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Abstract. We present a computer study of two-phase flow in a porous medium. The porous medium is 
represented by an isotropic network of up to 80 000 randomly placed nodes connected by thin tubes. We 
then simulate two-fluid displacements in this network and are able to demonstrate the effects of viscous 
and capillary forces. We use the local average flow rates and pressures to calculate effective saturation 
dependent relative pemeabilities, fractional flows and capillary pressures. Using a radial Buckley- 
Leverett theory, the mean saturation profile can be inferred from the solution of the fractional flow 
equation, which is consistent with the computed saturation. We show that the relative permeability may 
be a function of both viscosity ratio and capillary number. 
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1. Introduction 

Fluid displacements in porous media occur over a vast range of length scales. The 
fluids move through a disordered labyrinth of pore spaces which are only a few 
microns in diameter, and yet displacements in oil reservoirs are, typically, several 
kilometers in extent. 

At the pore scale, the fluid flow is described by the Navier-Stokes equation. The 
boundary conditions at the interfaces between fluids and between a fluid and the solid 
rock matrix means that exact solutions are difficult to obtain for all but the simplest 
cases. Moreover, the exact nature of the contact between moving immiscible fluids 
is still not completely understood. Nevertheless it is possible to predict the fluid flow 
in several idealised pore geometries, such as through cylindrical or conical pipes. 

On the scale of core samples, Darcy's law is an experimental relationship between 
flow rate and pressure gradient. A generalisation to two-phase flow is made by using 
saturation-dependent relative permeabilities and capillary pressures. In theory, it 
should be possible to demonstrate these macroscopic equations by averaging over 
the microscopic pore-scale processes. This approach has been attempted many times 
(Scheidegger, 1954; Miller and Miller, 1956; Whitaker, 1966, 1986; Poreh and Elata, 
1966; Matheron, 1967; Lungren, 1972; Gray, 1975; Hassanizadeh and Gray, 1979; 
Levine and Cutheill, 1986; Rubenstein, i986; Adler and Brenner, 1988; Pavonne, 
1989). However, in order to obtain simple flow equations, approximations about the 
microscopic physics and the structure of the porous medium have to be made. 
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The goal of this work is to indicate how pore-scale processes lead to macroscopic 
displacements with definite averaged properties. We show the link between micron- 
scale physics and observable, centimeter-scale effects. 

To determine how the microscopic pore-scale physics affects the overall macro- 
scopic properties of the displacement, we simulate flow in a computer network model 
of a porous medium. The small-scale physics is precisely specified, and for networks 
containing many thousand pore spaces, we can find suitable averaged parameters to 
describe the macroscopic flow. Unlike an experimental system, we have complete 
control over the fluid viscosities and capillary forces. Also, we are able to compute 
saturations and pressures everywhere in the network with arbitrary accuracy. 

We test whether or not fractional flows, capillary pressures and relative permeabil- 
ities are functions only of the local saturation. We also show the effect of the relative 
permeability on viscosity ratio and capillary number, or flow rate. This work 
identifies appropriate functions and variables for the description of two-phase flow. 

2. The Simulation 

Network models have been used before to study fluid displacements. Some of the first 
work was performed by Payatakes (1982). More recently, Koplik and Lasseter 
(1984), Chen and Koplik (1984), Chen and Wilkinson (1985, 1986) and Lenormand 
et al. (1984, 1985, 1986a, b, 1988, 1989) have simulated fluid flows in square grids 
of thin tubes of varying radius. Moreover, they were able to compare the numerical 
results with experimental patterns obtained from micromodels constructed from 
capillary tubes or etched networks. A porous medium is thus represented by a regular 
two-dimensional network of interconnected pore spaces. We have already described 
a network model on a hexagonal grid (King, 1987; Blunt and King, 1988). These 
simulations were in two dimensions and there was no capillary pressure. 

Large displacements in models with regular grids are, however, anisotropic, 
displaying the symmetry of the underlying lattice, whereas real porous media are 
disordered. Moreover, all the work on large lattices only studied two-dimensional 
flows. As yet, there has been no consistent characterisation of the patterns produced 
in terms of conventional macroscopic parameters. 

This work attempts to overcome all these shortcomings. We perform simulations 
in two- and three-dimensional isotropic networks and use Darcy's law and radial 
Buckley-Leverett theory to describe the displacement in terms of saturation-depen- 
dent fractional flows and capillary pressures. 

2.1. GENERATING RANDOM NETWORKS 

2.1.1. Two Dimensions 

We have generated large topologically disordered, isotropie networks. To form a 
two-dimensional network, points are placed at random (called Poisson points) in a 
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circular region. The points are then connected to near-neighbours by nonintersect- 
ing bonds. The bonds form a triangulation of the region. We have chosen bonds so 
that the triangles are as near equilateral as possible. This is called a Delaunay 
triangulation (see, for instance, Ripley, 198l) (Figure 1). Essentially, the Delaunay 
triangulation is a consistent, straightforward way of connecting points to near- 
neighbours. In a two-dimensional Delaunay triangulation, each point is connected 
to, on average, six others, although the coordination number of a given point may 
vary from 3 to over 12. We have generated Delaunay triangulations containing up 
to 80 000 points. The methods used are described in greater detail elsewhere (Blunt 
et  al., to be published; Sever, 1986). 

Delaunay networks have been considered previously as a representation of a 
random porous medium by Heiba et  al. (1982).  However, although they illustrated 
a Delaunay triangulation, they actually performed calculations of relative perme- 
ability on topologically simpler Bethe trees or regular networks. 

In the model porous medium, the nodes of the network represent pore spaces of 
equal volume. The connections are thin tubes of an uncorrelated radius, r, chosen 
uniformly from the interval [to(1 - 2 ) ,  ro(1 + 2)], where 1 ~> 2 ~> 0. We define l0 as 
the average tube length and assume that l0 >> ro. 

Fig. l. A Delaunay triangulation of  4000 points in a circle. In the simulations a network with 80 000 

points was used. 
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2.1.2. Three Dimensions 

The three-dimensional analogue of the Delaunay triangulation above gives an 
average configuration number of  over 14. The computer  memory  required to store 
all these connections would mean only comparatively small three-dimensional 

networks could be used. 
Thus, we used an alternative lattice which is generated from a dual network, or 

Voronoi tessellation. This is formed from the Wigner-Sei tz  cells of  each point, i.e. 
the territories nearer to each point than any other (Figure 2). An area is filled with 

polygons whose edges and vertices describe the network, a volume is filled with 
polyhedra. 

For  the two-dimensional Voronoi tessellation illustrated in Figure 2, each node 

has three connections. Equivalent three-dimensional networks in a spherical region 
have been generated, where every vertex or node has exactly four nearest neigh- 
bours. The disadvantage of  this lattice is that the connectivity is fixed and so some 
of  the topological disorder seen in real porous media is lacking. However, we are 
easily able to produce Voronoi networks containing up to 50 000 vertices. 

Fig. 2. A Voronoi tessellation of 500 points in a circle, Parts of the network which should lie outside 
the circle are placed around the circumference. The network contains approximately 1500 vertices each 
connected to three neighbours. Three-dimensional analogues with up to 50 000 vertices were generated. 
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The vertices of the Voronoi polyhedra represent the pore spaces and the edges 
between them are interconnecting tubes of variable radius. The radii are chosen in 
the same way as in two dimensions. 

2.2. FLUID FLOW IN THE NETWORK 

We model the flow through the networks using the following assumptions: 

(a) All the fluid is considered to be contained in the pores or nodes, but all the 
pressure drops occur in the tubes between them. 

(b) The tubes are totally filled with either invading or displaced fluid, but the 
pores may contain both fluids. 

(c) The two fluids are immiscible. The invading fluid is nonwetting. 
(d) The capillary pressure difference across an interface between the two fluids at 

the entrance of a tube is inversely proportional to the tube radius. The nodes 
are so wide that the capillary pressure drop in a node is neglected. 

(e) There is Poiseuille flow down each tube. 
(f) The fluids are incompressible. 

2.2.1. The Pressure Equation 

Poiseuille's law for the flow rate Qij between the tube connecting nodes i a n d j  with 
no interface in the tube is 

Qij 7z(Pi-pj)r4 
- 81iflt =gij APo, (1) 

where p is a nodal pressure, r;j and li: are the radius and length, respectively, of the 
tube, and/2 is the viscosity of the fluid in the tube. In a single node, the pressure 
of the injected and displaced phases are the same. This expression gives a flow rate 
which is proportional to the local pressure gradient and inversely proportional to 
the fluid viscosity. 

If  the fluids are incompressible then Zj Qu = 0. This enables us to solve for the 
pressure field Pi using successive over relaxation: 

= fl EJ g~ +(1--fl)p~, (2) 1)i Y~j gij 

where the sum over j accounts for all nodes connected to node i. The relaxation 
parameter fl is set to 1.7. 

2.2.2. Updating the Saturation 

We use Equation (1) to update the volume of injected fluid in the nodes. In a time 
At, a nodal saturation si(t) becomes 

sat + at) = sat) + At Z Q. 
J 
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(b) 

Fig. 3. Diagram showing the saturation update in a single node. (a) Injected (black) fluid is displacing 
clear fluid. Any pressure jump across the interface in a node is neglected. (b) The node is filled with 
injected fluid. A tube connected to this node may become full of invading fluid, or the interface may be 
frozen at the entrance of a tube by capillary pressure. Flow is most likely to be inhibited in narrow tubes. 

where the sum only includes bonds  connected to node  i which contain  invaded fluid. 

At is chosen so tha t  only one node  in every t ime step becomes  complete ly  filled. 
W h e n  si does reach 1, then bonds  connected to node  i full o f  displaced fluid 

( ' e m p t y '  bonds)  m a y  become full o f  invaded fluid. An empty  bond  of  radius r;j is 
filled with invaded fluid if 

pi >~p: +pc, (4) 
where Pc represents the capil lary pressure j u m p  across the fluid interface in the tube. 

Pc is given by the Y o u n g - L a p l a c e  equat ion  Pc = - 2 7  cos O/qj. Notice  that  Pc is 
inversely p ropor t iona l  to the tube radius. ~ is the interfacial tension and 0 is the 
contac t  angle. We will consider the injection o f  a nonwet t ing  fluid in this paper ,  

with 0 = 180 ~ and,  hence, Pc = 2y/rrgj >~ O. I f  pj + P c  >Pg ~>Pj, then the interface is 
frozen by capil lary pressure and no flow occurs across it until p~ increases, i.e. the 

conductivi ty,  g~j in Equa t ion  (1) is zero. This is i l lustrated in Figure  3. 
In  some nodes,  s; m a y  decrease. I f  s,. reaches zero, a bond  is filled with displaced 

fluid if p~ >~ pj. Not ice  tha t  if 7 = 0, the displaced and invaded fluids are t reated 
symmetrical ly.  

Viscous forces contro l  the fluid fluxes between nodes. The  fluid in a tube only 
changes if the sa tura t ion  in a node  to which it is connected (a t  either end) rises to 
1 or  falls to 0. 

2.2.3. Boundary and Initial Conditions 

Initially, the ne twork  is full o f  displaced fluid. Nonwet t ing  fluid is injected th rough  
a central  node  at  a fixed rate. Fluid escapes th rough  the outer  b o u n d a r y  o f  the 
network,  which is held at a cons tan t  pressure.  
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We have chosen to perform the simulations in circular and spherical networks for 
two reasons. Firstly, we wished the simulations to be unaffected by constraining 
boundaries, which for high flow rates may affect the overall pattern of the 
displacement, particularly in a channelled, square or cylindrical geometry. For 
instance, in a two-dimensional channel, it is known that at high flow rates, a single 
large finger develops, whereas in situations without a constraining boundary, a 
cascade of finger splitting is seen (Nittmann et  al., 1985; Chen and Wilkinson, 1985; 
Lenormand et  al., 1985, 1988). Secondly, in two dimensions, the averaged equations 
of flow with capillary pressure collapse to a simple scaling form (see Section 4), 
which would not occur for a square geometry. However, most previous work has 
been performed in rectilinear or cylindrical geometries, where relative permeabilities 
and capillary pressure are easier to interpret. On balance, a radial geometry is a 
good choice for investigating displacements at a high flow rate, but is less satisfac- 
tory for the discussion of capillary-dominated flows. 

We inject fluid through a single node. At very low rates, it is occasionally found 
that the injection pressure needs to rise to force the fluid through the small number 
of tubes near the injector, and then the pressure falls again as the flow pathways are 
opened. This makes a small effect on the computed capillary pressure curves at low 
saturation, but does not alter the development of the displacement away from the 
centre. 

The scheme is then as follows: 

(a) Solve for the pressure Pi, using Equation (2). 
(b) Calculate a time step At such that only one node is filled at a time. 
(c) Update the saturations, using Equation (3). 
(d) If  the saturation in a node reaches 1 or 0, alter the nature of the fluids in the 

bonds connected to that node, as described above. The conductivities gij are 
recalculated from Equation (1), or set to zero if the fluid interface is frozen 
by capillary pressure. 

(e) Repeat from step (a). 

2.2.4. Flow Parame te r s  

We simulate flow at a constant injection rate. The injection rate Q0 = Ej Q~j, where 
the subscript 1 labels the central injection node and the sum runs over all the tubes 
connected to the injector. The individual rates Qij are found from Equation (1). 
Before every saturation update, the injection pressure is altered so Qo remains 
constant and the rest of the pressure field is modified to ensure that Zj Qu = 0 
everywhere. 

We are now able to characterise the flow by the following dimensionless numbers: 

(a) 2, which is a measure of the bond width disorder. The network is heteroge- 
neous, since the individual bond conductivities gij vary widely. Firstly, the 
tube radii are chosen at random. A tube radius r is chosen uniformly from 
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the interval [r0(1 - 2), r0(1 + ).)], where 1 >~ 2 >~ 0, as mentioned before. 
Secondly, the bond lengths are variable, about a mean 10, which is not the 
case for a regular lattice. 

(b) M, the ratio of  displaced to injected fluid viscosities, M = Pd/#~" 
(C) N C, a dimensionless capillary number, which is defined by: Nc = Qolo~tdnyr~, 

Arc is chosen as above to represent a ratio of viscous to capillary pressure drops 
across a bond near the injection site. Arc = 0 gives capillary-dominated floods, while 

Nc --- oo is viscous dominated. Increasing the flow rate Q0 or decreasing ~ will both 
increase the relative importance of viscous to capillary forces. 

In a two-dimensional radial geometry, the viscous pressure gradient decreases as 
the inverse of  radius from the injection node, Consequently, capillary forces become 
relatively more important at larger radii. For  instance, in a two-dimensional 
displacement of 2000 filled sites, the flood has an overall radius of approximately 25 
nodes. Thus if Arc = 5, the actual ratio of viscous to capillary forces at the 
advancing front is only about 5/25 or 0,2; viscous pressures dominate near the inlet, 
but capillary pressures control the pore-scale movement at large radius. 

3. Discussion of Results 

The simulations presented in this section have been performed on a two-dimen- 
sional network containing 80 000 nodes. This means that the network is approxi- 
mately 350 nodes across. If  typical distances between pore spaces in, for instance, 
a permeable sandstone range from 10 to 100 microns, then the network represents 
a sample a few centimetres in diameter. We will present some three-dimensional 
results in Section 4. 

3.1. VISCOUS FINGERING 

Figure 4 shows results for the case Nc = ~ ,  ,~ = 0.5. Capillary forces are neglected 
and we see viscous fingering patterns for a variety of  adverse viscosity ratios from 
M = I  to M = ~ .  

In Figure 4(a), M = 1 and the interface between the fluids is marginally stable. 
The displacement has filled 20 000 nodes from a total of 80 000, The heterogeneity 
of  the network causes small perturbations in the advancing front. This means that 
the relative permeability need not be an exact straight line, which would only be 
obtained from a completely smooth front. The invading fluid enters wide tubes first 
in preference to narrower ones. This means that occasionally small, low permeabil- 
ity blobs of  displaced fluid are surrounded by the invading fluid. This is possible, 
even when we take the limit of  large Arc. These blobs will eventually be swept out 
of  the network, but they move very slowly, which will result in calculated relative 
permeabilities, which appear to have a residual saturation. This is not the case: the 
blobs are mobile, but flow at an almost imperceptable rate. 
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(a) 

(e) 

P 

(c) 

Fig. 4. Viscous fingering pat terns for Nc = ~ ,  2 =0.5.  (a) M = 1. (b) M = 10. (c) M = 100. (d) M = 1000. 
(e) M =  oo. Open triangles or  hexagons represent nodes which have yet to become completely filled. 
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When the viscosity ratio, M is greater than 1, the fluid interface is unstable and 
a fingered pattern develops. As M increases the fingering becomes more pro- 
nounced. The invading fluid, since it has a lower viscosity, moves more easily 
through the network than the fluid it displaces, and we see tip splitting and finger 
growth on all length scales. Although the saturation decreases sharply at the 
advancing tip of a single finger, the averaged radial saturation profile is smooth. 
The pattern for M = oo is extremely ramified and very thin fingers penetrate the 
network. In this case, the simulation is performed by assuming that there is no 
pressure drop in the invading fluid: all the pressure gradients are in the displaced 
fluid. The displacement in this case is similar to those observed experimentally by 
Mfdoy et al. (1985), which was also performed in a circular geometry, where a low 
viscosity fluid was injected at a high rate into a quasi-two-dimensional porous 
medium. 

3,2. CAPILLARY DOMINATED DISPLACEMENTS 

Figure 5 shows a simulation for an opposite case: Arc = 0, 2 = 0.5. Here capillary 
forces are dominant. This process, called invasion percolation (Chandler et al., 
1982; Wilkinson and Willemsen, 1983), has been simulated directly. At the interface 
between the two fluids, the flow only proceeds along the widest available empty 
bond (as long as it does not connect to a region entirely surrounded by invading 
fluid), where the capillary pressure is lowest. All other bonds are frozen. The 
advance of the front is independent of M, as viscous forces may be neglected. 
Notice that we have loops enclosing pools of displaced fluid of many sizes. 

Breakthrough occurs when the invading fluid first spans the system. Since the 
displacement is extremely ramified, this will occur at a very low overall saturation 

Fig. 5. Invasion percolation in a Delaunay triangulated lattice. 
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for large networks. The terminal point is defined when all the defending fluid is 
trapped in immobile blobs and the displacement ends. It has been demonstrated 
that, in two dimensions, the terminal point occurs at an infinitesimal increase in 
saturation after breakthrough in large systems (Wilkinson and Willemsen, 1983). 
This is because in two dimensions, it is not topologically possible to have inter- 
secting continuous pathways of  two phases. This means that the relative perme- 
ability is zero at all but saturations close to 0, and the capillary pressure curve is 
only defined near the origin. Clearly, this is fundamentally different from experi- 
mentally observed behaviour in three-dimensional rocks. In three dimensions, 
breakthrough also occurs at almost zero saturation, but both fluid phases may 
flow until the terminal point is reached at saturation values typically near 50%. 

Figure 6 illustrates results when there are competing viscous and capillary 
forces. In the pictures, M = 10, 2 = 0.5, and Nc is increased from 0 to 5. When 
Nc = ~ (shown in Figure 4(b)) advance may occur at all points along the fluid 
boundary; on decreasing Nc more and more bonds at the fluid interface are frozen 
by capillary pressure, until, when Nc = 0 the flow is controlled entirely by the 
search for the easiest path of wide tubes through the network. This is demon- 
strated in Figure 7, which shows the number of filled tubes as a function of radius 
at breakthrough: when Nc = ~ wide and thin tubes are filled with almost equal 
probability, except at very low saturation; when Arc = 0, no tubes thinner than a 
percolation threshold are filled at all. 

Lenormand et al. (1985, 1988) have already investigated two-phase displace- 
ments in square networks of capillary tubes, both numerically and experimentally, 
as a function of  capillary number. When N c is very low and a nonwetting fluid is 
injected, the patterns are similar to results from an invasion percolation model 
(Lenormand and Zarcone, 1985). This has also been confirmed experimentally by 
Stokes et al. (1986). Moreover, Lenormand observed similar patterns to ours for 
large Nc and M > 1000 and M = 1 (Lenormand et aL, 1988), with a cross-over 
from capillary to viscous dominated flows at intermediate capillary numbers. 
These studies confirm that our simulations give valid results in two dimensions in 
the limit of both very high and very low flow rates. We have extended the model 
to three dimensions and we look at random networks, which have not been 
studied before. Furthermore, we compute macroscopic dynamic parameters, such 
as relative permeability and fractional flow, which were not investigated by Lenor- 

mand et al. 
In a real oil reservoir, capillary forces are likely to dominate at the pore scale, 

with a typical viscous pressure drop along a single tube, Ap~, one hundred to 
several thousand times smaller than the capillary pressure drop across a fluid 
interface. However, over large distances or near wells, the viscous pressure drop 
will normally exceed the capillary force. In a radial flood, Apv decreases with 
distance from the injection node: we see viscous floods near the centre of  the 
network with capillary forces becoming more important on the pore scale at large 

radii. 
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(b) 

Fig. 6. Displacements for M = 10, 2 = 0.5 each containing approximately 1500 nodes. (a) N~. = 0. (b) 
Nc = 0.5. (c) Nc = 5. Notice that the number of partially filled sites (shown by open hexagons) increases 
with N~.. For N~ = ov (Figure 4) the displacements are completely surrounded by partially filled nodes. 
The exact microstructure of the network is different in all these cases. 

Hence,  the pore-sca le  m o t i o n  is cap i l la ry  domina t ed ,  while viscous forces deter-  

mine  the overal l  profi le o f  large displacements ,  Thus,  the macroscop ic  na tu re  o f  

f ingering is usefully de te rmined  by invest igat ing viscous d o m i n a t e d  flows. Also,  it  is 

in teres t ing to p r o b e  the cross-over  regime where  bo th  viscous and  capi l la ry  forces 

are impor t an t ,  which is the s i tua t ion  found  typical ly  in cent imetre-scale  core  floods, 

where we might  expect  to see values o f  N c in the range 0.1 to 10. 
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4. A Conventional Description 

Our model describes pore-scale flow. However, in simulations of reservoir flows, the 
microscopic physics in large grid blocks is represented by simple averaged parame- 
ters. A justification for this approach will be provided by this work. 

4.1. RADIAL B U C K L E Y - L E V E R E T T  THEORY 

In this section, we will assume that the conventional averaged description of flow in 
a porous medium can correctly describe the behaviour of our simulated displace- 
ments. A short mathematical analysis leads to a prediction for the development of 
the angularly averaged saturation profile in two dimensions. We test this prediction 
against the computed results. We also demonstrate how the fractional flow and 
relative permeability depend on viscosity ratio and capillary number. 

In Section 2, we specified the micro-scale physics of flow. However, this descrip- 
tion is inappropriate if we wished to write down equations for the flow on scales 
averaged over many individual pores. 

Conventionally, we assume a two-phase Darcy law in a porous medium (Muskat 
and Meres, 1936; Peaceman, 1977): 

q~, = - K L d ( s )  Vp~,, (5 )  
l*a 

qi = - K-k~'(s) V&,  (6) 
/~i 
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where the subscripts i and d refer to the invading and displaced fluids, respectively, 
q is a fluid flux per unit area, and K is the absolute permeability of the medium. The 
Poiseuille flow at the pore scale, Equation (1), should ensure that the fluid fluxes are 
proportional to a local pressure gradient and inversely proportional to the viscosity. 

The relative permeabilities kr; and kra are generally assumed to be functions of the 
saturation of injected fluid only. This saturation (s = si), where s; + sa = 1, is a 
mean value taken over several nodes. The relative permeability takes into account 
the effect of averaging over a representative volume containing many pores. 

The difference between p; and Pa is given by a saturation dependent capillary 
pressure, i.e. P i - P a  = Pc(s) (Leverett, 1941). There is no rigorous justification for 
these simplifications: kr and P~ may also depend systematically on the degree of 
development of the displacement, or be largely independent of the average satura- 
tion and be controlled by pore-scale properties. Marie (1981) has demonstrated that 
the relative permeability may depend in theory on the dimensionless parameters M 
and N~ as well as the wetting properties of the rock and fluids. Furthermore, k~ may 
not be simply a function of local saturation s only, but may depend also on 
derivatives of s, such as ds/dx, and dZs/dx 2. 

The representative volume over which the saturation is averaged must be greater 
than the volume of an individual pore, yet much smaller than the overall size of the 
system under consideration. For a reliable determination of relative permeability, it 
is necessary that we average over a region which genuinely represents a macroscopic 
sample. Rather than postulate what the minimum representative volume should be, 
we computed the relative permeabilities in our numerical model using annuli of 
different widths. The networks we used were approximately 350 nodes across. When 
the annulus was less than 4 or 5 nodes wide, the results became increasingly noisy, 
although distributed about the values obtained when a larger sampling volume was 
chosen. When the average was taken over more than 50 nodes, there was a 
significant shift in the calculated relative permeabilities, since the volume element 
then encompassed significant changes in the overall saturation and pressure profiles. 
This shift was more marked when the saturation profile was sharp. The width of the 
averaging region must be smaller than any macroscopic length, such as the width of 
the fluid front and larger than any microscopic length, such as a pore diameter. In 
all the results we present later, we will average s in regions about 5 nodes wide, 
which contain approximately 2000 nodes each. This gives just a sufficient division 
of length scales to produce reliable results, which are insensitive to small changes in 
the averaging volume, regardless of capillary number. 

With only viscous forces, Poiseuille flow occurs through all connections in the 
network. If  the saturations and pressures are averaged in a small region of space in 
which we assume there is no fingering, then the relative permeabilities will have a 
simple, linear form: kri--sg and k~a = sd (Dullien, 1979). Capillary forces, which 
cause the advance in some tubes to be frozen, will give relative permeabilities with 
a nonlinear dependence on saturation. 

However, the pressure field and saturation profiles are very complicated for 
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M > 1, even for viscous flows, since we see an unstable, fingered front. In the 
analysis below, we will attempt a description where the pressures and saturations in 
Equations (5) and (6) are considered to be averaged over a thin annular region at 
a fixed distance, r from the injection node. Then the relative permeability k~ 
accounts not only for capillary forces, but also the averaged properties of  the 
fingered displacement, and so may be nonlinear even for purely viscous floods. 

Firstly we assume that Equations (5) and (6) are valid for angularly averaged 
pressures, saturations and fluxes. This means that they are valid if we substitute 

p(r, t) = ~ p(r, t, O) dO, 

s(r, t) = ~-~ s(r, t, O) dO 

and 

q(r, t) = ~ q(r, t, O) dO. 

Our second set of  equations are those of fluid conservation with no source terms: 

Osi (r, t) 

~t 
- -  + V - q, (r, t) = 0  (7) 

and 

Osd(r , t) 

t3t 
- -  + V" qd(r, t) = 0, (8) 

where we have assumed a unit porosity. 
We add Equation (7) to Equation (8) to obtain a simple expression for the total 

flUX, qt = qi q- qd: 

V ' q t  =0 .  (9) 

In a two-dimensional radial geometry, averaging the angular dependence in the 
flow, qt is directed in a radial direction and has the form 

Q0 
qt = 2rcr' (10) 

where Q0 is the (fixed) injection rate, ~1 2~rrs(r, t) dr = Qot. 
Equation (5) is added to Equation (6) to obtain 

Q0 K[(2a(s) + 2i(s)) Vpi - 2d(S) VP~(s)], (11) 
q' 2zcr - 

where the fluid mobilities, 2 are kr//~ and Pu has been written as Pi - Pc(s) �9 
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We use Equation (11) to find Vpi in terms of qt and VPc and then substitute qi 
into Equation (7) using Equation (6): 

t3s E 2~(s)Q0 h~(S)hd(S) 1 
0t + V" 2rff2d(S) + h,-(s))r K ha(S) + 2i(s) VPc(s) = 0. (12) 

This equation for fluid conservation may be written more simply in terms of a 
fractional mobility or flow: F(s) = h~ (s)/(ha (s) + h,- (s)) : 

~t + v .  F(s) - Khd(s)  W ' c ( s )  = 0 (13)  

from which we obtain 

&(r, t) + ; ~ r  F(s) - Kr,~d(s) = O, (14) 
Ot ~ r  Or ,/3 

since the operator V �9 is 1/rO(r )/~r in radial coordinates. Equation (14) may be written 
simply in terms of a single variable v = ~ 1/2r/(Qot ) 1/2 to obtain (after a little algebra) 

dv [ ds F(s) 1 -  Q0 dv = 0  (15) 

and, thus, a nontrivial solution is obtained when 

d [ ( 2rWKhd(S) ds dv (16) v 2 = ~ s  s F(s) 1 

For  a general Pc(s), Equation (16) does not, unfortunately, have an analytic solution, 
although it may be obtained easily by numerical integration. However, it can be seen 
that the saturation profile is a function of only one variable, v, and hence profiles 
taken at different times may be scaled on to each other. For  floods with nonzero Pc 
this is only possible because we have a radial geometry. For  Pc = 0, Equation (16) 
reduces to a radial Buckley-Leveret t  problem, whose solution is s(v) where 
dF/ds = v 2. 

4.2. FRACTIONAL FLOWS 

The analysis above has shown that mean saturation profiles taken at different times 
can be scaled on to the same curve, and that the fractional flow is a function only 
of  saturation. We need to test this directly. For  a variety of  two-dimensional floods 
with different M and Arc = o% mean saturation profiles and fractional flows have 
been calculated at up to five different times. The network is divided into 40 annular 
sections. Within each annulus, the mean saturation of invaded fluid is calculated as 
well as the fraction of  the total flux across each annulus carried by the invading fluid: 
in the absence of  capillary pressure, this is the fractional flow F(s). That this 
fractional flow is a unique function of  the mean saturation is the central assumption 
of our analysis. 
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Example results are shown for 2 = 0.5, M = 10, and N, = oe. Figure 8 shows the 

mean saturation profiles at different times successfully scaled on to a single curve; 

figure 9 shows indeed that F(s) does not appear to depend only on s and not 
independently on time or radius for given model parameters. Moreover,  we can use 
s(v) to calculate F(s), since dF/ds = v2(s), then F(s) = ~ v2(s) ds. This is shown in 
Figure 9: both direct and inferred fractional flow agree to within numerical error. 
Notice that the fingered front is wide: the saturation profile does not develop a 
shock. This means that F(s) does not have a point of  inflexion. 

Fractional flow curves for various M with Nc = oe and 2 = 0.5 are illustrated in 
Figure 10. Increasing M gives a more fingered front and lower overall recovery. For  
M = l, the fractional flow (and also the relative permeability shown later) is not 
exactly linear because of the fine scale heterogeneity of  the network. Also, as 
discussed earlier, there is strictly no residual saturation when Arc = o% although the 

small trapped blobs of  displaced fluid move very slowly. 

Saturation profiles for M = 10, 2 = 0.5 and Arc = 0.5 are shown in Figure 11, 
scaled onto the same curve. Notice that s appears to be a function of  only one 
variable, v. Viscous fingering is supressed on increasing the capillary pressure, but 
pools of  displaced fluid become enclosed by the invader for low No, which causes 
the overall fraction of displaced fluid swept out to decrease. Overall, the capillary 
pressure has a diffusive effect on the flow: Figure 12 shows that the profiles are 

smeared out for low Nc. 
In all the examples, the saturation profiles do scale onto the same curve and the 

fractional flow is a function only of  saturation for fixed M and N,. 
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each t aken  at  five equal ly  spaced intervals  du r ing  the f lood have  been scaled on  to the same curve. 
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4,3. C A P I L L A R Y  P R E S S U R E  C U R V E S  

For finite interfacial tension 7, there is a pressure jump across the fluid interface: in 
an averaged description o f  the flow, this leads to an effective capillary pressure Pc, 
which we hypothesise to be a function o f  mean saturation s only. Pc(s) is the 
difference between the pressures o f  invading and displaced fluids. This has been 
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computed at various stages during the growth in the different annuli dividing the 
network. Example curves in three dimensions for M = 1, 2 = 0.5, and Arc = 0 and 
0.5 are shown in Figure 13. The results in two dimensions are much poorer and are 
not presented here, since, as we discussed in Section 3.2, Pc is only well defined for 
saturations near zero for very low flow rates, which is clearly different from the 
behaviour of real three-dimensional systems. 

Pc is measured in units of 2y/r o. For 2 = 0.5, the tube radii vary from 0.5r 0 to 
1.5ro and so the maximum and minimum interfacial pressures in a single tube are 
2 x 2y/ro and 1/1.5 x 2~/ro, respectively. The shape of Pc(s) for Arc = 0 is similar to 
capillary pressure curves obtained from mercury injection into rock samples (Dul- 
lien, 1979). The variation in capillary pressure is smaller than observed in most 
experimental systems, since our simulated radius distribution is narrower than in 
real rocks. Notice also that Pc rises steeply when only 36% of the nodes are filled: 
the remainder of the nodes are trapped in immobile ganglia surrounded by the 
injected fluid. 

For Arc = 0.5, the capillary pressure is higher at low saturations, although there 
is no significant change in residual saturation (this is only seen at higher No). At 
low flow rates, narrow tubes are only filled by injected fluid when s is high, whereas 
at high rates, small tubes may also be accessed, because of the local effect of viscous 
forces. The comparative importance of capillary to viscous forces is measured by 
Nc. Thus, although Pc(s) increases slightly with rate, relatively, the effect of 
capillary forces on displacement diminishes as N~ increases. 
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At a microscopic level, the functions F and Pc are meaningless, but we have 
demonstrated that the averaged properties of pore-scale flow may be described in 
terms of parameters which depend on the local saturation, and of course the 
properties of the network and the fluids, but not explicitly on time or radius. 

4.4. RELATIVE PERMEABILITY 

The fractional flow is the most natural function to describe the development of the 
saturation profile. However, this does not give us directly a relationship between the 
fluid flux and an averaged pressure gradient. If  we wished to describe the flow in a 
very large network, we could model the fluid flow by the macroscopic Darcy's law, 
Equations (5) and (6), with numerically or experimentally determined relative 
permeabilities, kri and krd. It is these functions which account for the microscopic 
physics and which enable the complexity of pore-scale flow to be replaced by 
averaged macroscopic parameters. 

We find the relative permeabilities directly in our simulation. We calculate the 
differences in mean pressure in the invading and displaced fluids, z~pi and Apj, 
respectively, across the 40 annular sections dividing the network. The mean 
saturation in the annuli and the fluxes of invading and displaced fluids across them 
are also calculated. From these quantities we may calculate relative permeabilities 
using Equations (5) and (6): 

krd(s) = qapaXo (17) 
K Ape'  

k,i(s) qd~Xo 
- - K  Api , (18) 

where x o is the width of  each annulus. The absolute permeability, K, is defined such 
that krd(s --- 0) = 1, i.e. K is the permeability of the medium in single-phase flow. 
Notice that we assume that the viscosities # have the same values as in single-phase 
flow. This is different from the interpretation in miscible flow, where it is assumed 
that kri = s and so /~(s) is calculated to obey Equations (17) and (18). For  
immiscible flow, this means that the relative permeabilities are likely to be nonlin- 
ear, because of viscous fingering, even when N c = 0% if M 7> 1. 

Example curves are shown in Figure 14 for M = 1 and Arc = oo in two dimen- 
sions. The quality of  the data is not as good as for the fractional flow curves, since 
we have needed to use computed pressure gradients. The heterogeneity of the 
network initiates some fingering and the invading nonwetting fluid traps a small 
fraction of slowly moving displaced fluid. Hence, the relative permeability departs 
slightly from the linear form expected in smooth viscous flows in a homogeneous 
medium. 

Three-dimensional results for M = 1 and Arc = oo and N c = 0 are shown in 
Figure 15. 
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Fig. 16. Two-dimensional relative permeability curves for N c = oo and for viscosity ratios, M, as 
shown, For clarity only the invading fluid curve is plotted. 

Figure 16 shows the invading fluid relative permeability for two-dimensional 
viscous floods at different viscosity ratios. By averaging the fluxes, saturations and 
pressures over an annular region, we have accounted for fingering in the relative 
permeability, which as a consequence is a function of M. The nonlinearity of the 
curves is most marked for large M, indicating that, on the pore scale, the 
displacement is very unstable and highly fingered. 

At low flow rates, experimental relative permeabilities are insensitive to viscosity 
ratio (Dullien, 1979), but at higher rates, which are simulated here, k r is known to 
change (Odeh, 1959). 

4.4.1. Effect of Capillary Number 

At very high rates, flow can proceed through all parts of the network, including the 
very small tubes. As Nc decreases, flow is blocked in some places due to capillary 
forces. This will tend to decrease the relative permeability of both injected and 
displaced fluids. However, as we demonstrated in Figure 7, at low rates, the injected 
fluid moves through only the widest channels, which alone has the effect of 
increasing its permeability relative to the displaced fluid. Thus, at a given satura- 
tion, kra must decrease with decreasing rate, while kr; may either increase or 
decrease. In two dimensions, the blocking of flow channels is the more significant 
effect, and when Nc = 0, the relative permeabilities are almost zero for nonzero 
saturations (see Section 3.2). 

Figure 17 is the relative permeability for M = 1 and N~ = 0.5 in two dimensions. 
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Relat ive  permeabi l i ty  curves  for M = 1 a nd  N c = 0.5 in two dimensions.  

The fluid interface is marginally stable to viscous fingering at unit viscosity ratio. 
However, capillary pressure inhibits the flow through narrow tubes, which causes a 
sharp front to smear out and increases the tendency for displaced fluid to be trapped. 
If Figure 17 is compared with Figure 14, it also is evident that the apparent 
permeability of the medium is decreased when the capillary pressure is increased. 
Freezing the fluid interface at narrow throats increases the resistance to flow. 

Figure 18 shows the relative permeability for M = 10 and for two different 
capillary numbers. For  N~ = 5, the curves are similar to those obtained for Nc -- oo 
in Figure 14. However, for No = 0.5, we again see that the relative permeability 
curve is lower than for a purely viscous displacement. 

In three dimensions, the blocking of channels is less significant at higher 
saturations, where the injected fluid finds a permeable pathway through the 
medium, bypassing any narrow tubes. This is demonstrated in Figure 15, which 
shows relative permeabilities for No = 0 and No = oo.  kra = 0 for Nc = 0 when only 
36% of the nodes are filled. This indicates a very high residual saturation of 64%. 
The coordination number of the Voronoi lattice is only four, which makes it easy 
for the displaced phase to be trapped. In real systems, the effective coordination 
number is likely to be higher, giving a lower residual saturation. 

The relative permeability is a function of capillary number for intermediate flow 
rates. It is, however, often assumed that the relative permeability is insensitive to No 
(overall flow rate or capillary pressure). When No is small this has been confirmed 
by many experiments, see, for instance, Amaefule and Handy (1982). However, 
Bardon and Longeron (1980) studied the gas relative permeability in a Fontain- 
bleau sandstone as the interfacial tension 7 was varied from 0.04 to 0.001 mM/m. 
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Two-dimensional relative permeability curves for M = 10 and for the capillary numbers N C 

Lowering 7 effectively increases the capillary number. At the lowest interfacial 
tension, the relative permeabilities are almost exactly linear, but become increas- 
ingly curved as 7 is increased, qualitatively, the results are similar to Figure 15, 
which shows three-dimensional relative permeabilities at very high and very low 
flow rates, except that the residual saturations are lower in the experiment. 
Quantitative comparisons are, unfortunately, not possible without some knowledge 
of the microscopic rock structure. 

These relative permeabilities have been obtained in a macroscopically radial flow, 
where, at the pore scale, the local ratio of viscous to capillary forces decreases with 
radius from the injection site. However, the explicit radial dependence of the flux 
has been accounted for by Equation (10), leaving permeabilities which are functions 
of saturation only. A change in the global value of N c alters the relative importance 
of viscous to capillary forces everywhere in the network. 

5. Conclusions 

We have used a network model of flow in porous media to study the effect of 
viscosity ratio and capillary pressure on pore-scale displacements in both two and 
three dimensions. With this model, we are able to show how the microscopic 
physics of flow affect averaged properties on the centimetre scale. We can indicate 
the appropriate functions necessary for a consistent and accurate description of the 
displacements and the parameters on which they depend. 



432 MARTIN BLUNT AND PETER KING 

In brief we may make the following conclusions: 

(a) The mean saturation profiles are consistent with a Buckley-Leverett theory. 
This enables the floods to be described in terms of empirical parameters. 

(b) For a displacement with a fixed viscosity ratio and capillary number, the 
fractional flow and relative permeability are functions of the local saturation 
only. 

(c) The relative permeabilities have been shown to be functions of both capillary 
number at intermediate flow rate and viscosity ratios greater than unity. 

We have proposed a conventional description in terms of saturations and 
pressures averaged over several pore volumes. This approach has been verified for 
floods in a radial geometry, where profiles at different times can be scaled onto a 
single curve. We have been able to compute effective relative permeabilities, 
fractional flows, and capillary pressures. 

More detailed work and development should involve comparison of this model 
with results from experiment and conventional simulation. 

In particular, the remaining problems and suggestions for more study include: 

(a) The microscopic physics of fluid flow in porous media is still not completely 
understood, especially for invasion by a wetting fluid, which has not been 
studied here. Experimental and theoretical work could suggest simple yet 
realistic rules for modelling all types of displacement. 

(b) More three-dimensional simulations could be performed. In particular, simu- 
lations in a cylindrical geometry could be performed. 

(c) The effect of matrix heterogeneity on the flow has yet to be investigated. 
(d) A direct comparison of experimental bead pack or network displacements 

with this model could be made. 

Experimental work on micromodels of porous media can be used to determine 
the rules and equations necessary for a pore-scale description of immiscible dis- 
placement. This microscopic physics can be input into our numerical model, which 
is sufficiently large enough that quantitative computations of macroscopic effects 
can be made. We can then determine the correct averaged functions to describe the 
progress of the flow, the results of which can again be confirmed against core-scale 
experiments, which alone are unable to probe microscopic effects. The goal is to use 
this model as a tool for gaining a predictive understanding of flow in porous media 
from the micron to the centimetre scale. 
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