, 

Then 

subject to 

Xm_ma x : max min(xm) 
f Xm 

Train(f) -- a < T ( f ,  X )  < Tmax(f) + 3 

Xil < x i ~ Xiu i = 1, . . . , m -  1 

Xml <Xm <_xmz and f~n < f  <fmax 

and 

Xm_nfi n ~- min max(xm) 
f xm 

subject to 

Train(f) -- a < T(f ,  X) _< Tmax(f) + a 

xiz < xi < Xiu i = 1 . . . . .  m - - 1  

Xmu ~ Xm "< f~mu 

f m i n < f < f m a x  

In general, these are complex non-linear optimiza- 
tion problems. We discretize the frequency in the inter- 
val of interest [fmin, fmax] into a set {f  j} of p frequen- 
cies and solve the min (resp., max) problem at each f j ,  
using the Sequential Quadratic Programming (SQP) 
method from the optimization toolbox of MATLAB 
[10]. The principal idea behind SQP is to transform 
the problem into a series of QP sub-problems which 
are solved at each iteration. This method presents bet- 
ter performance (in terms of efficiency, accuracy and 
percentage of successful solutions) than every other 
method tested [117o Although the SQP represents 
one of the best non-linear programming methods, T 
is needed to be one-dimensionally convex [12, 13] in 
order to guarantee that the global optimum is always 
found. However, if it is not the case, doing the opti- 
mization a number of times, each from different starting 
point may help to obtain the global optimum. When 
maximizing Xm, for example, the global maximum can 
be easily located if we start the optimization from points 
corresponding to a large value ofx~,. Some other tech- 
niques (as scaling by variable transformation, using 

analytic partial derivatives instead of a finite difference 
approximation, etc.) are also useful for locating the 
optimum. 

For each f j  we thus obtain the ranges [Tmin(fi), 
rmax(f/)] ,  [Xm_n~n(fj), Xm_max(f])], i = 1 . . . . .  m, 
and we must select a subset of frequencies from {fi} 
that provide the best detection of a faulty deviation for 
each xi. 

4. Test Generation Algorithm 

A simplified form of the algorithm is shown in Fig. 2. 
The algorithm is given a set of performances { Tk } and 
a set of frequencies { f  i}. In the first step, it finds 
the extreme values Tk . . . .  ( f j )  and Tk_min(fj) of per- 
formance Tk(k = 1 . . . . .  n) at each f j .  Then, each 
parameter value xi (i = 1 . . . . .  m) is optimized at each 
frequency f j .  From the set of maximal (resp., minimal) 
values Xi_max(fj) (resp., Xi_min(fj)), the minimum 
(resp., maximum) observable value x*_mfin(k ), i.e., 
X*_min(k) = minfj (Xi_max(f])), (resp., X*_max(k ), 
i.e., Xi*max(k ) = maxfj (Xi_min(f]))) of Yi, is ex- 
tracted with the corresponding frequency f/+ (k) 6 { f j  } 
(resp.,f/-(k) 6 {fj}) and the performance Tk. Fi- 
nally, from the set of x[_min(k) (resp., Xi*max(k)), the 
smallest minimum (resp., the largest maximum) ob- 
servable value x/s, i.e., x/s = mink mint ) maxx~ (xi), 
(resp., x/~, i.e., x/c = maxk maxfj minx/(xi)) is se- 
lected. At the same time, the corresponding perfor- 
mances Tk and the test frequencies of x/s and x~ are 
selected as (Tip, t f,. +) and (Tiq, t f i - ) ,  respectively. As a 
result, if d + and d/- are the smallest (resp., largest) rel- 
ative observable positive (resp., negative) deviations, 
i.e., d + = x~;,~xi, (resp., d/- = x~Txi'~ ), each param- 

eter xi is characterized by two triplets (d[-, t f i  +, Tip) 
and (d F, tfi-,  Tiq), and for the whole circuit D = 
{(d +, t f i  +, Tip), (d~, t f i - ,  Tip) l i = 1 . . . . .  m} defines 
a test set for all xi. We can easily extract the set of test 
frequencies from D, while the additional information 
contained there identifies which xi is tested at which 
Tk and frequency. 

The obtained test set guarantees to detect any de- 
viation of parameter xi larger (resp., smaller) than the 
computed smallest minimum (resp., largest maximum) 
observable relative deviation d + (resp., d/-). On the 
other hand, the number of the observed performances 
and the test frequencies may be not minimal. There 
are always some trade-offs possible between the test 
quality and the testing time. This is, however, outside 
of the scope of this paper. 
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Begin 

get{T~ I k =  1 . . . . .  n}and{ . t )  ] J = l  . . . . .  p} 
F o r k =  1 , . . . , n d o  

For all f j  E {.f) } do 

Tk . . . .  (.f)) = mxaxrk(.f), X) 

Tk_min(f j)  = n~xnTk(.f ), Xl 

End 
For i = 1 . . . .  , m do 

For all f j  e {.l) } do 
Xi . . . .  (,f j )  = maxxi 

Xi 

Xi_ rnin (.f j)  = minx\ 
Xi 

End 

x['. min(k) = minx\ . . . .  ( f  j )  
- f j  " 

J}+(k) = f j  /*/./) is such that X*_min(k) = x i . . . .  (.f j )  \ * \  
Y*_ max (k) = l l}~ci_  rain ( f  j )  

.f)- (k) = f j  /*/.]') is such that X*_max(k) = Xi_min (.f j )  \ * \  
End; 

End for k; 
D = O  
For i = 1 . . . . .  m do 

x[ = n~nxi*_min(k) /*/xi s = rain min max (xi) \*\  
k ;j x~ 

Tip = Tk /*/k is such that x s = X*_min(k ) \ * \  

t.f} + = .f)+ (k) /* /k  is such that x s = X*_min (k) \ * \  
x/a = m  * ~xxi . . . .  (k) /*/ x/c = m a x  max m i n ( x i ) \ * \  

k r xi 
Tiq = Tk /*/ k is such that x~ -- * - x i  . . . .  (k) \ . \  
t f)- = ./}-(k) / * /k  is such that xff = x/*_max(k ) \ * \  

d,+ - + 2 2  "oo 

d[ -- (x~-xi.)mo (%) 
xin 

D = D U {(d +,  tfi +, T/p), (d/-, t t )- ,  T/q)} 
End for m; 
Extract test frequencies and build fault dictionary from D 

End of algorithm. 

Fig. 2. Simplified algorithm. 

5. Experimental Results the magnitude T of the circuit transfer function: 

5.1. An Illustrative Example 

To illustrate the above technique consider the low-pass 
filter shown in Fig. 3. The performance of interest is C 

,X/V~ 
R1 

m 

oVout 

Fig. 3. Low-pass filter. 

T = Vout = R 2  1 

Vin R1 ~/1 q- R2C2c0 2 

The nominal design (R1 = 1.6 k, R2 = 16 k, C = 
10 nF) has the dc gain of 20 dB, with the - 3  dB point 
at 1 kHz. Figure 4 shows the computed results of the 
extreme values of T under normal variations of R1, R2, 
and C in their tolerance intervals: RI = [ 1.52, 1.68]k~2 
R2 = [15.2, 16.8]kf2 and C = [9.5, 10.5]nE 

Figures 5, 6, and 7 show the computed maxi- 
mum (minimum) values Xi_max( f j  ) (resp., Xi_roin(f]) ) 
o f  R1 ,  R2  and C observable at T, as functions of 
frequency. Table 1 shows the computed and sim- 
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Table 1. Computed and simulated results. 

P PV 

S.O.RD/ 
L.O.N.D 

(%) 
TF Tmax Tmin 

(Hz) at TF at TF S.F.G Error 

R1 R~_mi n = 1.858 k 16.2 
R2 = I6.8 k, C = 9.5 nF 

R~_rnax = 1 .374k -14 .1  
R2 = 15.2 k, C = i0.5 nF 

R2 R~_mi n = 18.585 k 16.2 
R1 = l . 6 8 k ,  C = 1 0 . 5 n F  

R~_rnax = 13.737 k -14.1 
R1 = 1.52k, C = 9.5 nF 

C C'in = 11.739 nF 17.4 
R1 = 1.52k, R 2 = 1 6 . 8 k  
Cma x -- 8.499 nF -15  
R l = l . 6 8 k ,  R 2 = 1 5 . 2 k  

60 11.052 9.047 9.038 -0.009 

40 11,052 9.047 11.063 0.011 

1 11.052 9.047 11.063 0.011 

1 11.052 9.047 9.038 -0.009 

6 k 1.812 1.483 1.473 -0.01 

8 k 1.367 1.119 1.378 0.011 

30 

-~ 1 0  

~--10 

n o m i n a l  a n d  e x t r e m e  va lues  of per formance  T 

20-  :I:: -'~'-+'-+':;- + --~'-- :1: ~-p r  

- - 2 0  

-3 '~  0 ~  101 10  2 10  3 I O n 10 5 
F(Hz)( Iog ' )  

Fig. 4~ Extreme values Tmax, Train of pass-low filter gain. 

ulated results. Indeed, the column "PV" (param- 
eter vector) gives the minimum (resp., maximum) 
observable value x,.* rain (resp., Xi*max) of a faulty 
parameter (R1, R2, or C), and the values of the 
other parameters which produce the maximum mask- 
ing of the faulty parameter observed at T. The 
smallest (resp., largest) observable positive (nega- 
tive) parameter deviations are indicated in the col- 
umn "S.O.RD/L.O.N.D". To validate these results, 
an HSpice simulation was performed and each com- 
puted PV was simulated. Column "SFG" indicates 
the simulated value of the faulty gain produced by 
the parameter vector "PV" observed at the test fre- 
quency "TF". The column "Error" shows that the 

magnitude of the errors between the simulated faulty 
gain and the envelope (Train, Tm~x) are very close to 
the tester resolution which is 0.01 V. The set of tests 
for the low-pass filter is: TV = { t Hz, 40 Hz, 60 Hz, 
6 kHz, 8 kHz}. This set detects faulty circuit with R1 
outside ]1.37, 1.86[kf2, R2 outside ]13.74, 18.59[kf2 
or C outside ]8.5, 11.74[nF. From Table 1 we can 
see that any faulty deviation outside the range ] -15 ,  
17.41% of any parameter is detected by the test TV. 
As a result TV achieves a fault coverage of 100% 
for deviation faults outside this range. In the range 
] -- 15, --14.11%tA]16.2, 17.41% only faults in R1 and 
R2 are detected by TV and the corresponding fault cov- 
erage is 66.6%. On the other hand, faults in the range 
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Fig. 5. O b s e r v a b l e  m i n i m u m  ( m a x i m u m )  d e v i a t i o n  o f  p a r a m e t e r  R1.  

x 10 ~ 
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E 2 . 4  
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~11.4 
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o b s e r v a b l e  m a x i m u m  (min imum)  va lues  of  R2 
. . . . . . . .  = . . . . . . . .  , 

/ 
/# 

I 
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. ,  , , , , , f | , !  
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F(Hz)  ( log} 

O b s e r v a b l e  m i n i m u m  ( m a x i m u m )  d e v i a t i o n  o f  p a r a m e t e r  R2.  

103 

] -14 .1 ,  - 5 [  tO ]5, 16.21% are not guaranteed to be 
detected by TVo 

5.2, A Realistic Application 

As a realistic application for our test generation 
method consider the biquadratic filter shown in Fig. 8. 
The performances (output responses) of interest are 
the magnitudes V3 and V5 of the transfer func- 
tions at nodes 3 and 5, given by the following 

equations: 

1 ~ =  O) 

R3R5~77C2C 4 092 "{- 2 2 R 1C 2 

v5 - 

1 1 

R3R6C2C4/I/'V I~ Rs )2 ~~ 2 
1~3Rs~7qC, 092 + I~C~ 
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1_6 x 10 -s 

1.4 

- q -  

~ 1 . 2  

r  I 

r  

0 . 6  

0'102 

Fig. 7. 

observable maximum (minimum) values of C 

- 1 " 4 "  § 4 r  4 -  4 - +  4 -  4 -  + "4" 

/ 
i i i i l l  i i i | i i = l ,  

103 104 
F(Hz) (log) 

Observable minimum (maximum) deviation of parameter C. 

10 5 

R5 

V5 

Fig. 8. Biquadratic filter. 

The frequency interval of interest is [1 Hz, 20 kHz]. 
The smallest (largest) observable positive (negative) 
deviation of a parameter xi depends on the transfer 
function, the tolerance intervals of the parameters, the 
resolution of the test equipment, the test frequency and 
other factors. In our case, the parameter tolerances 
and the tester resolution are assumed to be -4-5% and 
0.01 V, respectively. The results of the application of 
our method to the circuit are shown in Table 2. The 
third and the fourth columns give the smallest posi- 
tive deviation "S.O.ED" and the largest negative de- 
viation "L.O.N.D" observed at the outputs V5 and V3 
respectively at the test frequency Fr (Hz). For each 
parameter the final selected test frequency TF and the 
corresponding test performance are indicated in the last 
column. 

The results of Table 2 were validated in a simi- 
lar manner as those in the previous example. In- 
deed, the parameter vector consisting of the minimum 
(resp., maximum) observable values Xi*min(k) (resp., 

xi*_max (k)) of a faulty parameter xi, and the values of the 
other parameters which produce the maximum mask- 
ing of the fault is injected in the model of the circuit 
and then simulated. The error between the simulated 
faulty performance and the envelope (Tk~nax, Tk_min) 
of the acceptance range is compared with the tester 
resolution. Simulations of all computed parameter 
vectors corresponding to the circuit parameters were 
performed, and the magnitude of the errors between 
the obtained performances and the normal envelopes 
were very close to the tester resolution. For illus- 
tration, some of the simulation results are shown in 
Figs. 9 and 10. We can see that the envelope of the 
acceptance range is the region delimited by g5_max (f) 
and Vs_min(f). The regions where the performance 
is observed at the selected test frequency are magni- 
fied to show the magnitude of the errors which are 
very close to 0.01 V (the tester resolution value), con- 
firming the correctness of the results obtained by our 
method. 

The set of tests, extracted from Table 2, is: 

S = {8.64 k, 10.3 k, 10.38 k, 11.68 k, 20 k}v, 

U{1Hz, 9.6 k, 11.04 k, 11.52 k}v, 

S detects any fault deviation outside the following 
ranges (in%): C2 ~ ]-33.05,  34.93[, C4 ~ ]-30.3,  
45.3[, R6 ~ ]-17.42,  27.4[ R1 ~ ] -23.3 ,  24.9[, R3 

]-31.2,  45.7[, R7 ~ ]-30.5,  42.9[ R8 r ]-30.2,  
43.5[, R5 ~ ]-30.5,  42.9[. The fault coverage thus 
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Table 2. Computed results. 

Nominal 
Parameter value 

RI 10k 

C2 1.59 nF 

R3 10 k 

C4 1.59 nF 

R5 10 k 

R6 10k 

R7 10 k 

R8 10 k 

Output V5 Output V3 
Final test 

S.O.RD/ S.O.RD/ frequency 
L.O.N.D Fr (Hz) L.O.N.D Fr (Hz) TF (Hz) 

43 l0 k 24.9 10.3 k 10.3 k (V3) 
-31 .6  9.6k -23 .3  10.38 k I0.38 k (V3) 

66.2 20 k 34.93 20 k 20 k (V3) 
- 5 9  9.3 k -33.05 20 k 20 k (V3) 

45.7 9.6 k 92.4 4.02 k 9.6 k (V5) 
-31 .2  11.52 k -45 .2  4 k  11.52 k (V5) 

45.3 9.6 k 92.1 4.1 k 9.6 k (V5) 
-30 .3  11.04 k - 4 5  4 k  l l . 0 4 k  (V5) 

42.9 1 92.1 4 k 1 (V5) 
-30 .5  1 -45 .2  4 k 1 (V5) 

40.4 8.140 k 27.4 11.68 k 11.680 k(V3) 
-29.1 1 -17.42 8.64 k 8.640 k(V3) 

42.9 1 92.1 4 k  1 (V5) 
-30 .5  1 -45 .2  4 k 1 (V5) 

43.5 1 82.2 4 k 1 (V5) 
30.2 1 - 4 8  4 k 1 (V5) 

reaches 100% for any fault deviation outside the range 
]-33.05, 45.7[% of any parameter. On other hand, in 
the range ]27.4, 45.7[% only faulty deviations of R1 
and R6 are guaranteed to be detected. As a result, the 
guaranteed fault coverage is only 25% which is poor. 
Consequently, for improving the fault coverage the ef- 
fect of the parameters R3, C4, Rs, C2, RT, R8 should 
be observed at more sensitive performances. Further- 
more, for selective filters, positive deviations of the pa- 
rameter R1 become undetectable under other parameter 
variations. Even if we also observe the signal phase, 
only very large deviations of R1 can be detected. A 
general solution to such a problem of undetectability 
is the subject of on-going research. As mentioned ear- 
lier in Section 2 and illustrated here by this example, 
an appropriate selection of performance and test point 
spaces combined with an adequate selection of test fre- 
quencies are the key to a complete solution for the test 
generation problem. 

It is important to note that the size of the test set S 
may be greatly reduced by using "fault dropping". For 
example the faulty deviations of the parameter R3 (see 
Fig. 11 which is described below) can be detected at 
frequency 20 kHz which is already associated with the 
parameter C2. As a result, the frequencies 9.6 kHz and 
11.52 kHz associated with R3 can be eliminated. Sim- 
ilarly, one of the frequencies 10.3 kHz or 10.380 kHz 

can be dropped without any effect on the detectabil- 
ity of the faulty deviations of R1 (see Fig. 13). Ob- 
viously, "fault dropping" may also reduce the fault 
coverage since the limits S.O.RD and L.O.N.D may 
be altered with the reduced test set. So, by care- 
fully selection of the final test we can overcome this 
problem. 

5.3. Test Set Validation 

In order to validate the test set generated by our ap- 
proach, we propose a fault simulation method based 
on faulty parameter deviations under the effects pro- 
duced by fault-free parameter variations. Only sin- 
gle fault is considered at a time. The fault is injected 
by changing each parameter by -50%,  the computed 
largest observable negative deviation, the computed 
smallest observable positive deviation, +50%, + 100% 
and +1000%. Catastrophic faults (opens and shorts) 
are also considered. 

The validation process consists of generating a fam- 
ily of curves of the good output responses (perfor- 
mances) at the observed point under random normal 
variations of the parameters, and another family of 
curves for the output responses under the faulty pa- 
rameter and the other random normal variations of 
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Fig.  9. Faulty response V5Ft observed under the smallest observable positive deviation (S.O.P.D) of 
Ra, compared to the envelope of the normal range (V5-min, V5-max). 
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Fig. 10. F a u l t y  r e s p o n s e  V 5 F t  o b s e r v e d  u n d e r  the  l a rges t  o b s e r v a b l e  n e g a t i v e  dev ia t ion  ( L . O . N . D )  o f  

R8,  c o m p a r e d  to the  e n v e l o p e  o f  the  n o r m a l  r a n g e  ( V 5 - m i n ,  V 5 - m a x ) .  

the fault-free parameters. The normal and the faulty 
families are compared to see if they are disjoint for at 
least one frequency from the test set for the injected 
fault. 

The parameter variations are generated randomly. 
The distribution function associated with each param- 
eter is assumed to be uniform and 100 iterations are 

performed in each HSpice simulation. Due to the 
large number of simulated curves, we show only some 
of them (samples of simulated faults for parameters 
R3, R8 and R1 are given in Figs. 11, 12 and 13, 
respectively). The simulation results show that all 
injected faults are detected by the test set, as pre- 
dicted. 
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Fig. 11. Faulty and good response families under faulty R3 and the other parameters varied randomly. 
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Fig. 12. Faulty and good response families under faulty Rs and the other parameters varied randomly. 
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Fig. 13, Faulty and good response families under faulty RI and the other parameters varied randomly. 
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6. Conclusions 

In this paper, we proposed a novel multifrequency 
test generation for detecting parametric and catas- 
trophic failures in linear analog circuits. The test 
generation problem was formulated as an optimiza- 
tion problem. The method generates a robust test set 
that detects faults under maximal masking effects due 
to variations of parameters in their tolerance boxes. 
The proposed approach was illustrated on two exam- 
ples. The computed smallest (largest) observable posi- 
tive (negative) parameter deviations were validated us- 
ing HSpice simulations of the observed performances 
which were then compared with the computed normal 
range (T/:_min, Tk_max). The magnitude of the errors ob- 
tained from these comparisons were very close to the 
resolution of the test equipment, thus confirming the 
accuracy of our method on these examples. Besides an 
adequate selection of test frequencies, it was shown 
that a complete solution to test generation problem 
needs an appropriate selection of performance and test 
point spaces. 

In our future work, we aim at improving the approach 
to guarantee that the global optimum is always found 
regardless of properties of the performance functions. 
Also, we are elaborating a technique that allows to de- 
tect parameter variations that are difficult to observe 
(e.g., faulty deviations of R] in the selective biquadratic 
filter). 
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