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Abstract. There is a need in the numerical simulation of reservoir performance to use average 
permeability values for the grid blocks. The permeability distributions to be averaged over are based 
on samples taken from cores and from logs using correlations between permeabilities and porosities 
and from other sources. It is necessary to use a suitable 'effective' value determined from this sample. 
The effective value is a single value for an equivalent homogeneous block. Conventionally, this 
effective value has been determined from a simple estimate such as the geometric mean or a detailed 
numerical solution of the single phase flow equation. 

If the permeability fluctuations are small then perturbation theory or effective medium theory 
(EMT) give reliable estimates of the effective permeability. However, for systems with a more severe 
permeability variation or for those with a finite fraction of nonreservoir rock all the simple estimates 
are invalid as well as EMT and perturbation theory. 

This paper describes a real-space renormalization technique which leads to better estimates than 
the simpler methods and is able to resolve details on a much finer scale than conventional numerical 
solution. Conventional simulation here refers to finite difference (or element) techniques for solving 
the single phase pressure equation. This requires the pressure and permeability at every grid point to 
be stored. Hence, these methods are limited in their resolution by the amount of data that can be 
stored in core. Although virtual memory techniques may be used they increase computer time. The 
renormalization method involves averaging over small regions of the reservoir first to form a new 
'averaged permeability' distribution with a lower variance than the original. This pre-averaging may 
be repeated until a stable estimate is found. Examples are given to show that this is in excellent 
agreement with computationally more expensive numerical solution but significantly different from 
simple estimates such as the geometric mean. 
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1. Introduction 

In  the numer ica l  s imula t ion  of reservoir  pe r fo rmance  an 'e f fect ive '  p roper ty  

va lue  has to be  assigned to each grid block.  Of ten  the grid blocks are on  the scale 

of hundreds  of metres ,  whereas  rock he terogenei t ies  can  occur  on  m a n y  scales 

down to the sampl ing size of cores;  typical ly tens of cent imetres .  T h e  size of 

f luc tuat ion  in absolute  permeabi l i ty  can  be severe,  r ang ing  over  m a n y  orders  of 

magn i tude .  This  makes  it par t icular ly  difficult to assign to this p roper ty  a single 

effect ive va lue  which gives the same m e a n  flow. M a n y  a t tempts  have been  made  

to address this p roblem,  some numer ica l  (Warren  and  Price, 1963; Freeze,  1975; 

Smith and  Freeze,  1979; Smith and Brown,  1982) and  others  analyt ical  (Bakr et 

al., 1978; G u t j a h r  and Gelhar ,  1981; Gelhar ,  1974; Mizzell et al., 1982; Dagan ,  
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1981, 1982; King, 1987). The analytical methods are based on effective medium 
theory (EMT) or perturbation expansions. In the next section, the results of these 
methods are briefly reviewed. In either case the effective permeability estimates 
are only accurate when the permeability fluctuations are small. This is rarely the 
case for the systems of interest. Also many reservoirs contain significant amounts 
of impermeable material (or material of very low permeability). This situation is 
not amenable to treatment by the simple methods and estimates like the 
geometric mean are invalid. 

To treat these more complicated cases we have developed a method of 
real-space renormalization to improve the effective permeability estimates. Ori- 
ginally due to Kadanoff (1966), the idea is to calculate the effective permeability 
over local regions first. This reduces the magnitude of the fluctuations to give a 
new ('renormalized') probability distribution. The more simple estimates applied 
to this distribution are then more accurate as the permeability variance has been 
reduced. Alternatively the renormalization procedure can be applied repeatedly 
to give a fixed point value for the effective permeability. This technique has been 
applied in conjunction with EMT before (Sahimi et al., 1984) but only in the 
more specialized problem of percolation theory. 

We describe the renormalization method in detail for the isotropic case and use 
it in conjunction with some simple permeability distributions where numerical 
and other simple estimates are known. We also apply the method to the case 
where a finite amount of impermeable material is present. Finally, we consider 
some real reservoir data where excellent agreement is found with detailed 
numerical simulation at a considerable saving in computer time. In these exam- 
ples the permeability distributions are anisotropic and both horizontal and 
vertical permeability are calculated. 

2. Simple Estimates 

For many years there has been a strong practical requirement in the hydrology 
and oil recovery industries for simple estimates of effective permeability values 
for heterogeneous systems. The earliest attack on this problem was by Warren 
and Price (1963) who used numerical simulations to show that of the arithmetic, 
geometric and harmonic means the geometric mean usually gives the closest 
estimate to the effective permeability for a random, isotropic distribution. Indeed 
this is still taken as the standard estimate within the petroleum industry. 
However, there are many distributions for which this is not a good estimate. For 
example, the geometric mean of a distribution with a finite fraction of zero 
permeability is zero, yet such a system may have a nonzero overall permeability. 
To overcome this difficulty, a number of attempts have been made to provide 
theories of effective permeability. There have been two main approaches to the 
problem; perturbation theory and effective medium theory. We briefly review 
these theories here. 
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First we present a simple perturbation calculation of effective permeability. 
This result is well established in the physics literature (Landau and Lifshitz, 
1960). We assume that the permeability may be written as a mean value (/s plus 
a perturbation (~K) with zero mean. This perturbs the mean pressure field (/5) by 
an amount 6P which has zero mean. Then in Darcy's Law 

- v  = ( / ( +  6K)V(/5 + 8P) (2.1) 

Averaging this gives 

-r162 = ~; V P + 61s V 6P. (2.2) 

The fluid is incompressible, hence the divergence of (2.1) is zero. 

/s = - V P .  V K. (2.3) 

Taking the gradient of this equation gives: 

1 V(VP. V3K) V 2 V  6P = - ~  

1 = - ~ ( V P .  V) V6K. (2.4) 

(since the homogeneous pressure field 15 satisfies Laplace's equation). We now 
average (2.4). For an isotropic medium the average of the operator 02/OxiOxi is 
(1/D)3ijV 2, where D is the dimension of the problem. 

Hence 

V 2 V  6P = - V P VZ6K" (2.5) 
D K  

Thus, if the correlation function in (2.2) is ignored, the average velocity field is 

- 8K2/ 
~ = - / ( V / 5  1 D/~2 J. (2.6) 

Thus, the effect permeability is given by 

O'2 / 
- ~-~sj-  (2.7) 

Where o-~ is the permeability variance. 
It can be seen from this and (2.1) that if the permeability variance is large the 

result is invalid. A more sophisticated approach using the methods of field theory 
(King, 1987, also Gutjahr et al., 1978) gives the result 

2[1 l ] 
Ken = Kg exp o- [ ~ - ~ ] .  (2.8) 

Where o -2 is the variance in the logarithm of permeability and Kg is the 
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geometric mean of the permeability. This approach is the same as the pertur- 
bation theory, except that it uses field theoretical methods to include higher- 
order terms in the perturbation expansion. This method is referred to later as 
'improved perturbation'. 

Effective medium theory (Kirkpatrick, 1973) is based on the idea of replacing 
the inhomogeneous medium by an effective homogeneous medium of per- 
meability Ke~ such that if a single inclusion of a different permeability is 
introduced then the mean pressure fluctuation (caused by that inclusion) is zero. 
The distribution of pressure in the heterogeneous medium may be considered as 
an 'external field' due to the homogeneous effective medium and a fluctuating 
'local field' whose average over any sufficiently large region will be zero. 

To see how this works consider a piece of rock of permeability K embedded in 
the effective medium (Ken). The pressure at large distances will be that due to a 
uniform velocity v, which may conveniently be set along the x axis. Also for 
simplicity, we consider the inclusion to be spherical (radius ro) in a D-dimen- 
sional space (Figure 1). We solve for the pressures exterior and interior to the 
inclusion in D-dimensional spherical coordinates. The problem has azimuthal 

symmetry and the far field has a cos 0 dependence which must be reflected in the 
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( u n i f o r m  a t  ~ )  
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P "-- - -  V X  
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Fig. 1. Geometry for EMT calculation. 
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pressure solution. Hence the radial dependence of the pressure is given by 

{ d2 D - l d  D - 1  } 
~ r  2 + P = 0. (2.9) r dr r 2 

The solutions of which are r and r -(D-l) .  The pressure within the inclusion 
must be finite so the second solution is not admissible there. The far field (P=) is 
-v rcos  O/Ke,. Finally, the pressure at the boundary of the inclusion must be 
continuous as must the normal velocity. From these conditions the pressure fields 
external and internal to the inclusion are: 

Pe = l +  g + ( O - ~ K e ~  P~' (2.10) 

DKe~ 
P, = e=. (2.11) 

[K + (D - 1)Ked 

Then the condition that the mean fluctuation in the pressure field due to the 
inclusion is zero is 

\K+(D-1)Ken /  O, (2.12) 

Hence, the effective permeability Keer is that value which satisfies the integral 
equation (Kirkpatrick, 1973; Koplik, 1982) 

( 1 ) _  1 (2.13) 
K + ( D -  1) Kerr D K j  

This method can be implemented by using an iterative procedure. If at the Nth 
stage the estimate of effective permeability is KN then the next estimate, KN+I, is 
found from 

1 
KN+I - D((K + (D - 1)KN)-~) ' (2.14) 

Repeat this process until the difference between successive estimates is con- 
sidered to be small enough. The limit of KN as N ~  oo is Ken. 

Both effective medium and perturbation theory break down when the per- 
meability fluctuations become very large. The rest of this paper is devoted to a 
study of real-space renormalization which provides a means of estimating the 
effective permeability when the permeability fluctuations are large. 

3. Real Space Renormalization 

The assumption behind effective medium theory is that the mean fluctuations in 
the pressure field are negligible and average to zero. As the permeability 
fluctuations increase, we would expect the pressure fluctuations also to increase. 
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We would, therefore, expect the effective medium approximation to break down 
in this case. To counter this we use a position space renormalization approach. 
Originally, due to Kadanoff (1966), the idea of position space renormalization is 
first to perform a certain amount of the averaging explicitly and then to consider 
the properties of the pre-averaged model. It has been applied in connection with 
effective medium conductivity calculations before, but only for a bimodal dis- 
tribution (Sahimi et al., 1984). 

Explicitly, the renormalization procedure is as follows. We describe the method 
in two dimensions, but it is readily extended to three. We imagine the per- 
meabilities to be distributed on a grid whose scale length is representative of the 
original data sample size. For example, if the permeabilities are derived from 
samples at one-foot intervals, the original grid blocks should have dimensions of 
one foot. The permeability distribution is taken from the sample distribution 
found from the cores. We will only consider uncorrelated media here so the 
permeabilities are distributed at random in the examples given. This is not a 
restriction on the method but to treat correlated media we need statistical 
methods for generating large grids of correlated variables. This is a different 
problem and so we will restrict our discussion to uncorrelated media here. The 
same technique is used for correlated media once the permeability grid has been 
determined. The original grid blocks are grouped into blocks of four (or eight in 
three dimensions). The effective permeability of the four blocks is calculated and 
assigned to a new, coarser grid (Figure 2). In this context the effective per- 
meability is a single value which gives the same flow across the four blocks for a 
given pressure drop, as would the original blocks. 

In the explicit calculations for this section, we will only treat isotropic media so 
we need to consider flow in only one direction (either horizontal or vertical). For 
anisotropic media we would have to look at the transformations in the vertical 
and horizontal directions separately. 

K K K K 
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K K K K 
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Fig.  2. B l o c k  renor rna l i za t ion  of grid.  
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Blocks of more than four cells may be used, but the transformed permeability is 
correspondingly more complicated to calculate. Alternatively, the above trans- 
formation may be applied to the new grid and the process repeated many times 
until a stable result is found. This will be the effective permeability of the region. 
At each stage larger effective blocks will be formed whose permeability ap- 
proaches that of the whole region. The variance in the permeability will be 
reduced, as would the correlation length in correlated media. This result shows 
that the grid block probability distribution to be used in a reservoir simulator will 
not be that of the core samples. We will examine how the renormalization 
rescales the permeability variance in Section 5. 

Write the effective permeability of the four permeabilities as 

I~ = f(K1, K2, 1s K4). (3.1) 

Then, if the permeability distribution on the old grid is P(Ki), the probability 
distribution on the new grid is 

P(Is = I 6(I~- f(K1, K2, K3, K4)) X 

x P(KI)P(K2)P(K3)P(K4) dK~ dK2 dK3 dK4. (3.2) 

The integrations are performed over all possible values of the original grid block 
permeabilities K1 . . . .  , K4 (or K 1 , . . . , / s  in three dimensions). 

Whilst this expression is formally exact, it is not possible to proceed further 
analytically although we may linearize this if the permeability fluctuations are 
small, as shown in Section 5. Instead, we develop the probability distribution 
/5(/~) by Monte-Carlo sampling. First we select K1, K2, /s and K4 from the 
original probability distribution. /s is calculated from (3.1). This is repeated until 
a satisfactory distribution/5(/~) is built up. 

4. Calculation of Renormalized Permeabilities 

To apply the renormalization technique we first need to calculate the effective 
permeability of the renormalized block. We describe the method explicitly in two 
dimensions and give the three-dimensional result in Appendix 2. 

We require an analytical result for the effective permeability of the two by two 
block. Unfortunately, an exact result is not available. We could, of course, 
calculate the effective permeability by direct numerical simulation. However, 
because a large number of such blocks would be required, this approach would 
be computationally very expensive. Instead, we adopt an approximation which is 
very accurate unless the permeabilities are arranged in particular configurations. 
These will be very rare events, however, and even in these cases the error is 
small. 

We model the block permeabilities by an equivalent resistor network. We use 
the boundary condition that the sides of the blocks are at uniform pressure. This 
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is true for the external edges but not for the internal ones and is the source of the 
error mentioned above. Then the equivalent resistor between the midpoints of 
the edges is I/K for a block of permeability K. This is equivalent to two resistors 
in series of l / (2K) .  We can also use two resistors in the transverse direction. 
These will have the same resistance for an isotropic medium but would in general 
be different. Thus, we replace each block with a cross of resistors. 

. . . . . .  K . . . . .  

F . . . . . . .  F . . . . . .  

I ' "  / 

I l / z i <  i i~ l i~  
k 
I 
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Because we are only considering isotropic media here, we calculate the 
effective permeability in only one direction, horizontal. For anisotropic media we 
must consider the transformation in orthogonal directions. We, therefore, set the 
end edges to a uniform pressure. 
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We trim off the dead end branches and join together those nodes at the same 
pressure to give the equivalent resistor network. 
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This network may be simplified by use of the star-triangle transformation 
(Appendix 1) to give a circuit consisting of resistors in series and parallel. 

12 

P P 

... g 

1(1+ 1) 1 
a 4(K1+ K3)' b =4K1, c d -  

1(~33 + ~ 4 )  1 1 l - - 2  , = - -  
e = 4(K2 + K4)' f = 4K3' g h 4K4 

This circuit is equivalent to 

B 
A a ~ e A V ~ /  V 

P P 
C 

3 K I + K 2  3 K3+K4 
B -  C -  

4 K1K2 ' 4 K3K4 

This may be reduced to a single resistance whose conductance is 

f(K1,1(2, K3, K4) 

= 4(K1 + K3)(K2 + K4)[K2K4(K1 + K3) + K1K3(K2 + K4)] x 

• {[K2K4(K~ + K3) + K~K3(K2 + K4)][K~ +/(2  +/(3 + g4] + 

+ 3(K~ + Kz)(K3 + K4)(K, + K3)(K2 +/(4)} -t. 

We must be careful at this point. Permeability is an intensive property, whereas 
conductance is extensive; thus we have to take into account the change in 
dimensions of the renormalized block. Consider a renormalization whereby /3 
small blocks in each direction are combined (/3 = 2 in the case above). Then the 
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cross-sectional area to flow scales as /3 e-1 (in d dimensions) and the length scales 
as/3. Hence, for fixed volumetric flow rate and pressure drop, the ratio of flow to 
pressure change scales as/32-a. This is the conductance scaling required. Thus, 
the permeability is the conductance calculated above multiplied by /3a-2. So 
Equation (4.1) also gives the effective permeability in two dimensions. The 
three-dimensional conductance must be divided by /3 (= 2 here) to give the 
effective permeability. 

This result (and the equivalent three-dimensional result) was compared against 
direct numerical simulation for a number of test cases. The maximum error found 
was around 7% for an extreme case where flow through the block was highly 
convoluted. This is precisely the situation encountered with shales in Section 8. 
This could be avoided by using a direct numerical simulation of the renor- 
malization gridblock or by using a larger unit cell. For example a 3 x 3 unit cell 
would better resolve cross flow. 

This then is the effective permeability to be used to find the renormalized 
probability distribution in Equation (3.2). The equivalent set of transformations 
for the three-dimensional case is considerably more complicated and does not 
yield a simple closed form result (like (4.1)). However, the various steps may be 
implemented numerically. The transformations (just repeated application of the 
star-triangle transformation) are outlined in Appendix 2. It should be noted that 
(4.1) is only valid for isotropic media. In the presence of anisotropy the resis- 
tances in the vertical direction will be different from the horizontal ones. This 
does not lead to a close form formula like (4.1), but the solution may still be 
achieved numerically. 

5. Scaling ot Renormalization Equations 

Although the renormalization equation (3.2) cannot be solved exactly for general 
distributions it is possible to study its behaviour after a large number of renor- 
malizations have been made. This gives information about how the variance of 
the renormalized permeability distribution decreases at each renormalization. 
The idea is to consider the fixed point probability distribution after a large 
number of renormalizations. The result of repeated renormalization is to give a 
single value, that is the probability distribution reduces to a delta function. This is 
the limit of a Gaussian distribution for a small variance. This is independent of 
the initial permeability distribution all of which will eventually tend towards the 
Gaussian. Hence, in equation (3.2) we consider P(K~) to be a Gaussian. We take 
Ki to be normally distributed with a small variance and so only look at first-order 
perturbations to the renormalized permeability f({Ki}) given by equation (4.1). 
That is we write K~ = Kn(1 + A~) for the permeability of the ith block after the 
nth renormalization and expand (4.1) up to first order in the A~. For convenience 
we write A = E~A~. The first-order expansion gives 

f(K,, g2, Ks,/s = K,(1 + A/4)+ O(h2). (5.1) 
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We now write the probability distribution of the K's after the nth renor- 
malization (n is large to justify the Gaussian although, in practice, n of order 
three or four gives a good approximation to the Gaussian) as 

P , , ( K , )  ~ exp[-  (Ki - K.)2/2o -2] 

exp[-  K2.AZ~/2 o-2]. (5.2) 

We can now integrate Equation (3.2) exactly by completing squares within the 
exponentials and using the property that integrals of Gaussians yield Gaussians. 
Omitting the tedious algebra gives the probability distribution at the n +  lth 
renormalization to be 

P.+I(/() - exp[-  2(/~ - Kn)21o'2]. (5.3) 

Now for this to be a fixed point distribution P.+I must be of the same form as 
P. .  That is 

P.+I exp[-  (/(  - 2 2 K.+,) /20"n+l]. (5.4) 

This implies that the distribution parameters behave in the following way under 
renormalization. 

K.+I = K . ,  (5.5a) 

2 = o.2/4. (5.5b) O'n+ 1 
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Fig. 3. Renormal iza t ion  of probabil i ty distributions. 
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The equivalent results in three dimensions are 

Kn+l = K , ,  (5.6a) 

2 = o'2/8. (5.6b) o'n+l 

That is the mean of the distribution is unchanged and the variance is reduced 
by a factor of four (2D) or eight (3D) at each renormalization. The effect of 
repeated renormalization on a uniform probability distribution is shown in Figure 
3. The scaling of the mean and variance is shown in Figures 4 (2D) and 5 (3D), 
which can be seen to be in agreement with Equations (5.5) and (5.6). 
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Fig. 4. Scaling of probability parameters in two dimensions. The circles are from numerical 
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The significance of this result is that the variability in permeability observed 
from small length scale samples such as cores is not necessarily that which should 
be used at the reservoir simulator grid block scale. Whilst this is a well known 
result, Equations (5.5b) and (5.6b) give an estimate of how the variance should 
be reduced between the two scales. 

6. Renormal izat ion o[  Probabil ity Distributions 

The block renormalized permeability f({K}) should be used in (3.2) to determine 
the renormalized probability for the permeability. Clearly, this is not going to be 
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amenable to analysis even for simple probability distributions. However, we may 
sample {K} from the initial distribution, calculate /~ and from this build up the 
new distribution. We do this for two distributions; uniform and log-normal, in two 
and three dimensions. 

For the uniform distribution defined on the interval [a, b] (with a, b 1> 0) the 
perturbation parameter ~r~(dK 2) is bounded by 1/3d. Hence, we would expect 
the EMT result to be a good approximation for this distribution. In Table I we 
present the results of EMT, renormalization, first order perturbation, the im- 
proved perturbation theory of King (1987) and direct numerical simulation of the 
effective permeability for two uniform distributions; [1, 9] and [1, 99]. These 
results are given for two and three dimensions. For comparison the arithmetic, 
geometric and harmonic means of these distributions are also presented. The 
renormalization result is the fixed point after several transformations. That is four 
(or eight in three dimensions) permeabilities were chosen from the initial per- 
meability probability distribution. The renormalization transformation was ap- 
plied to these. This was repeated many times (about 10 000 in these studies) to 
give a new, or renormalized, permeability probability distribution. This process is 
repeated until the distribution is so sharp that it is defined by a single value, this is 
the fixed point. Usually around four or five renormalizations were required to get 
the fixed point although one transformation was often adequate to get a result 
within a few per cent. 

The first point to notice is that all these estimates of the effective permeability 
are very close. The maximum deviation (away from the numerical simulation 
which is taken to be the best estimate) is about 8%. The agreement between the 
renormalization and simulation estimates is within 1%. The main difference is in 
computational effort. The direct numerical simulation (Begg and King, 1985) 

Table I. Summary of results for uniform distribution 

Permeability range [1, 9] [1, 99] 

Arithmetic mean (Ka) 
Geometric mean (Ko) 
Harmonic mean (K~) 
Coefficient of variation (o-2/K~ 
Simulation 2D 
Result 3D 
EMT 2D 

3D 
1st order perturbation 2D 
(Eq. 2.1) 3D 
Improved perturbation 2D 
(King, 1987; Eq. (2.2) 3D 
Renormalization 2D 

3D 

5.0 50.0 
4.357 38.168 
3.641 21.327 
0.213 0.333 
4.25 38.0 
4.46 41.2 
4.4 40.5 
4.6 44.2 
4.47 41.75 
4.64 44.5 
4.36 38.17 
4.6 43.48 
4.28 37.9 
4.48 41.5 
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solves the pressure equation for single phase fluid flow in a porous medium 
explicitly and, hence, has to store the pressure at each grid block as well as the 
permeabilities plus working space for a large matrix inversion. This limits the size 
of problem that can be solved to 42 • 42 • 42 on a Cray X-MP/12. This took 
about 35 s which is about 500/~s per grid block. The computer time for this 
method scales as N log N, where N is the number of grid blocks. The renor- 
realization method, however, does not need to store all of the information about 
every grid block simultaneously and so can be applied, in principle, to an 
indefinitely large problem. It takes about 50/~s per grid block including the 
generation of the permeabilities. The time for this method scales like N. The 
largest problem to which it has been applied so far was nearly 540 million grid 
blocks, this will be described in more detail in Section 9. 

The second point is that in both two and three dimensions, the geometric mean 
is a very good estimate of the effective permeability. In three dimensions, the 
improved perturbation result gives a reasonable estimate. Thus, for the uniform 
distribution where the variance in permeability is not high, there are several 
techniques available for estimating the effective permeability, all of which agree 
to within 10%. 

However, for the other distribution which has been considered the log-normal 
distribution, the coefficient of variation can become unbounded so all the 
perturbation techniques break down. Table II summarizes the results for two 
different log-normal distributions. It can be seen that for a large logarithmic 
variance, the first-order perturbation theory is meaningless. Also direct ap- 
plication of EMT is in error by as much as 30% for the worst case considered 
here and the improved perturbation result is not a good estimate in this case. 
However, the renormalization technique described in this paper gives excellent 

Table II. Summary of results for log normal distribution 

Distribution Parameters (2, 0.5) (2, 10) 
(KG, ~L) 

Arithmetic mean (KA) 
Geometric mean (KG) 
Harmonic mean (Kn) 
Coefficient of variation (o-2/K~) 
Simulation 2D 
Result 3D 
EMT 2D 

3D 
Ist order perturbation 2D 
(Eq, 2.1) 3 0  
Improved perturbation 2D 
(King, 1987; Eq. (2.2) 3D 
Renormalization 2D 

3D 

2.568 296.83 
2.0 2.0 
1.558 0.01348 
0.6487 22, 025 
1.95 1.31 
2.02 3.31 
2.0 2.0 
2.14 4.7 
1.735 -3.3  • 106 
2.013 -2 .2  • 106 
2.0 2.0 
2.17 10.59 
1.85 1.29 
2.06 3.2 
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agreement  to within 3%. Again the computer  time required is in favour of the 
renormalization method. Another  point to note is that the geometric mean is not 
always a good estimate of the effective permeability in two dimensions with an 
error  of up to 50% for the cases considered here. Hence,  when the permeability 
variance is large, it is necessary to use the more sophisticated technique des- 
cribed here, or direct numerical simulation. 

7. Systems with Zero Permeability 

In all the systems considered so far the probability of having zero permeability 
has been zero. However ,  it is quite common for a reservoir to have a finite 
amount  of impermeable material; the volume fraction of permeable rock is called 
the net to gross ratio. Conventional  simple estimates are now quite inadequate as 

the geometric mean of such a permeability distribution is zero, yet provided the 
net to gross is above the percolation threshold, the effective permeability is 
greater than zero. Similarly EMT and perturbation theory fail in this case. 
However ,  renormalization provides a good alternative to numerical simulation 
and is computationally quicker. 

We tested this by considering a uniform distribution on [a,  b] (a > 0) with a 
fraction p of zero permeability. 

(1 - p) 
P (K)  = p3(K)+~C-~  0 ( K -  a)O(b - K). (7.1) 

0 is the Heaviside step function. 
This random, isotropic distribution is probably atypical of a real reservoir but 

provides a good test case. In reality the impermeable material is usually dis- 
tributed in a more systematic way, for example in shale beds or in faults. This will 
be dealt with in the next section where real reservoir data are used. 

If the fraction p is above the percolation threshold (about 0.407 in 2D and 
0.689 in 3D, these are the site percolation thresholds on square and cubic 
lattices) then successive renormalizations will drive the impermeable fraction up 
until the overall effective permeability is zero. If, on the other hand, p is less than 
this fraction then successive renormalizations will reduce the impermeable frac- 
tion to zero and the effective permeability will be finite. However ,  in this case 
both the geometric and harmonic means are zero so these are not good estimates. 
We took the example given in Table I of a uniform distribution on [1, 9] with 
different initial impermeable fractions and compared the results using numerical 
simulation and renormalization. Above the threshold, both renormalization and 
conventional simulation gave zero effective permeability. Below the threshold, 
the results were that in two dimensions at p = 0.25 conventional simulation gave 
1.26 and renormalization gave 1.52. In three dimensions at p = 0.5, conventional 
simulation gave 0.58 and renormalization 0.52. Once again the agreement 
between the method is very good, with the computational advantage in favour of 
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the renormalization method. There is a clear difference between the behaviour 
above and below the percolation threshold. 

8. S y s t e m s  wi th  Shales  

A common feature in many reservoirs is the presence of shales. There are large 
laterally extensive permeability barriers which greatly impede vertical flow but 
have little affect on horizontal flow. A number of techniques have been 
developed specifically to model the effects of shales (Begg and King, 1985). 
There are two problems in using renormalization for this problem. The first is 
that the representation of shales as very low permeabilities embedded in a high 
permeability background leads to configurations within the renormalization block 
which are badly represented by the resistor network model. This is because the 
resistor network analogy gives poor resolution of the flow around the edges of the 
shales. As mentioned in Section 4, this could be resolved by using a direct 
numerical solution of the unit renormalization grid cell. The other is that enough 
grid blocks have to be specified to avoid the renormalization amalgamating the 
shales and thus further reducing the vertical flow. These considerations mean that 
renormalization is not the best technique to use for the shale problem. However, 
it is still instructive to try the renormalization method of this system. 
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Fig. 6. Assakao cliff showing location of the shales. 
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The test problem uses data from Dupuy and LeFebvre (1968) who analyzed a 
precise mapping of the Assakao cliff in the Tassili region of the Central Sahara. 
Figure 6 is a scaled map of a 145 • 100 meter section of the cliff showing the 
positions of the shales. Dupuy and LeFebvre determined the permeability aniso- 
tropy by reproducing Figure 6 on conducting paper and cutting slits at the 
locations of the shales. They then measured the vertical and horizontal resis- 
tivities. They found the vertical to horizontal anisotropy to be 0.203. Begg et al. 

(1985) applied the methods of Begg and King (1985) to this problem and found 
the anisotropy to be between 0.202 and 0.216 depending on the method. We 
used a fine scale grid of 2048 • 2048 for the renormalization technique. The 
anisotropy was found to be 0.102. In view of the above comments this is a fair 
approximation, although inferior to those methods specifically developed for 
shales, in particular the streamline method of Begg and King (1985). 

9. Application to Real Field Data 

As a final example, we apply renormalization with EMT to some real field data. 
We use the Sherwood Reservoir where conventional numerical calculations have 
been  made (Dranfield et al., 1987) of the effective permeability. This is a very 
complicated reservoir containing three different rock types each with highly 
variable permeability combined with shales. Because of the anisotropy of the 
rock permeabilities and the presence of the shales the effective permeability is 
also anisotropic. Both vertical and horizontal permeabilities were calculated. 
Only three-dimensional simulations were performed. 

The reservoir contains three rock types: clean sand, muddy sand and muddy 
silt, each of which have very different permeability distributions. Each of these 
rock types may be considered to be deposited randomly in large rectangular sand 
bodies whose length (and width) are about 100 times their thickness. Each layer 
of the reservoir contains different proportions of the different rock types. 

The conventional estimation of the effective permeability (Dranfield et al., 

1987) was done by first estimating the effective permeability of each rock type on 
a 423 grid. The moments of the distributions along with the estimates of the 
effective permeability are given in Table III. This is a very good example of how 
poor the usual simple estimates can be. The renormalization procedure, however, 
gives an excellent result. 

Then the effective permeability of each layer was calculated by representing a 
whole sand body by a single grid block with its permeability generated from the 
first stage using average rock type permeabilities. This was done because the 
conventional method had insufficient resolution to do the whole calculation in a 
single step. However, the multiple-scale structure of the problem makes it ideal 
for analysis by the renormalization method. To this end, each sand body was 
represented by a slab of varying rock type permeabilities on a grid of size 
128 x 128 x 1. A grid of 323 of these was made for each layer. This gives a 
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Table III. Sherwood data (H - horizontal values, V - vertical values) 

55 

Sand Ko Simple Perturbation EMT Numerical Renormalization 
perturbation (Eqn. 2.2) 

H 91 168 273 223 160 163 
Clean 

V 40 6.6 164 121 80 89 

H 2.15 - 1 2 . 2  4.63 3.7 2.4 2.7 
Muddy sand 

V 0.26 -11 .1  0.58 0.31 0.4 0.3 

H 0.165 0.19 0.22 0.21 0.19 0.18 
Muddy silt 

V 0.06 0.063 0.064 0.064 0.063 0.062 

representation of the layer with nearly 537 million grid blocks. The results of this 
are given in Table IV. For comparison a renormalization calculation correspond- 
ing to the second stage of the conventional approach is included (this is the 
column marked 'average'). One disadvantage of the conventional simulation is 
that a small sample of permeabilities is used, in this case around one thousand. 
This means that there will be a distribution of effective permeabilities calculated. 
To determine this several realizations were made and the standard deviation 
calculated. In the case of the small sample size used in the direct numerical 
calculation this was typically about 10 to 30% of the mean value. For the 
renormalization it was at most 5% because of the much larger sample size. The 
errors shown in Table IV represent an estimate of one standard deviation. These 
results show the advantage of the renormalization method in the much higher 
level of resolution available. The final stage incorporating the shales was not 
attempted by renormalization because of the reasons stated in the previous 
section. The streamline method would appear to be the most appropriate for a 
three dimensional problem of this complexity. 

Table IV. Sherwood data (H - horizontal values, V - vertical values) 

Layer Numerical Renormalization 

Average Distribution 

H 76.6 + 14.7 84.3 + 1.4 70.5 • 1.8 
Upper A V 0.17 4- 0.04 0.18 4- 0.008 0.19 + 0.02 

H 69.4 + 18.1 67.2 4- 2.9 54.9 4- 2.0 
Upper B V 0.3 4- 0.18 0.22 • 0.004 0.32 • 0,10 

H 72.3 + 16.3 68.4 + 3.5 53.93 4- 3.6 
Upper C V 0.29 4- 0.18 0.22 4- 0.007 0.24 4- 0.02 

H 82.4 :k 8.2 84.8 4- 3.6 70.8 4- 3.5 Middle 
V 0.64 4- 0.11 0.60 4- 0.063 0.92 4- 0.07 

H 43.44- 15.7 53.7 4- 2.1 3 9 , 4 •  
Lower 

V 0.24 4- 0.10 0.23 4- 0.011 0.24 4- 0.03 
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10. Conclusions 

We have described a technique (real-space renormalization) for calculating the 
effective permeability of a heterogeneous medium when the permeability fluctu- 
ations are too large for other, simpler, methods to be applicable. It has been 
shown that this method is accurate in comparison with direct numerical simula- 
tion but is computationally much cheaper. 

Another advantage of the method is that since explicit realizations are not 
required to be held in computer core and no costly solution of differential 
equations is performed the procedure is able to treat much larger problems than 
conventional simulation. This enables a much finer resolution of sand bodies 
allowing for a more accurate estimate of effective permeability with more 
economy in computer time. The maximum size of problem that can be solved 
using the renormalization method is limited by the amount of computer time that 
is available rather than the amount of computer storage. 

However, the method as described has some drawbacks. If the flow paths a 
very contorted then the resistor network used does not give a good represen- 
tation. In such cases the estimate of effective permeability is not good. Such cases 
will be common when there is a high contrast between neighbouring per- 
meabilities, for example in the shaly reservoirs. Also the renormalization ap- 
proach will not give a direct realization of the flow paths. If this is required then a 
direct numerical simulation is necessary which may be done for small models. 

In conclusion we have described a powerful new method of calculating 
effective permeability which is useful in a large number of reservoir engineering 
situations. It is a simple numerical method which only requires a permeability 
probability distribution to be input. As seen in the previous section this may be 
determined from real field data and input digitally. 

11. Appendix 1: The Star-Triangle Transformation 

This transformation proves very useful for reducing resistor networks to a more 
simple form. It provides an equivalent circuit for three nodes joined by three 
resistors. The transformation is 

A R B A 
3 

A 

C 

B 

O 
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where 

R2R3 
RA-- 

R~ + R2 + R3 

and 

R1 = 
RBRc+ R c R a +  RARB 

RA 

with similar expressions for the other resistors. 

12. Appendix 2: Three-Dimensional Renormalization Procedure 

A 2 • 2 • 2 block is written as an equivalent resistor network which is reduced, 
through a sequence of star-triangle transformations, to a single resistance. This 
sequence is given here without any commentary.  

m a c r o s c o p i c  

f l o w  d i r e c t i o n  

1 

. 

L 
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Whence, the rest is derived relatively easily. The conductance of this equivalent 
network must be divided by two as explained in Section 3. Whilst this procedure 
does not lead to a simple closed form expression for the renormalized per- 
meability, as it does in two dimensions, it may be readily implemented numeric- 
ally. The new resistances in each stage above are calculated explicitly. 
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