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Spectral Invariance, Ellipticity, and the
Fredholm Property for Pseudodifferential Operators
on Weighted Sobolev Spaces

ELMAR SCHROHE

Abstract: The pseudodifferential operators with symbols in the Grushin classes S,~,
0 < < p < 1, of slowly varying symbols are shown to form spectrally invariant unital
Fr6chet-*-algebras (*-algebras) in £(L2 (Rn)) and in £(Hzt ) for weighted Sobolev spaces
Hit defined via a weight function y. In all cases, the Fredholm property of an operator can
be characterized by uniform ellipticity of the symbol. This gives a converse to theorems of
Grushin and Kumano-go-Taniguchi. Both, the spectrum and the Fredholm spectrum of an
operator turn out to be independent of the choices of s, t and .

The characterization of the Fredholm property by uniform ellipticity leads to an index
theorem for the Fredholm operators in these classes, extending results of Fedosov and
Hormander.
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Introduction

In the theory of pseudodifferential operators, Fredholm results have always been of
particular interest. In fact, one of the first applications was the proof of the Atiyah-
Singer Index Theorem for classical elliptic pseudodifferential operators on compact
manifolds [A].

These operators naturally act on the Sobolev spaces HS , s CE R. Both, the Fred-
holm property and the index of these operators do not depend on the choice of s. If
P is a classical pseudodifferential operator of order m on a compact manifold, then
P : H" - L2 is Fredholm, iff P : HS+m - H8 is Fredholm for any s, namely iff it
is elliptic, i.e. if its principal symbol does not vanish on the cosphere bundle of the
manifold. Ellipticity allows the construction of a parametrix; in particular, it yields
a Fredholn inverse which is a pseudodifferential operator.

On IRn, and with non-classical symbols, for example the standard Hrmander
classes, the situation gets more complicated. A parametrix construction requires
more than invertibility of the symbol, and even a parametrix need not be a Fredholm
inverse. This is why I focus on subclasses of the H6rmander classes, a family of
symbols that Kumano-go calls "slowly varying". They were considered by Grushin
[G8], Kumano-go and Taniguchi [K3], and e.g. Wong [W2], [W3].

The zero order symbols in these classes form Frdchet-*-algebras in (L 2 (1Rn)) -
a fact easily established from the standard calculus. Besides, they are spectrally



E. SCHROHE

invariant, and the Fredholm property can be characterized by uniform ellipticity (cf.
Thms. 1.4 and 1.8).

Here, spectral invariance means the following: If an operator in such an algebra
is bijective on L2(R',), then its inverse is in the algebra. In this context, Gramsch
introduced the notion "*-algebra": A symmetric unital Fr6chet-*-subalgebra A
of a C*-algebra B is a *-algebra in B, if it has a finer topology and is spectrally
invariant, i.e.

An B-' =A - ',

cf. [G3], Def. 5.1: A is a 'full' subalgebra of B. In fact, the operator algebras
considered are TI*-algebras in (L 2 (Rn)), cf. Thm. 1.4.

Spectral invariance is a distinguished property shared by many classes of pseu-
dodifferential operators [B1], [B2], [C4], [G7], [L1], [S1], [S4], [S5], [S6], [U], however
it already fails in slighty different situations [G2], [D], [W1], [G3], 6.2.

Once established, the %P*-property yields remarkable results. In qI*-algebras, there
is a holomorphic functional calculus in several variables; the K-theory of the %I*-
algebra coincides with that of its C*-closure (cf. [B3], Thm. 1.3.1, Thm. A.2.1). One
obtains results about Frechet manifolds in Fredholm and perturbation theory [G3],
for the division problem for operator valued distributions [G4], and in differential
geometry of Frechet manifolds, especially for periodic geodesics [G6].

For a function -y E C°°(R ") with y(x) > c > 0 and D' 7 (x) - 0 (Ixl oo,. a 
0) - an "admissible weight function" - define the weighted Sobolev space Ht by

H t = -{-tu : u G Hs}

in the same way in which one obtains the Sobolev space Hs from L2 . All pseu-
dodifferential operators with symbols in ,S 6 are bounded on these spaces and their
spectrum is independent of s, t, and y, cf. IS1].

An even stronger result holds here: The operator algebras considered are q'*-
algebras in all the spaces HiFt . The spectrum of an operator is independent of s, t,
and . On all these spaces HIt, an operator is Fredholm iff its symbol is uniformly
elliptic (Thin. 1.11). As a consequence, also the Fredholm property is independent
of s, t, and y.

This contrasts with the effects observed by Lockhart and McOwen [L2], [M] (cf.
also Nirenberg and Walker [N]). They investigated the behavior of differential op-
erators on another scale of weighted Sobolev spaces W '6 and found that both, the
Fredholhn property and the index, depended on 6 E R.

Is there a way to compute the index? There is an obvious candidate for an index
formula, namely Fedosov's formula [F]

index Op a = -(-2iri)-"(n - 1)!/(2n - 1)! J Tr(a-lda)2nM , (0.1)

aB

proved e.g. in [H112], (Thm. 19.3.1' plus the following remarks), for pseudodifferential
operators with symbols in the class S(1,G), G = dxl 2 (x)- 2 + dgI2(g) -2 , using the
Weyl calculus. In (0.1), B is an open ball in JR2n such that a(z,g)- ' exists and is
bounded outside B. R2,, is oriented by dxzl A dfl A ... A dx, A d,n > 0, and the
left-hand side gives the L2-index.
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The necessity of uniform ellipticity shows that the right-hand side of the index
formula makes sense also for Fredholm operators in Op S06, p > . So it is reason-
able to expect that the formula extends to these classes, and this turns out to be
true, cf. Theorem 1.13.

Necessity of ellipticity for the Fredholm property of classical pseudodifferential
operators was proven by Kohn and Nirenberg [K1] extending Gohberg's lemma [G1].
By showing the necessity of uniform ellipticity, Theorem 1.8 gives a converse to a
theorem by Grushin [G8], Thm. 3.4. It also establishes a converse to Kumano-go
and Taniguchi's more general hypoellipticity result in [K3], if the order is restricted
to zero. Together with the index result this completely answers the question about
the essential spectrum of pseudodifferential operators with slowly varying symbols
[W3], Question 1.4, even without the additional assumptions on the symbol in [W3],
Thm. 3.2.

The method used here to establish the spectral invariance for the classes Sp, is
different from the C°°-elements approach of Cordes [C5] or the commutator method
of Beals [B1]. It was developed in order to show spectral invariance for a ver-
sion of Boutet de Monvel's algebra on noncompact manifolds and proving necessary
and sufficient conditions for pseudodifferential boundary value problems to have the
Fredholmn property [S2]. An important ingredient is a particular operator theoretical
construction of Gramsch and Kaballo [G4].

1. Statement of the Results

We start with a review of three symbol classes on Rn, n E V, the first being the
'standard' pseudodifferential symbols, the second and third more special and going
back to Grushin [G8]. The definition follows Kumano-go [K2], Ch. 2, Def. 1.1,
Ch. 3., Def. 5.11.

Definition 1.1. Let p E C°°( n x 1n), m E , O 6 p < 1, < 1. Write

p(")(x,g) instead of D Dp(zx,), z,. E Nn.

(a) p C S, if [p()(x, ) < Ca( )71Pl+SlI for all x, E R..
(b) p E S6 if p E Sp and Ip(a)(x, )I < C~(xz)() m- pla l+6d l for all x, E 1n

with a bounded function C'/(x) such that Cp(z) - 0 as z - oo.
(c) P E S"6, if p E Sp and p(,)(x, ) E Sp+6 i for all 0.

Kumano-go proves that, in (c), it is sufficient to ask that p()(x,~) E S,+6 for

all Il1 = 1. He calls the symbols in S slowly varying. Write Sp-, Sp-6 , Sp`, for
the respective intersections taken over all mn E 1. They are independent of p and 6,
and we shall omit the indices. For simplicity we have assumed the functions p to be
scalar-valued. In general, p might have values in quadratic matrices over . All the
results extend to that case.

Lemma 1.2. The best constants Cao in 1.1(a) define the usual Fre'chet topology
forS' . The spaces ,SJ6 and ,Sjp6 are closed subspaces, Sm C Sm C S6.

For an arbitrary symbol class A', we will denote by Op X all the pseudodifferential
operators with symbols in A'.
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Lemma 1.3. Op Sp°0 is a Fre'chet-*-subalgebra of £(L 2(1Rn)) containing the iden-

tity. Its topology is stronger than the norm topology on £(L2(Rn)).

Proof. Op: Sp°6 - £(L2(n)) is injective and continuous by the Calderon-Vaillan-
court theorem cf. [K2], Ch. 2, Prop. 1.2, Ch. 7, Thm. 1.6. Multiplication and * are

0
continuous, cf. [K2], Ch. 2, §2. By [K2], Ch.3, Lemma 5.13, Op Sp,6 is a .- algebra.

The following theorem shows that even more holds. The proof will be given in
Section 2.

Theorem 1.4. Op SSo 6 < p, is a *-algebra in £(L 2 (1Rn)).

The main result of §5 in Chapter 3 of Kumano-go's book [K2], Thm. 5.16, is the
following theorem. It extends a result of Grushin [G8], Thm. 3.4.

Theorem 1.5. Let p E 9S6, 6 < p, m > 0. Assume that for some R > 0,
O < m' < m, Co > 0:

]p(x,)I > CO(")m', lx[ + 11 > R, and

p[(l)(zx,)/p(x,)l < CA(xi)(()-P ia ' + 5111, xl + 11 > R,

where C,3 are bounded functions such that C,,(x) - 0 (ll °- oc) for 0 # 0.

Then Op p has a parametrix Op q, q E Sp 6' such that

OppoOpq-IE S -, and OpqoOpq-IES6- ¢ .

In particular, Op p is a Fredholm operator on £(L2(Rn)) in view of the following
lemma:

Lemma 1.6. ([K2], Ch.3, Lemma 5.14). Let p Sp7 for some E > . Then
Op p : HS("R1) HS(L?" ) is compact on each of the Sobolev spaces HS(JRn),
s E R.

Definition 1.7. Call p E .°,5 uniformly elliptic, if there are constants R,C > 0
such that for all lxl + 11 > R, p(x,) is invertible and Ip(zx,)-I < C.

Theorem 1.8. An element P C Op S, 6 < p, is a Fredholm operator on L2 (R n )

if and only if its symbol is uniformly elliptic.

Theorem 1.8 has an obvious application to differential operators P = E a,(x)Da ,
la[<m

where the a, are bounded C ®' functions on Rn with D3a,(x) - 0 as lxi -j oo for
all / $ 0: Consider P(D)-'n, which has its symbol in S10. Then P: Hm - L2 is
Fredholin if and only if the symbol of P(D)-m is uniformly elliptic. This result has
been established earlier by the C*-algebra methods of Cordes, cf. [C3], [T2].

Definition 1.9. Call -y E CO(R " ) an admissible weight function, if the following
holds
(i) For some c > 0, y(x) > c
(ii) For all a $ 0, D-y(x) -+ 0 (xi - ).
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The condition on the weight function is a little more restrictive than in [S1].
Examples for admissible weight functions are: 7(x) = (x)2, 7(x) = 1 + ln((z)), and,
writing x = (', xz), -y(x) = ((x') + (")2)1/3, 7(X) = ((X') + ln((X")))I, 7(X)
1 + ln((x') + (x") 2 ), etc. If 7 is an admissible weight function, then 7- E S1,
and Da 7 E Sl O for all a 4 0. If 0 < t < 1 and y is admissible, then the function
~(X) = y(x)t is also admissible.

Definition 1.10. For an admissible weight function 7 and s, t E R define the
weighted Sobolev space Hat = Ht(Rn ) by

Hi t = {7-tu: u E HS}.

The scalar product is given canonically by (u, v),t = ((D)S-ytu, (D)SYtv)L2. Of
course, the Schwartz space S is dense in all the spaces H. t.

Theorem 1.11. Op Sp, < p, is a q*-algebra in £(H3t) for all s, t E R and
every admissible weight function y. An operator

P: Hst Ht

is Fredholm if and only if the symbol of P is uniformly elliptic in the sense of Defi-
nition 1.7. The index is independent of the choices of s, t, and .

For the proof of 1.11 see Section 2. Theorem 1.11 shows that neither the spectrum
nor the Fredholm spectrum of an operator in Op S,6, p > 6, depends on the choice
of the underlying space Hit. In connection with Lockhart and McOwen's results
[L2] note

Corollary 1.12. Let P be a homogeneous differential operator of order m > 0,
P(x,D) = A a,(x)D" with coefficients a, E C°°(Rn) satisfying a,(x) = 0(1),

Ial=m
Da,(x) = o(1), / $ 0, as x - oo. Then there is no choice of s, t E R and an
admissible weight function 7 such that P: H.+m t -* H' t is a Fredholm operator.

Proof. Consider P(D)-"'. Its symbol a,(z)c(()-m E S, 0 is not uniformly
Iml=m

elliptic. Therefore P(D)-m cannot be Fredholm on Hyt by Theorem 1.12. Hence
P : H~+m' t - H' t is not Fredholm. l

H6rmander's class S(1,G) with G = dz12 (x)- 2 + Id1 2 (I)- 2 is a subclass of S1°,0,

thus of all the Sp. From Theorem 1.11 and [H2], (Thm. 19.3.1' plus the following
remarks) in connection with the above results one obtains

Theorem 1.13. Suppose A E Op S 6, p > 6, is a Fredholm operator in £(H t).
Then the index of A is given by Fedosov's formula (0.1).

The proof of Theorem 1.13 will be given in Section 3.

Remark 1.14. Let a E S 6. The Weyl operator Opwa is the operator with the
'double' symbol b(x, y,) = a(+Y , ). By Taylor's formula, the symbol of OpWa -
Op a is
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n

c(x, y,) = E J(OokDkb)(xx + t(y - x), ) dt.
k=l 0

Converting this to a 'single' symbol, cf. [K2], Ch. 2, Thm. 2.5, and applying an
analysis like that in [K2], Ch. 2, Lemma 2.4, one notices that Opa - Op a is
compact whenever p > 6. Therefore the statement of Theorem 1.13 also holds in the
case of the Weyl calculus.

2. Proofs of the Spectral Invariance and Ellipticity Results

The following proposition is based on results by H6rmander [Hi] and Grushin [G8]:

Proposition 2.1. Let p E S°,6, 6 < p, and let d = limsup(,)_. Ip(x, )I.
Then IIOp Pll(L2(R-)) > d. In particular: if 11Op pl < for some E > 0, then there
is an M > 0 such that p(x,~)I < 2e for all xll + 11 > M.

Proof. Supposing there is a sequence (, ~) such that p(x", E") - d and E~ - oo,
the argument of H6rmander in the proof of [H1], Thm. 3.3, shows that d < HOp p11.
On the other hand, if there is a sequence (x",E') such xz - oo, " is bounded, and

IP(ZV,EV)I - d, then we may assume that " -4 F0. Now Grushin's proof of [G8],
Prop. 3.3, shows that 11Op p > d. °

Corollary 2.2. Suppose p E S, < p, and 11Op pll < 1/4. Then there is an
M > 0 such that Ip(z, )I < 1/2 for all Ijx + 11 > M, thus J(1 + p(x,))-I < 2 for
all xZ + 11 > M. Theorem 1.5 implies that there is a q E S°, such that

(1+ P)Q -I = R E Op S`-° and Q(l+ P)-I = R2 E OpS-,

with P = Op p, Q = Op q.

Lemma 2.3. ¢I + Op S° is a *I*-algebra in £(L 2(1Rn)).

Proof. Op S-' is a proper ideal in Op S6: It is the intersection of the ideals
Op Sp`,, m > 0, cf. [K2], Ch. 3, Lemma 5.12. It is proper, since all its operators
are compact on L2 ("Rn). Therefore, ¢I + Op S- °° is a Fr6chet-*-subalgebra of
£(L 2 (JRn)) with a finer topology. Suppose an element of TI + Op S-° is invertible
on C(L 2 ("Rn)). Then it is of the form AI + S for some S Op S-, A $ 0, and
(AI + S) - ' ¢ Op S° by the classical spectral invariance result [B1], Thm. 3.2, cf.
[U], Satz 4.3. Hence

(AI+ S)-' = -'(I- S(AI+ S) - ') ¢'I + Op O- ,

due to the ideal property. O

Remark 2.4. Recall the following facts from operator theory. For a proof, consult
Taylor's book [T1], Thm. 5.41-G, Thm. 5.5-E, Thm. 5.8-A.

If B, C E L(E), E a Banach space, and BC = I + S, S compact, then there is an
r E V with

JV((BC)') = V((BC)r+l), Z((BC)r) = RZ((BC)r+'),
E = AJ((BC)) D R((BC)r),
BC: JZ((BC)r) - R((BC)T ) bijective.
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The spectrum of BC is discrete with only accumulation point A = 1, for S is
compact. In A = 0, the resolvent (AI- BC)-1 has a pole of finite order (unless there
is no singularity at all). Letting P be the projector defined by

P = J(Ai ( - BC)-'dA = J(AI - S)'dA,
r' r

Fr and r denoting small circles about A = 0 and A0 = -1,

Af((BC)r)= R(P), and R((BC)7) = A(P).

Proposition 2.5. Let A E Op Sp, s, p > 6, with IIAll < . Then (I + A)-' E

Op Sp,8.

Proof. Step 1. By Corollary 2.2 there is an operator A' E Op S such that

(I + A')(I + A) = I + S, S E Op S-°O. Let B = I + A', C = I + A, and apply
the results of 2.4. By Lemma 2.3, it follows from the integral representation of the
spectral projection P that P E ¢l + Op S- ° ° .

Step 2. R(P) is finite dimensional, and P E Op S ° °.

Proof. RZ(P) = Af((BC)r) = AN(I + S') for some S' E Op S- ° ° . S' is compact,
thus the range of P is finite dimensional. We already know that P = AI + S" for
some A E C and S" E Op S- ° ° . The fact that the range is finite dimensional implies
A = 0.

Step 3. There is a relative inverse F to CP in Op S-°, i.e., there is an F E
Op S- 00 such that

FCPF=F and CPFCP=CP.

If F is any relative inverse with these properties we can - and will - replace F by
PF.

Proof. It is sufficient to show that there is such an F in Op S, since we can

replace F by PF, and P E Op S3° ° . So choose a basis {el,...,ek} of R(P), and
define f = CPej = Cej. The functions fj will be linearly independent in view of
the fact that C is invertible. Define

F: L2(?Rn) L2 (1Rn) by

Ff, = e,,j = 1,...,k, on span {f, ... ,fk},

F 0 on [span {fl,...,fk}] ±.

F is a relative inverse to CP in £(L2(1n)). By [G3], Bemerkung 5.7, the fact that
Op S° is a T *-algebra in L(L2 (iRn)) ([B1], Thm. 3.2, cf. [U], Satz 4.3) implies that
there exists a relative inverse already in Op Sp°,.

Step 4. Denote by F the relative inverse of type PF of Step 3 and let D =
(BC)r'-B. Then (D + F)C is invertible in CI + Op S- °° .

Proof. First observe that DC = (BC)r = I + S' is Fredholm of index zero, and so
is (D + F)C, since F is compact. So it is sufficient to prove injectivity. Let h E L2 ,
h = hn + h, with h,, in the nullspace, hr in the range of P, such that (D + F)Ch = 0.
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Then DCh + FCh = O. Now DCh = (BC)Th E Z((BC)r), FCh = PFCh E
R1(P) = A((BC)'), hence DCh = FCh = 0. Since DCh = DChn + DCh, and
DChr = (BC)'hr = 0, we have DCh, = (BC)rh, = 0. But h, e 7Z((BC)r), and
BC is bijective on 1Z((BC)r), so h, = 0. Therefore, 0 = FCh = PFChr = PFCPh,
(since hr E (P)) = C-'(CPFCP)h = C-1CPh, = h,, and h = h + hr = 0.
Finally, (D + F)C E TI + Op S- °°, for DC = (BC)r = I + S', S' E Op So, and
FC = PFC E Op S-.

Conclusion. The inverse of (D + F)C is in I + Op S-° ° by Lemma 2.3. The
operator [(D + F)C]-'(D + F) is the inverse to C = I + A. It belongs to Op So.

Corollary 2.6. Op S~6 , p > 6, is a qI*-algebra in C(L2(Jn)).

Proof. Proposition 2.5 says that in £(L 2 (IRn)),

(1) {(I+ A)- : IA < , A E OpOp 0 

Denote by B the C*-closure of Op S, 6. Then Op S is dense in B. Suppose
A E Op S° 6nL(L 2(Rn))-l. Let B = A -1 . Since B is a C-subalgebra of (L 2 (Rn)),
B E B. Choose in Op Sp,6 a sequence B -- B, converging in £(L2 )-norm. Then
BjA = I + Cj with Cj - 0 in B, Cj Op S,6 . Hence (1) implies that (I + Cj)-1 6
Op Sp6 for sufficiently large j, and (I + Cj)-'B, is a left inverse for A in Op S, 6.

The next topic is the equivalence of uniform ellipticity and the Fredholm property.
As a preparation we need the following lemma.

Lemma 2.7. Suppose that P E Op S has finite dimensional range. Then there

are functions fj, gj S, j = 1,...,J, with Pf = (f, f3)g. Here (, ) is the
j=l

scalar product in L2 .
In particular, P is an integral operator with a kernel in S ®alg 8, and P E Op S-.

Proof. Choose an orthonormal basis {gl,...,gJ} of the range of P. Then Pf =
Ecj(f)gj with continuous linear cj: L2 --+ . By Riesz's theorem, there are fj E
L2 - {0} with Pf = E(f, fj)gj. The gj are functions in S: S is dense in L2 , and P is
continuous. So, PS is dense in the range of P. Since the latter is finite dimensional,
both are equal.
So we know that P is an integral operator with an L2-kernel k(z, y) = E f 3(y)gj(x).
Then P* is the integral operator with the kernel k'(x,y) = k(y,x). Since P* E
Op So6, one concludes as before that the f, are in S. 

We also need the following result [K2], Ch. 3, Lemma 5.13.

Lemma 2.8. Let p 6E S6, q e Sp, 0 6 < p < 1, < 1. Then

Op p o Op q - Op (pq) = Op r,

where r E Spm+-p+6. For p > 6 and scalar-valued symbols, Op S 6 thus is an
algebra with compact commutators.
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Theorem 2.9. Let P E Op Sp, p > 6. Then P: L2 (Rn) - L2 (1Rn) is Fredholm
if and only if P is uniformly elliptic.

Proof. It follows from Theorem 1.5 that uniform ellipticity implies the Fredholm
property. Thus assume that P is Fredholm. Since Op S, is a V*-algebra, there

exists a Fredholm inverse B in Op S such that

PB - I E fn Op S0,

where F denotes the ideal of finite dimensional operators. This is a consequence of
the fact that P has closed range and thus the projection onto the finite dimensional
kernel can be given as a resolvent integral, cf. [C2], §7, which is in Op S, since
this is a I*-algebra, cf. [G3], Bem. 5.7. Lemma 2.7 shows that therefore PB - I E
Op S-O.

Denote by p, b the symbols of P, B, respectively. Then pb - 1 E S P+' by Lemma
2.8. It tends to zero as IZx+[~l -- X. For all sufficiently large xJI+II, [p(x, )b(z,)-
1 < 1/2, hence Ip(x,F)-1I < 211bllsu p °

Theorem 2.10. Let P E Op S 0 < 6 < p < 1, < 1, and suppose that y is an

admissible weight function. Then the commutator [P, y] is in Op Sp, P

The proof is lengthy but straightforward, cf. the proof of Lemma 2.4 in [S1].

Corollary 2.11. Suppose is an admissible weight function, and P E Op Sp,6,

p > 6. Then y-tPy' E Op Sp6 for all t, and the algebra Op Sp is adjoint-invariant

in L(H't).

Proof. Suppose first that t > 0. Choose a positive integer k such that t/k < 1.
Then the weight function = yt/k is also admissible. From Theorem 2.10 and the
identity

(1) 7- t p7t = ~-kpjk = E (k)(_~)-Jadl(P),

one obtains the statement. In case t < 0, choose also k such that -t/k < 1. Let
= -t/k. Then use also Theorem 2.10 plus the identity

(2) ?-tpt = kpf-k = E (5) adJ(P)(7)- . l
j=0

In order to show the adjoint invariance in L(H-t) one has to check that for a given

P E Op Ss, -t(D)-2`s-tP*t(D)2sYt E Op S,. By [K2], Ch. 3, Lemma 5.13,

P* E Op S,,. From what was just proven, conjugation with - t leaves the class

invariant, and so does conjugation with (D)2 , since ()2"s E 5o
t in view of [K2],

Ch. 3, Lemma 5.13.

Corollary 2.12. Suppose that y is an admissible weight function and that P 
Op S,6, p > 6. For all s,t E IR, the operator -tPty' - P is compact on H$t.

Proof. Since t : Ht -- H = Hs is a topological isomorphism, it is sufficient to
show that P - tPy-t = t[7-tP t - P]7- t is a compact operator on HS. Equations

245



E. SCHROHE

(1) and (2) in the proof of 2.11 together with Theorem 2.10 show that P - -ytP - t

is an operator with a symbol in Sp,. By Lemma 1.6 it is compact on HS. C

Theorem 2.13. Suppose y is an admissible weight function. Then Op So,0 , p > 6,
is a I*-algebra in £(H$t) for all s, t E R, and an operator P E Op S°,6 is a Fredholm
operator on Hi t if and only if its symbol is uniformly elliptic.

Whenever this is the case, the indez is independent of the choice of s, t, and y.

Proof. Let us first show the *-property: By [S1], Thm. 1.7, the operators with
symbols in S°,5 are continuous on H t, and the topology of S°, is stronger than
that of £(H.t). So Op S,; is a Fr6chet-algebra in (H't). By 2.11 it is adjoint
invariant. It remains to show spectral invariance: Suppose P E Op S,s is invertible
on Ht. By [S1], Cor. 1.9, P is also invertible on L2. Theorem 1.4 then shows that
its L2 -inverse is in Op S 6. This operator also inverts P on Ht.

Now suppose P Op S 0 is Fredholm on Hst. It follows from the *-property
that there is a Fredholm inverse in Op S°E modulo finite rank operators in Op Sp°,6.
As in the proof of Theorem 2.9, this implies the uniform ellipticity of the symbol.

On the other hand, if the symbol of P is uniformly elliptic, then Theorem 1.5 shows
that there exists a parametrix to P modulo Op S- ° ° in Op S. By Lemma 1.6 P is
a Fredholm operator on Hs for every s E R. By definition, t: HIt + HO = H is
an isomorphism. Thus y-tPyt is a Fredholm operator on H-st. Corollary 2.12 shows
that y-tPy - P is compact, and so P is Fredholm on Hyt.
That the index is independent of the choice of s, t, and y is due to the fact that,
by a similar argument as in the proof of 2.12, the operator (D)-s-tPyt(D)s - P is
compact on L2. 0

3. Proof of the Index Formula

Since the index is independent of the choice of the space by Theorem 1.11, it is
sufficient to show the formula on L2 (1Rn). The following proof is based on [H2],
Thms. 19.3.1, 19.3.1', and a deformation argument. We will use the notation of
Theorem 1.13: a is the symbol of the Fredholm operator A, a E ,56. For m =
(ml, m 2) let us introduce the symbol classes

SGm = {a E C°°(R n x Rn) : DD3a(z,f) = O((f)ml-1lal()m2-ll)}.

For the metric G = Idx12() - 2 + Idfl2(f)-2 in [H2], (19.3.11),

SGm = S((X) m 2 (f) m ',G).

Definition 3.1. For 0 < t < 1 let at(z,f) = a(z/(x)t, /(f)t).

Lemma 3.2. For arbitrary multi-indices a,P, the function DDat(x,~) can be
written as a linear combination of terms of the form

(D'D'a)(x/(z) t, ~l(g)t)()-tll(z)-tlu'm( , ,

where < a, v < 3 and
- the coefficients of the linear combination are polynomials in t of degree < lol + 1/3,
- m = m,,p,,, E SG-(I'- 'IP'- V Il) is independent of t.
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Proof. By induction on lal + 1/1. °

Definition 3.3. A family {bt: t E J C R} of symbols in Ss is uniformly bounded

in Sm ifp,6'

(1) JD-D6bt(x, )l < C(z)(e)m-Pl+'l#

for bounded functions C,#, independent of t, with C - 0, jxj --* oo, if P 0.
Call {bt} C L uniformly bounded in S 6 if (1) holds with all Cc,, tending to zero.

Corollary 3.4. The family {at: 0 < t < 1} is uniformly bounded in Sp,6.

Proof. For 0 < t < 1, the coefficients in the linear combination in Lemma 3.2 can
be estimated by a uniform constant. Therefore,

ID'D'at(z, )

< C max {C, (xl(z),)(l - + - -

Now a simple observation: For 1 < c < (v), c E I?, v E Rn: (v/c)2 = C-2 (C2 +v1 2) <
2c-2 (v)2 and (v/c)

2 > C-
2 (v) 2. For 0 < t < 1, 1 < ()t < (), thus the estimate can

be continued by

(1) < C max {C,,(zl(x))(x)- tlV - IP-
1<a,va<O

X ()-Pl"l+6Svl+tpll--tl--tl .ll )}

(2) < C max {C,,,(z/()')()- 'H¢- 1(-) Pl:l+ 1¢1}

We may suppose without loss of generality that the functions C, are non-increasing
functions of lx[, tending to zero as Ixz - oo whenever/3 g 0. In this case,

C (x/(x)t)(x)-t1vI - v l < IICJllup for P = 0.

For/3 $5 0 and v = 0

C(zl(Z)t)()-ll-1-vIl < IIC11 u¢(Z) -

whereas for , v O

C,,V(zl(x))(Z) lI-I-vl < C,,(z/(z)I)(z) - t

< IC,1,su1p(X)-1/2 t > 1/2
l C,V(Z/(X)'/ 2 ) t < 1/2

So the S.°6-seminorms can be estimated independently of t in view of the estimate
(2). 0

Corollary 3.5. Breaking off the estimate in the proof of Corollary 3.4 at the in-
equality (1), we obtain that al SG°:

lD'D al(x,·)j C max (jjC,,llsup(g)- I (z) 1131j
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Observation 3.6. Suppose J is a compact interval in R+ and a E Sp 6. Let

dt(z,,) = a(tx, tC). Then {dt: t E J} is uniformly bounded in Sp6.

Lemma 3.7. Suppose J is a compact interval in R and {dt : t E J} is a uniformly
bounded family in S,56 such that dt+h(z, I) - dt(z, I) -x 0, as h -* 0, for all fized
(x, ).

Then the mapping t - Dt := Op dt is strongly continuous from J to £(L2(Rn)).

Proof. First choose f E S, 7 an arbitrary multi-index. Then

(1) x'YDtf(Z) = (2r)-n/2 f eixD'(dt(x, )f(~))d = 0(1),

uniformly in t by Leibniz' rule. Moreover,

(Dt+h - Dt)f(x) = (2r)- n/2 / e'(dt+h - dt)(x, )f(t)d.

Together with the assumptions, Lebesgue's theorem on dominated convergence shows
that for each fixed x, (Dt+h - Dt)f(z) - 0 as h - O. Now (1) implies that

l(Dt+h - Dt)f(z)l < CN(X)- N,

with a constant depending on N > n/2, but independent of t, h and x. Again we
can apply Lebesgue's theorem, and we get

II(Dt+h - Dt)fll 2 = j (Dt+h - Dt)f(z) 2 dx -* 0, as h - 0.

Now let f E L2 and {ff} C S with f, - f in L2 . Then

II(Dt+h - Dt)fllL2 < II(Dt+h - Dt)fvllL2 + IlDt+h - Dtll,(L2)lIf - fllL2.

The boundedness of {dt} in S 6 implies a uniform bound on the operator norms,
showing that the right-hand side tends to zero as h - O, v -+ o. .

Proposition 3.8. Let J be an interval and at, bt : t E J) a uniformly bounded
subset of Sp 6. Assume that there is an R > 0 such that at(z,~)bt(z,) = 1 for all

xIl + 1 > R. Then

Op at Op bt - I E Op S, 6 ,

uniformly in t, i.e., if Op at Op bt - I = Op ct, then let : t E J} is uniformly
bounded in 6P

Proof. Let M, = max{lD D0(at(x, )bt(x, ) - 1)1}. In view of the fact that

atbt = 1 on {Ixl + 1I1 > R} one has for arbitrary N E V

ID'D{at(x,e)bt(x,) - 1)}1 < Ml{(III<R)}l{Ie<R}

< M,I1(II<R} (R)N(~)- N

Hence atbt - 1 E S,0 N , uniformly in t. So it remains to show that

(1) Op at Op bt - Op (atbt) E SpsP, uniformly in t.
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It is well known that for a,b S, Op a Op b - Op ab E Sp,, cf. [K2], Ch. 3,
Lemma 5.13, Ch. 2, Lemma 2.4. An analysis of the proof shows that the boundedness
of {at, bt} implies in fact the uniform boundedness in (1). []

For our considerations we will need the following lemma.

Lemma 3.9. Suppose Cj, j = 1,2,... is a sequence of bounded Coo-functions on
R+ with C1(r) O0, r - oc, monotonely in r, for every fixed j. Then there is a
C°°-function C on 1+ with
(i) 0 < C(r) - 0, r -, oo,
(ii) C(r)/C(r) = 0(1) for every j,
(iii) OC-'(r) = 0(1) for every p $ 0.

Proof. Let Ro = 0. For k = 1,2,... choose Rk+l > Rk + (k + 1)2 such that
Cj(r) < for all j < k, r > Rk. Now choose a monotonely decreasing function
h E COO(R) with 0 < h < 1 and h(r) = 1 for r < 1/3, h(r) = 0 for r > 2/3. For
k E Il let

fk(r) = 1 )h((r - Rk)/(Rk+l - Rk))k k +-
and

(r) = E fk(r).
k=l

By construction, (i) and (ii) are satisfied, and it remains to check (iii). The functions
fk are constant outside the interval {r: 3 < (r-Rk)/(Rk+l-Rk) < 3} CC]Rk, Rk+l[-
In particular, the supports of the derivatives of the functions fk are all disjoint. We
can therefore basically concentrate on one of the fk.

First make the following observation. For a positive Coo-function f, the derivative
daf- 1, /3 0, is a linear combination (with universal coefficients) of terms of the

form

f(vLi) . .. f(Vf-S-

with 0 < l,..., vs, s < 3, and l + ... + - = /.
On ]Rk, Rk+l[, 0OC- 1 thus is a linear combination of terms of the form

(1) f(k) f? ... C-5-

On the other hand, the value of C(r) there is > , whence C-S-' < (k + 1)s+I

Moreover, f ')(r) = ( - k- )(Rk+l - Rk) -m h(m)(( r - Rk)/(Rk+l - Rk)). Letting

M = max{ih(W)(t)l :0 < t < 1, 0 < -? < 3}, one concludes that the terms (1) can
be estimated by

(Rk+ - Rk)-;MO(k + 1)5+ < M,

independent of k, in view of the facts that Rk+l - Rk > (k + 1)2 and /3 > 1. Since
the coefficients in the linear combination are also independent of k, this concludes
the proof. °

249



E. SCHROHE

Proposition 3.10. Suppose J is a compact interval and dt : t E J} is a uniformly
bounded family in ,o, such that
(i) dt+h(z, ) - dt(zx,) - 0 as h - 0 for all fixed (, ), and
(ii) there is an open ball B C R2n such that dt(z,)-l exists and Idt(zx,)-ll < C

for all t E J and (x, ) outside B.
Then all the operators Dt = Op dt are Fredholm, and indexDt - const. on J.

Proof. Choose a function 1b E SG ° with b(x, ) 1 for large (x, )l, and 'b(x,) -
0 for (x,() E B. Let et(x,~) = Ob(x,~)dT-(zx,) for (x,1) B, -= 0 otherwise.
The uniform boundedness of dt} together with the quotient rule for differentiation
implies that et: t E J} is bounded in S. Property (i) shows that also

et+h(x,)-et(z,) - 0 as h--O

for fixed (x,/). By Lemma 3.7, both {Dt : t E J} and {Et = Op et: t E J} are
strongly continuous maps from J to (L 2 ). By 3.8, DtEt - I E Op S6p uniformly
in t, i.e., if ct is the symbol of DtEt - I, then there are bounded functions Cqp(x),
tending to zeros as xll -+ oo such that

ID Dct(z, ) < C,0(x)( )- (lal + )+5(lPl+ ).

Without loss of generality we may assume that all the C,6 are C°-functions of lxZ
only.

An application of Lemma 3.9 shows that there is a Coo-function C(x) = C(lzl)
with
(i) 0 < C(x) - 0, IxI co,
(ii) C,(x)/C(x) = 0(1) for all a,f3 fixed, and
(iii) a0C-(x) = 0(1) for all / $ 0 fixed.

Now write

Op ct = Op (C(x)()-P){Op(()P-6 Op (C-(x)ct(x,g))}.

In view of (i), Op C(x)(~)6 -P is compact. On the other hand, D'D3(C-'(x)ct(x,))
is a linear combination of terms of the form D'C-l(x)Df2Dct(x,C). It can be
estimated by O(1)Cp 2(x)()-P(l+1)+6(l21+) for fl $ 0, and by C-l(x) C,p2(z)
(.)-P(Ia&I+)+(l2I+1) for Pi = 0. Therefore C-(x)ct(x,~) E Sp6P, uniformly in t,
and the operator norms of Tt = Op(()P-6Op C-l(x)ct(x, ) are uniformly bounded.
Letting I = Op C(x)() 6-P, one concludes that

Ml = {Op ctf: t J, f{l < 1 = {KTtf: t J, fil < 1}
c_ {Kf : Ilfll < sup IlTtl}

tEJ

is precompact in L 2(1n).
The same argument holds for EtDt - I and the corresponding set M2. We know

already that Dt and Et are strongly continuous mappings from J to L(L 2 ). Hence
DtEt - I and EtDt - I are uniformly compact in the sense of [H2], Thm. 19.1.10,
Dt and Et are Fredholm operators for all t, and index(Dt) = -index(Et) is constant
on J. This concludes the proof. [1
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Corollary 3.11. Suppose a is a uniformly elliptic symbol in Sp, i.e., for all
[(x,g) > R, al(x,z) exists and a-l(xz,g) < C. Let (zx,) = a(2Rz,2R). Then
5(x, 1) is invertible with inverse bounded by C for all (x, ) with (x, ~)j > 1/2. More-
over, 3.6 and Proposition 3.10 imply that index(Op a) = index(Op a). Without loss
of generality we may therefore assume that the symbol a is invertible (with bounded
inverse) for all (x, )I > 1/2.

It is easy to see the lemma, below.

Lemma 3.12. Suppose a E Sp is invertible for (x,g) > 1/2, and at(x,) =
a(x/(x)t , /()t), 0 < t < 1. Then at is invertible for (x,~)l > 2, and

sup{lat(x,)-{lI: (x, ) > 2 < sup{[a(x,)-'lI: (x,g) > 1/2}.

Conclusion 3.13. Proof of Theorem 1.13.
As before, let at(x,~) = a(x/(x)t,(/(()t). The family at 0 < t 1 is uniformly
bounded in Sp5 by 3.4. For fixed (x, (), at+h(X, ()-at(x, ~) - 0 as h --+ 0. By Lemma
3.12, at(x,g) is invertible for (x,g) 2 with bounded inverse. By Proposition 3.10,
the indices of the operators At = Op at are all constant on [0,13. Now, A = A,
and Al = Op a is an operator with a symbol in SG ° , satisfying the assumptions
of [H2], Thin. 19.3.1'. Thus, the index formula [H2], (19.3.1), holds for Al, if we
choose B = B(0,2) = {(x,)l < 2}.

The number (-27ri)-" (nl! f Tr (a- Ldat) 2 l is always an integer. Clearly, it

is constant in t. Therefore

Index A = index Al = index Ao = -(-2i)- (n )! Tr(ada
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