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S U B J E C T I V E  E X P E C T E D  U T I L I T Y :  

A R E V I E W  O F  N O R M A T I V E  T H E O R I E S  

Abstntct: This paper reviews theories of subjective expected uttlity for decision making 
under uncertainty. It focuses on normative interpretations and discusses the primitives, 
axioms and repwsentation-uniqueness theorems for a number of theorie~ Similarities 
and differences among the various theories are highlighted. The interplay between 
realistic decision stmetures and structural axioms that facilitate mathematical derivations 
is also empha~zed. 

The review attempts to be complete up to 1980. Among others, it includes theories 
developed by Ramsey; Savage; Suppes; Davidson and Suppes; Anscombe and Amnann; 
Pratt, Raiffa and Sr Fishburn; Bolker; Jeffrey; Pfanzagl; Lute and Krantz. 

1. I N T R O D U C T I O N  

This paper reviews theories for decision making under uncer ta inty  that  repre- 

sent numerically the beliefs and preferences o f  a presumably rational individ- 

ual in a personalistic, or  subjective, expected ut i l i ty  model.  Although there is 

abundant  evidence ~ that  people 's  casual or  carefully considered decisions 

of ten violate the assumptions o f  subjective expected ut i l i ty  theories,  these 
theories are felt by  many  v, Titers to  provide the most satisfactory normative 

approach to  decision making under uncertainty.  The present survey will 

focus on the normative approach and describe in modest  detail  the primitives, 

axioms, and numerical representations o f  a variety o f  theories that  have been 

proposed since 1926, when Frank  P. Ramsey set down his ideas for measuring 

beliefs on the basis on the extents  to  which we are prepared to act on them. 

Three pre "hminary sections will preface our more detailed review o f  par- 

t icular theories. The Fust o f  these identifies the primitives and constructed 

not ions that  are used in most  o f  the theories. We then outline some o f  the  

numerical representations and types  o f  axioms that  will be encountered later. 

The final prel iminary section summarizes the linear ut i l i ty  theory  o f  John yon 

Neumann and Oskar Morgenstern, which first appeared in 1944. Although the 

yon Neumann-Morgenstem theory  bypasses the issue o f  subjective (personal, 

psychological) probabi l i ty ,  it  is used in some subjective expected ut i l i ty  
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theories. It appears in the representation derivation in Leonard J. Savage's 
theory (1954) which, to the best of my knowledge, was the first - and, by 
some accounts, still the f ines t -  complete theory of subjective expected 
utility. Savage also draws on the pioneering ideas of Bruno de Finetti in 
subjective probability. Direct uses of yon Neumann-Morgenstern lotteries 
in the axioms of other theories will be discussed in section 8. 

Particular theories of subjective expected utility are examined in sections 
5 through 10. A partial sectional outline follows. 

(5) Ramsey's (1931) ethically neutral proposition and his proposal for 
measuring utilities and subjective probabilities. Theories for equally-likely 
events. Pfanzagl's (1967, 1968) completion of Ramsey's outline. 

(6) Savage's (1954) act-oriented theory, constant acts, and continuously 
divisible events. Other Savage-type theories. 

(7) Suppes' (1956) merger of Ramsey and Savage with acts and an 
ethically neutral proposition. 

(8) Extraneous scaling probabilities and the use of probability lotteries 
in subjective expected utility. Theories by Anscombe and Aumann (1963), 
Pratt, Raiffa and Schlaifer (1964, 1965), Fishburn (1967, 1969)and 
others. 

(9) Luce and Krantz's (1971) conditional acts on nonnull events, and a 
theory of conditional subjective expected utility. 

(10) Jeffrey's (1965a, 1978) and Bolker's (1967) mono-set theories, with 
utilities and subjective probabilities defined on the same entities. Domotor's 
(1978) finite version. 

The final section of the paper presents an evaluative summary of the 
theories reviewed. 

2. PRIMITIVES AND DEFINITIONS 

The primitive notions of the theories that we shall review consist of one or 
more nonempty sets (or algebras) and one or more preference relations on 
these sets or on sets that are constructed from the basic sets. In this section 
we shall assign symbols to and provide interpretations of the basic and 
constructed sets that will be used later. Special sets not mentioned here 
will be introduced as needed. 
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2.1. Consequences 

Most theories employ a set ~ of consequences, which are the atomic holistic 

entities that have value to the individual. Ideally, a consequence c E ~ '  pro- 

vides a complete description of everything the individual may be concerned 

about, and the occurrence of one consequence precludes the occurrence of 

any other consequence. Again, as an ideal, one might wish to exclude all 

traces of  uncertainty from consequences although this is not possible in 

practice. Consequences are discussed further by Ramsey (1931), Savage 
(1954) and Fishburn (1964). Special structures for cC arise in some of the 

theories considered later. 
The utility u(c) of consequence c is a number that provides a measure 

of the consequence's subjective value in relation to other consequences. 

Probabilities may be assigned to propositions such as "if I do such-and-so, 
then consequence c will occur" (Fishburn, 1964; Gibbard and Harper, 1978) 
but, except for mono-set theories (section 10), probabilities are not 

assigned to consequences alone. 

2.2. Events 

The carriers of uncertainty in most theories are propositions (Ramsey) or 

events (Savage), the latter of which are subsets of a set of "states of the 

world". Savage's description (1954, p. 9) of a state sounds very much like 

the foregoing description of a consequence. Indeed, the two notions appear 

to merge in mono-set theories. However, in most cases, states are treated as 

entities that are the basis of the individual's uncertainty and that have value 

only to the extent that they lead to specific consequences that depend on 

the course of action adopted by the individual. Moreover, it is usually pre- 

sumed that the 'true' state, or state that obtains (e.g., 'rain' or 'no rain', 

'heads' or 'tails'), which is initially unknown by the individual, cannot be 

changed by the individual's actions. 
Throughout the paper, S denotes a nonempty set of states, and ~ denotes 

a set of events (subsets of  S) that contains the empty event ~ and is closed 

under complementation: if A E Y t h e n  SkA (also denoted A) is in g .  A 
measurable partition of S is a collection of nonempty mutually disjoint 

events in g whose union equals S. 
The event set Y is a Boolean algebra if it is closed under finite unions: 
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A , B E ~ = ~ A U B E ~  or. It is a o-algebra if  it is closed under countable 
unions. Several theories (Pfanzagl, 1967, 1968; Bolker, 1967) use abstract 

algebras without an underlying S, but no real harm is done by imagining 

these to be algebras of  subsets of  some set S. Bolker's g i s  atom free: for 

every nonempty A ~ Y there are nonempty disjoint B and C in -9 ~ for 

which B U C C__ A. 
Following Hausdorff (1957), I shall use A + B  to denote A U B  when 

A n B = O. All instances o fA  + B carry the unwritten implication that A and 
B are disjoint. 

An individual's subjective probability for event A E g will be denoted by 

P(A). Without exception, P will denote a real valued function on S ~ for 

whichP(0)  = O,P(A)>>- 0 for a l i a  E .9', andP(A)  + P ( A )  = 1 for al iA E .Y. 

When g is an algebra, P is a (finitely additive) probability measure if 

P(A + B ) =  P(A) + P(B) for all A, B E g ,  and a countably additive prob- 
ability measure i fP(UAi)  = ZP(Ai) for every countable collection of  mutually 

disjoint events whose union is in Y .  
Several theories distinguish a set f of  null events, which the individual 

believes cannot obtain and whose subjective probabilities are zero. When P is 
a probability measure on an algebra .9", and P(A) = 0 iffA E ~ then r E j r ,  

A , B E A P ~ A  U B E  JK', and [A E Se, A C__B, BEJ /"]  =~A E JI/ 'so that JY" 

is an ideal and, in fact, a proper ideal since P(S) = 1 with S ~ An. The null 
ideal S is principal if the union of all events in ~4/-is in ~ Null events are 

usually identified with the aid of  the individual's indifference relation. 
In later material, 2 s is the set of  all subsets of  S, g o  = y \{qi}  - the set of  

all nonempty events, and g \  A/'is the set of  nonnull events. 

2.3. Mixture sets and lotteries 

Following Herstein and Milnor (1953), a set ~r is said to be a mixture set if 

for any x, y E ~ / a n d  any X E [0, 1 ] we can associate another element in ~ ' ,  
written as (x, X,y) or as Xx + (1 -- X)y, such that 

(x ,  l , y )  = x 

(x ,X,y)  = 0,, 1 - X , x )  

( (x ,X,y) , la ,y)  = (x, Xla,y) 

for all x , y  C ~K/and all X, ta C [0, 1 ]. 
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A lottery on a nonempty set X is a function p: X ~  [0, 1 ] such that p(x) = 0 
for all but a finite number of x EX,  and Zp(x) = I. The set of  all lotteries 

on X is denoted as.X/(X), which is a mixture set under the interpretation 

that (p, ~, q) is the convex combination ~ + (1 - k)q of lotteries p and q, 

with ( ~  + (1 - X ) q ) ( x )  = ~p(x) + (1 - k ) q ( x )  for all x EX.  

We usually think of~Z/(X) as the set of all simple probability distributions 

on X, with p(x) the probability that x will occur if lottery p is 'played'. 

Lotteries will have this interpretation in the theories discussed in section 8. 

2.4. Acts 

Broadly speaking, an act is a decision or course of action that an individual 

might choose to pursue. In a few theories, acts are basic primitives; but in 

most theories, acts are constructed primitives based on consequences and 

states or events. 

In the former approach, we might start with a set f l "  of acts, identify 

consequences that might follow from the acts, and consider a model based 

on utilities for consequences and probabilities for propositions of the form 

"if I do f E  ~ then c E c~ will occur". There are no Savage-type states in 

this model, but we can construct entities that function like states (Fishburn, 

1964, 1970). This is done by viewing a 'state' s as a function from ~ - i n t o  ~', 
i.e. as an element in the function set cC~-. Each such s E ~ -  specifies the 
consequence that ensues from each act and therefore removes (as an ideal) all 

uncertainty in the situation. Moreover, the act chosen by the individual does 
not affect the 'true' state. 

The preceding formulation of S C C_ ~ is often very complex from the 
states viewpoint. The alternative approach, with S as a basic primitive, is 
usually simpler to visualize on a conceptual level. When cg and S are basic 
primitives, we shall let ~ denote a nonempty subset of cCs and let c~ be a 
nonempty subset of U{Cg A : A E Yo}- An act in ~r- is a Savage act that 

assigns a consequence to each state of the world: if f is chosen and s obtains, 

then f(s) occurs. An 'act '  in ~ is a function that maps each state in a non- 

empty event A into a consequence. Such a function may be denoted by fa  
to make its domain explicit. Various interpretations can be given to f a ,  
including: 

(i) in Savage's theory, f a  is the restriction to A of a Savage act 
f E ~  s. It is not an object of choice unless A = S; 
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(ii) Narens (1976) views fA as a Savage act that yields consequence 
fA(s) if s EA obtains, and yields 'nothing' (or the status quo) if 
s E A  obtains; 

(iii) Roberts (1974) views fA as a Savage act that yields fA (s) if s E A 

obtains, and yields a 'null consequence' in an extensive measure- 
ment structure for 4 ifs E~T obtains; 

(iv) Luce and Krantz (1971), who require A E g \ ~ , ,  view f.r as a 

potential object for choice, with A the relevant universe of states 

if fA is adopted. They refer to fA as a conditional decision. Luce- 
Krantz states differ from Savage states, as discussed in section 9. 

Act f:  A -~ 4 i s  measurable if the set of all nonempty f-l(c) is a measur- 
able partition of A, i.e. if {s EA: f(s)= c} is in Y for all c E 4 .  In addition, 
f is simple if f-1 (c) = ~ for all but a finite number of consequences. Simple 
measurable acts are sometimes referred to as gambles. 

Other types of 'acts' use lotteries in their constructions. Two examples 
from Anscombe and Aumann (1963) are the set Y = [.Z/(4)] s of horse 
lotteries and the set J ' (~ '~)  of lotteries on horse lotteries. A horse lottery h 
assigns a consequence lottery to each state of the world. Implementation 
of p E..,r might unfold in three steps: the p(h) probabilities first deter- 
mine a horse lottery h; the chosen h then yields the consequence lottery 
h(s) E~K/(4) when s obtains; finally, the h(s) thus obtained determines a 
consequence according to the probabilities h(s)(c), where h(s)(c) is the 
probability that h(s) assigns to c. 

2.5. Preferences 

Throughout, >- will denote an individual's strict preference relation on a set 

X which, depending on context, might be ~, ,  cj, y ,  4 • Y x 4 ,  or another 
designated set. A triple (c,A, d)in 4 x  Y x  4wil l  be viewed as an 'act' that 
yields consequence c if A obtains (i.e. some s E A obtains) and consequence d 

if A obtains. In many cases, >- on X induces a strict preference relation ~-' on 
a s e t -  such as 4 -  used in the formation of X. For example, we define 
c ~.' d i f f  (c, S, c) >- (d, S, d) when ~ is a primitive on 4 x  Y • 4 .  In Savage's 
theory, c >-' d i f f f ) ~ g  when f(s) = c and g(s) = d for all s E S. For notational 
convenience, the prime o f>"  will usually be omitted. 

The preference relation ~- is often used to def'me a qualitative probability 
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relation >-* on the set Y of events. (Read x ~ y  as "x is preferred t o y "  and 

A ~-* B as "A is more probable than B".) Given ~- on f~ x Y x ~', we define 

A ~ - * B  if and only if c) , -d  and ( c , A , d ) ~ - ( c , B , d )  for some c, d E ~ ' .  
Intuitively, if you prefer c to d, then you will prefer (c, A, d) to (c, B, d) if 

you believe that A is more likely than B to obtain. Note, however, that this 

makes good sense only if all components of value reside in the consequences. 

If valued aspects of events are not included in the consequences then we 

would be reluctant to assert A ~,-* B when c >- d and (c, A, d) ~- (c, B, d). 

We shall always assume that),- is asymmetric: x >-y ~ n o t  (y ~-x).  The 

indifference relation ~ and nonstrict preference relation ~ associated with)-- 
are defined by 

x ~ y  iff neither x ~ - y  nor y k - x ;  

x ~ y  iff x ~ y  or x b y .  

Many writers use a nonstrict rather than strict preference relation as a basic 
primitive, but for uniformity I shall use ~ except in discussing the theory of 
Pratt, Raiffa and Schlaifer (1964, 1965) in section 8. 

The relation ~- will be called a strict partial order if it is transitive (x ~-y 

and y ~- z ~ x ~- z), an asymmetric weak order if it is negatively transitive 
(x >- z ~ x ~-y  or y ~- z), and a linear order if it is a complete (x v~y ~ x ~- y 

or y >-x) asymmetric weak order. It is easily seen that >- is an asymmetric 

weak order if and only if both ~- and ~ are transitive, and in this case ~ is 

transitive also and is commonly referred to as a weak order. If a real valued 

function u on X satisfies u(x) > u ( y )  i f fx  ~-y,  for a l l x ,y  EX,  then >- must 
be an asymmetric weak order. 

3. AXIOMS AND R EP R ES ENTATIONS 

Each theory reviewed later consists of a set of primitives, axioms based on the 

primitives, and a numerical representation implied by the axioms that reflects 

preferences in a subjective expected utility model. A uniqueness theorem for 

utilities and probabilities usually accompanies the representation. Three 
examples of representations, taken respectively from Pfanzagl (1967, 1968), 
Savage (1954), and Luce and Krantz (1971) are: 

(i) V(c, A, d), (c', B, d') E ~ x Y x ~': 
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(c ,A,d)~'(c ' ,B,d ')  iff P(A)u(c) +P(A)u(d)> 

> e(B)u(e') + P( )u (d'); 

0i) Vf, g E  . Y = ~ ' s  with Y = 2s: 

f>-g iff Ss u(]'(s)) dP(s) > fs  u(g(s)) dP(s); 

(iii) for all simple measurable fA, gB E ~: 

1 
.fA >" gB iff p ~  SA U(fA(S)) dP(s) 

1 ]B u(gB(s)) de(s). 

Other features, such as boundedness of u (Savage) and connections between P 
and a qualitative probability relation >-* on Y,  will be noted later. 

3.1. Uniqueness 

Let ~ denote the set of all pairs (v, Q) of utility and probability functions 
that satisfy a specified representation, and let (u, P) be one pair in 5;P. Then 
P is said to be unique if Q = P for all (v, Q) E ~ .  When P is unique, u is 
unique up to a positive affine (linear) transformation if 

= {(au + b,P): a and b are real numbers 

and a > 0}, 

and u is unique up to a similarity transformation if 

= {(au,e): a>0} .  

The theories cited in the preceding paragraph have P unique and u unique up 
to a positive affine transformation. Special structures for ~ that are discussed 
later yield u unique up to a similarity transformation. Somewhat different 

transformations apply to the mono-set theories in section 10. 

3.2. Axiom development 

The process of theory development can be roughly described by two steps. 
First, the primitives and numerical representation that one is interested in are 
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formulated. Then axioms that imply the desired representation are developed. 

For example, the representations (i) to (iii) require >- to be an asymmetric 
weak order. Moreover, if x >-y whenever x E {(c, S, c), (d, S, d)} and y E 
{(c', S, c'), (d', S, d')} in representation (i), then we must have (c, A, d) ~- 

(c', a'). 
It may even be possible to deduce from the representation a set of nec- 

essary axioms which implies the representation. Granting the nonnecessary 
but empirically reasonable assumptions that ~ and S are finite, Richter 
(1975) does this for the one-way Savage-type model 2 

Y:" u(I(s)) de(s) > fs u(g(s)) de(s). 

However, Richter's necessary and sufficient condition for this representation 
involves abstract polynomial rings, and as such it is very complex and non- 
intuitive even though it does illuminate the mathematical structure of the 
representation. 

In fact, because any set of necessary and sufficient axioms for a sub- 
jective expected utility model is bound to include complicated preference 
axioms that have little intuitive appeal, virtually all the theories reviewed later 
contain fairly strong structural assumptions that are not necessary for the 

representation. The use of structural axioms highlights a dilemma that is 
pervasive in developments of subjective expected utility theories. On the one 
hand, we would like our axioms to be simple, interpretable, intuitively 
clear, and capable of convincing others that they are appealing criteria of 
coherency and consistency in decision making under uncertainty, but to do 
this it seems essential to invoke strong structural conditions. On the other 

hand, we would like our theory to adhere to the loose structures that often 
arise in realistic decision situations, but if this is done then we will be faced 
with fairly complicated axioms that accommodate these loose structures. 

Many of the developments in theories of subjective expected utility have 
arisen from the conflict between axiomatic simplicity-interpretability and 
structural flexibility. For example, Savage's theory is axiomatically quite 
elegant but suffers from structural constrictions that others have attempted 
to relax. 

We can distinguish three essentially different types of axioms on the basis 
of structure. The first type is a purely structural axiom that does not involve 
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the preference relation, such as " ~  is finite" or " g  is a nonatomic and 

complete Boolean algebra". The second type is a necessary condition on 
preferences, such as " > - i s  an asymmetric weak order on the set of acts", or 

"if A, B and A + B are in g o  and A >-B, then A ~ A  + B and A + B ~ B " .  

The third type mixes ~ with structural assumptions, such as "x >-y for 

some x and y "  and "if A E Y \  ~d/'and gB E ~ ,  then there exists fA E ~ for 

which fA "" gB". A further classification of preference axioms is given at the 
end of the next section. 

4. LINEAR UTILITY 

We consider two axiomatizations of von Neumann-Morgenstern (1947)linear 
utilities, a In each case, the axioms apply ~- to a mixture set ~r are meant 
to hold for all x,y, z E~r The following are from Jensen (1967) or Fishburn 

(1970). 

(A1) ~- on ~r an asymmetric weak order. 

(A2) I f x > - y a n d O < ) ~ < l t h e n L x + ( 1 - k ) z > - k y + ( 1 - k ) z .  

(A3) If x ),-y and y >- z then ax  + (1 - ot)z >- y and 

y >-/3x + (1 - /3)z for some ct,/3 E (0, 1). 

Our second set of axioms is from Herstein and Milnor (1953). 

(B1) >-on ~r an asymmetric weak order. 

(B2) I f x  ~ y then �89 + �89 ~ �89 + �89 

(B3) {ct: ax+(l--ct)z>-y}and{/3: y~/3x+(1--/3)z} 
are open subsets of [0, 1]. 

The two sets of axioms are equivalent even though this is far from obvious 

on comparing (A2) and (A3) with (B2) and (B3). Each set holds if, and only 
if, there is a (real valued function) u on ~ / t ha t  is order-preserving: 

V x , y E J ' :  x>-y iff u(x)>u(y), 

and linear: 

Vx,y E J , V ; k e  [0, 1]: u(Xx + (1 --X)y) = 

= )~u(x) + (1 --X)u(y).  
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Moreover, such a u is unique up to a positive affine transformation. 
Let ~r be the lottery set ~r let x* denote the lottery that assigns 

probability 1 to x EX, and define u on X by u(x) =u(x*) .  Then linearity 

implies the expected utility form 

u(p) = Z p(x)u(x) 
x 

for every lottery p E r Fishburn (1977) discusses the extension u(p)= 
f u(x)dp(x) to more general probability measures p on an algebra of subsets 

of X. The extension involves the following dominance axiom, which applies 

to all Yin the algebra and allx EX.  

(A4) I fp (Y)  = 1 a n d x * > - y *  for ally EY,  thenx* ~ p ;  

i fp (Y)  = l and y* >- x* for all y E Y, t h e n p ~ x * .  

This axiom, which is not implied by (A1) through (A3) when -g/is a mixture 

set of probability measures that properly includes.LC'(X), seems very appealing. 

For example, its first part says that if you prefer x to every y in a subset of X 

that is certain to contain the outcome of p, then x will be at least as prefer- 
able as p. 

The second axiom in each set cited above is an independence condition 

between outcomes (x,y . . . .  ) and mixing numbers (X) that is essential for 

linearity. Axiom (A2) says that if you prefer x to y then you will prefer a 

nontrivial mixture of x and z to a similar mixture of y and z; (B2) says that 
indifference between x and y entails indifference between equal mixtures of 
x with z and y with z .  

Although axiom (B3) contains traces of independence, (A3) and (B3) are 
primarily Archimedean or continuity axioms which ensure that utilities will 
be real numbers rather than non-standard numbers (Robinson, 1966) or real 
vectors (Hausner, 1954). 

4.1. Subjective linear utility 

The passage from linear utility, with 

u(x, X,y) = Lu(x) + (1 -- ~)u(y), 

to subjective linear utility, with 
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u(x ,A ,y )  = P(A)u(x) + [1- -P(A) lu(v) ,  

can be viewed as a move to replace the given probability X with the uncertain 
event A E S ,a along with its subjective probability P(A). Not surprisingly, the 
axioms used for subjective linear utility and for more general versions of 

subjective expected utility reflect many of the ideas contained in the axioms 
presented earlier in this section. 

In particular, all axiomatizations of subjective expected utility involve 
ordering and independence axioms, and m o s t -  exceptions being Davidson 
and Suppes (1956) and Richter (1975) - involve Archimedean or continuity 
axioms. In addition, there are often nontriviality conditions (e.g. x >" y for 
some x and y),  special conditions to ensure that P is additive, and dominance 
conditions that are needed when we want the expected utility form to hold 
for nonsimple measurable acts. For example, Savage uses an ordering axiom, 
three independence axioms, a nontriviality condition, an Archimedean con- 
dition, and a dominance axiom. 

Independence axioms, which along with order axioms constitute the 
cores of subjective expected utility theories, often serve to impute order to 
subjective values of consequences and to comparative qualitative probabilities 
of events, and to separate value from uncertainty to yield the decomposition 
into utility x probability that is found in most representations. Examples of 
independence axioms for ~- on Cgx Y x W are 

(c ,S ,c )~- (d ,S ,d)  iff (c ,A ,c )~ ' (d ,A ,d ) ;  

{c >-d,c '>-d ' , (c ,A,d)  >.-(c,B,d)}~(c' ,A,d')  >'(c',B,d'); 

The first of these is a consistency axiom for >- on W, and the second is a 

consistency axiom for >-* on Y.  
Another type of independence axiom involves 'averaging' over disjoint 

events. Let J~t U gB denote the Luce-Krantz act on A U B that equals f a  on 
A and gB on B, given A (3 B = 0 and A, B E ~ ' \  ~ .  Their third axiom is 

TA "~ gB =*" TA "" ;A U gB, 

which might be interpreted as " i f f a  is indifferent to gn, then it is indifferent 

to the 'average' of fit and gn". With A O B = 0 and A, B E g \  ~, ,  an aver- 
aging condition for mono-set theories is 

A > ' B ~ A  >'A +B>'B.  



A REVIEW OF NORMATIVE THEORIES 151 

According to one interpretation (Jeffrey, 1965), A ~ B  =~A ~-A + B  says 

that if you would be happier to hear that A rather than B obtains, then you 
would be happier to hear that A rather than A or B obtains. 

5. RAMSEY 

This section summarizes Ramsey's pioneering proposal for quantifying values 

and beliefs. It then discusses representations with equally-likely states, 
followed by the equally-spaced utilities theory of Davidson and Suppes 
(1956). The section concludes with Pfanzagl's (1967, 1968) theory, which 
in many respects can be viewed as a natural completion of P.arnsey's ideas. 

5.1. Ramsey ' s proposal 

Rarnsey's ideas for quantifying values and beliefs on the basis of preferences 
and an underlying model for subjective expected utility are extremely rich, 
insightful, and very carefully reasoned. The frequency with which they 
arise in the works of later theorists testifies to their broad appeal. At the same 
time, his mathematical treatment is deliberately concise and sometimes 
cryptic. I am aware of no account that attempts to reconstruct the complete 
details of his theory, except that Pfanzagi (1967, 1968) comes close, without 
however making use of Ramsey's "ethically neutral proposition". In the next 
few paragraphs I shall outline an approximate version of Rarnsey's theory. 

Rarnsey's (1931) basic primitives are ~ ,  a finite state set S (Ramsey uses 
'propositions' rather than states and events), and >-. His event set might be 
presumed to be g = 2 s, and he applies ~- to some subset of 

~ U ( ~ x  g x C g ) U ( ~ x  Y x  ~ x  y x C g ) .  

Act cAd E ~ x g x  ~ is interpreted as before: get c if A obtains, and d if 
obtains. Act (cAd)Be E ~ x Y x W x Y x cg is interpreted as: get c if 

A n B obtains, get d if A C~ B obtains, and e if/~ obtains. The latter acts are 
used to define conditional subjective probabilities like "the degree of belief 
in A given B". 

Rarnsey's quantification procedure proceeds through four steps. First, 
determine an "ethically neutral" event E, which satisfies cEd ~ dec  for all 
c, d E ~ (with c ~- d for some c and d), and is to have subjective probability 
1/2. Second, use ~- on ~" x {E} x ~" to scale the utilities of consequences in 
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a utility-difference comparison mode 4 that gives c E d ~ c ' E d ' i f f u ( c ) - -  
u(c') >1 u(d')--u(d),  with u unique up to a positive affine transformation. 

Third, use u to scale probabilities for other events according to the subjective 

expected utility model: e.g., if c ~- d >" e and d ~ cAe, then 

u (d) -- u (e) 
e ( A )  - 

u(c) --u(e) " 

Finally, define subjective probabilities for conditional events using the more 

general acts. For example, if cAd "" (c'Be)Ad, and ifu (c') =/: u (e) andP(A) > O, 

then 
u (c) -- u (e) 

P ( B I A )  - u ( c ' ) - - u ( e ) "  

The latter ratio of utility differences is formed on the basis of equality 
between the subjective expected utilities of cAd and (c'Be)Ad, which respec- 

tively are e(A)u (c) + e (A)u  (d) and 

P(A NB)u(c')  + P(A n/~)u(e)  + P(A)u(d) = 

= P(A)P(BIA)u(c') + P(A) [1 --P(BIA)] u(e) + e(A)u(d) .  

Ramsey's axioms postulate the existence of an ethically neutral event, 

assume the effective equivalence of all such events, and state several con- 
ditions for ~- on (g • {E} • W that are similar in many ways to Debreu's 

axioms that we shall state shortly. These lead to u on ~ a s  noted above, with 

u(~ r either a real interval or a dense subset of a real interval. In other words, 

Cgmust be infinite and give arbitrarily fine gradations in utility. 
Independence-consistency conditions as well as indifference-existence 

axioms are then needed to obtain a unique P. For example, if A is neither 

certain nor impossible, then it is presumed that there are consequences 

c~- d ~-e such that d "" cAe. Moreover, if both d "" cAe and d' ~ c'Ae', then 

the ratios [u(d)--u(e)]/[u(c)--u(e)] and [u(d')--u(e')]/[u(c')--u(e')] 
are assumed to be equal. Ramsey does not indicate how such an equality 

might be expressed in a preference axiom. He does, however, note that his 

consistency conditions lead to the following "fundamental laws of probable 

belief" for nonnull events: 

P ( A ) + P ( A )  = 1 

P(AIB) +P(.41B) -- 1 
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P(A riB) = P(A)P(BIA) 

e(A riB) +e(A nt7) = P(A). 

Finite additivity, which Ramsey doesn't mention, follows from the last of 
these: P(A + B) =P((A + B) h A )  + P((A + B) n.4) =P(A)  + P(B). 

With proper account taken of null events, one might attribute to Ramsey 
the subjective expected utility representation 

(clAldl)Bael ~'(c2Azd2)B2e2 iff 

P(A 10B1)u(el)-I-P(/J 1 f3 Ba)u(dx) + P(Bx)u(el) > 

>P(A. n B:).(c2) +P( 2 n B2)u(d2) 

even though he does not fully axiomatize this model. By identifying cAd 
with (cAd)Sc, we obtain the specialization mentioned earlier: 

eAd~-c'Bd' iff P(A)u(c) + P(.4)u(d) >P(B)u(e') + 
+ 

In a related investigation, Luce (1958) examines comparisons between 

acts such as cAd and (cAd)Be on the basis of binary preference probabilities 
p(x,y) where, with x and y acts of the type indicated, p(x,y) is the prob- 

ability that x is judged strictly preferred to y.  Although this approach lies 
outside of the present review, Luce's paper offers an interesting alternative 
to Ramsey's deterministic-preference approach. 

5.2. Equally-#kely states 

A system of axioms that is very similar to Ramsey's initial axioms has been 
presented by Debreu (1959). Debreu assumes that ~" is a connected (in the 
relative usual topology) subset of a finite-dimensional Euclidean space and 
applies ~- to ~ • ~', where cd E ~' x ~ can be thought of as an even-chance 
act between e and d. Hence, if E is a Ramsey (ethically neutral) event, then 
cd yields c i fE  and d ifE. 

In addition to his structural axiom for W and weak order, Debreu assumes 
for all e , . . . ,  d* E ~ that 

(1) Ifed' ~c'd* and c'd ~c*d' then dc ~d * e* ;  

(2) {cdECgxCg: cd~-c'd'}and{cdE~x~: c'd'~.-ed} 
are open in cg x cg. 
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The first of these is an independence-cancellation axiom that is necessary 

for the desired representation. The interchange between c and d in the 

conclusion of (1) yields cd ~ de, which captures the even-chance or ethically 

neutral notion. Axiom (2) is a continuity condition that is related to (B3) in 

the Herstein-Milnor axioms. 

Debreu proves that his axioms imply the existence of a continuous u on 
cg x ~ for which 

Vcd, c'd'E~'XCC: cd>-c'd' iff u(cd)>u(c'd'), 

Vc, d e ~:  u(cd) = �89 + �89 

In other words, cd >- c'd' iff u (c) + u (d) > u (c') + u (d'), where u (c) is defined 

as u (cc), with u unique up to a positive affine transformation. 
As several people have noted, Debreu's approach generalizes easily to a set 

S of n states that are, by way of assumption, equally likely to obtain. For 
example, one can begin with an axiomatization of additive conjoint measure- 
ment s for >-on ~r when S = {sl, �9 �9 sn} to get 

n n 

c l . . . C n > - d l . . . d n  iff ~ ui(ci)> ~,ui(di), 
i=1 i =1 

with each u i defined on cC. The further assumption that c ~ d whenever d is 

obtained from c by a permutation of c's components then leads, for example, 

to 

c l . . . C n > - d l . . . d n  iff "s l u ( c i  )>  "s l_u(dl ) 
i=1 n /=1 n 

when we define u(c) as 2iui(c). A somewhat different route to this equally- 

likely states model, which is based on preferences but assumes that utilities 

are given, is discussed by Milnor (1954). 

In addition, Chernoff (1954) and Maskin (1979) derive a similar model 
using a choice-function approach. Chernoff takes utilities as given, but alludes 
to the von Neumann-Morgenstern approach as one way of measuring utilities; 

Maskin assumes explicitly that u on ~" is based on the yon Neumann- 
Morgenstern axioms applied to >- on ~A'(~). The choice-function approach 
uses a function F on a set of 'decision problems' such that F ( j ' )  is a non- 
empty subset of an act set J "  for each such ~r a specified domain. Chernoff 
and Maskin then specify conditions on the choice function that lead to F ( ~ ' )  



A REVIEW OF NORMATIVE THEORIES 155 

as the acts in ~r that have the greatest expected utility under an equally- 

likely states model. 

5.3. Equally-spaced utilities 

In contrast to the equally-likely states model, Davidson and Suppes (1956) 

axiomatize an equally-spaced utilities model. Empirical research related to 

their model is discussed in Davidson et al. (1957). 
Davidson and Suppes take ~ and S as basic: cC is finite, and Y contains 

a Ramsey event E that will have P(E) = 1/2. Their primitive relations are)- 
on cC and a subset ~ ofCg 2 • y • 4 2  whose generic member will be written 

as cd ~a c'd' and interpreted as indifference between the Ramsey acts cAd 

and c'Ad'. They assume that >- is a linear order (prior indifference can be 

divided out), and require c v~d and c'  :/:d' whenever cd ~A c'd'. These 

restrictions prohibit comparisons between consequences and genuine gambles 

in ~, thus avoiding the potential distortion of a utility of gambling factor. 

To signify that S obtains, it is assumed that cd ~ s c ' d ' ~ c  = c'. The 
Ramsey event E is to satisfy a typical inversion axiom (c 4= d ~ cd ~ dc) 
along with 

(1) If c and d are adjacent in >-, if c* and d* are adjacent i n ),-, and if 

{e )~ d, c* >- d*, c :/: d*, c* 4= d}, then cd* ~E c*d. 

By c and d adjacent in ) - ,  we mean that c 4: d and no e lies between c and d 

in preference. Axiom (1) is an equal-spacing axiom. By their model, cd* ~E 
c*d ~ �89 + �89 = �89 + �89 ~ u(c) -- u(d) = u(c*) -- u(d*). The 

restrictions in the hypotheses of (1) allow the conclusion that u(c) - -u(d)  = 
u(d) - u(e) when c ),- d >- e and c),- d '  >- e for no d '  4= d, provided that 

there are at least five consequences. 
Their other axioms involve a generic ~ a .  One provides the following 

connection between ~ and ) - :  {cd-~ac*d*, d--kd*, c ~ - c * } ~ d * ~ d .  

Another posits the existence of c, c*, d, d* E ~ for which cd ~a c'd* with 

c v~ c* and d 4= d*. This nonnecessary (apart from its uniqueness implication) 

condition leads to the definition of P(A) as 

u (d*) - .  (d) 
P(A) = 

u(d*) -- u(d) + u(c) --u(c *)" 

The other ~ a  axioms supply ~ a  with properties that are necessary for the 
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representation, including symmetry, transitivity, and Ramsey-type equality 
between different u ratios that could be used to define P(A). 

The Davidson-Suppes axioms imply that there is a utility function u on 
~ a n d  a possibly nonadditive probability function P on ~ such that u 
preserves>- on ~ ,  A C__ B ~ P(A) <~P(B), and 

cd ~a c*d* iff u(c) ~u(d),u(e*)--#u(d*) and 

P(A)u(c) + e(.4)u(d) = e(A)u(c*) 
+ e(d)u(d*). 

In addition, if cg has at least five consequences, then P is unique and u is 

unique up to a positive affine transformation. According to the definition 
of P(A) displayed above, all subjective probabilities are rational numbers 
because of equally-spaced utilities. 

5.4. Pfanzagl's theory 

Because Pfanzagl's (1967, 1968) theory contains technical features that are 
not easily summarized, I shall describe its salient aspects in a modified format 
based on c~, .9, and >- on the set 

f f  = {(cAd)B(c'Ad'): c ,d ,c ' ,d '  ~ ~ ; A , B ~ g }  

of Pfanzagl acts. Act (cAd)B(c'Ad') yields 

c if A r B obtains 

d if/T r B obtains 

c' ifA N/~obtains 

d' ifA C3Bobtains, 

and is an obvious generalization of (cAd)Be used by Ramsey (1931) and Luce 
(1958). 

Pfanzagl's W is a nondegenerate real interval, and Y is a Boolean algebra 
with proper ideal JY'of null events identified by (for example) 

B E jV" iff (cAd)B(c'Ad') ~ (c*Ad*)B(c'Ad') 
for all A E Y a n d  all c , . . . ,  d* E ~r 

The algebra is not presumed to contain a Ramsey event E. 
It is assumed (Pfanzagl, 1967) that >- on f f  is an asymmetric weak order. 

According to the above interpretation of Pfanzagl acts, we assume that 
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(1) (cAd)B(c'Ad') "~ (c'Ad')B(cAd); 

(2) (cAd)B(c'Ad') "~ (d.4c)B(d'.4c'); 

(3) (cAd)B(c'Ad') ~ (cBc')A(dBd'); 

(4) (cAd)B(cAd) ~ (cAd)B'(cAd); 

(5) (cAc)B(cAc) ~ (cA'c)B'(cA'c), 

for all c , d , c ' , d ' E  ~ a n d  all A , A ' , B , B ' E  ~ .  Items (1) through (3) illu- 

strate Pfanzagl's "lack of illusion" principle, which says that the presenta- 

tional format should not affect preferences between acts that have the same 

consequences for the same events. Item (4) allows us to define >- unambig- 

uously as an asymmetric weak order on Ramsey acts cAd, and (5) pro- 
vides a similar service for >- on ~r We write e "~ cad iff (eA'e)B(eA'e)'~ 
(cAd)B'(cAd) for all A ', B, B' E Y,  and so forth. 

Pfanzagl assumes that c ~ d  iffc  > d ,  and that for every Ramsey act cAd 
there is a (necessarily unique) certainty equivalent PA(Cd) E ~ for which 
cAd "~ ti A (cd). Moreover, if e~- cAd then there is a c '  > c such that e )~ c'Ad. 
These are parts of his continuity conditions. 

Certainty equivalents are also postulated for conditional acts of the form 

c(AIB)d with B ~ A~. In Pfanzagl's terms, this act leads to c i fA obtains and 
to d if iT obtains, all under the condition that B obtains. Its certainty equi- 

valent is denoted as PAIB(Cd). It is presumed in effect that I.tAiB(Cd ) is the 

amount in ~ that would make (cAd)Be indifferent to PAiB(cd)Be. This 
suggests the independence axiom 

(6) (cAd)B(c"Ad") >- (c'Ad')B(c"Ad") iff 

(cAd)g(c*Ad*) ~- (c'Ad')B(c*Ad*), 

for all c , . . . ,  d* E ~ and all A, B E Y,  which is similar to part of Savage's 

sure-thing principle in the next section. Axiom (6) says that if the same 

Ramsey act appears in the same position of two Pfanzagl acts, then this 

Ramsey act can be replaced by any other Ramsey act without changing 

the preference (or indifference) status between the Pfanzagl acts. With cBe 
increasing in preference as c increases when B E J \  A~, and with (cAd)Be "~ 
c'Be for some c' E ~r (6) then implies that there is a unique c'  = I.tAiB(cd ) 
such that (cAd)Be "~ c'Be for all e E ~.  
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In addition to the order, continuity and independence conditions sug- 
gested above, we presume 

(7) If c --/=d and cAd ~ cBd then c'Ad"~ c'Bd'; 

(8) I f c > d ,  c A d ~ c B d a n d c ' > d '  thenc'Ad'~'c'Bd' ,  

for all c , . . .  , d ' E  ~r all A , B  E Y .  These axioms provide order for 
qualitative probabilities. As suggested by earlier comments, (7) covers P(A) = 
P(B), and (8) deals with P(A)>P(B) .  Axioms for consistent conditional 
probabilities based on any fixed nonnull conditioning event (cf. Ramsey) can 
be expressed in a similar format. 

The foregoing sketch indicates the principal types of axioms used by 
Pfanzagl. His scaling procedure is based on the certainty equivalents defined 
above. Taking PA = PALS, and letting B be any nonnull event, his primary 
axioms imply: 

1. IdAIB(cc)  = IdSIB(cd) = PClB(Cd) = c when B_C_C C. 

2. UAIn(cd) = #],ln(dc). 

3. PA IB (cd) increases in c ifA tq B ~ ~, ,  increases in d i fA (3 B ~ ~r 
and is continuous in both c and d. 

4. If c C d and PAIB(Cd)= Pcln(cd) then PAiB(c'd')= PCln(C'd') 
for all c', d' E ~r 

5. (cAd)Be ~ PA IB (cd)Be. 

6. PA(PBIA(Cd), PBIZ(c*d*)) = PB(PAIB(CC*), #AlB(dd*)). 

7. pB(PAiB(Cd),d) = PAnB(cd). 

These properties then imply that there are real-valued functions u A on 
for A E Y \  APthat are increasing and continuous and which satisfy 

UB(UAIB(cd)) = UAnB(C) + U~nB(d) + k 

whenever A (~ B, Z fq B E Y \  ~, ,  with k a constant that can depend on A 
and B. Moreover, the UA are unique up to simultaneous (same a > 0) positive 
affine transformations. 

The UA functions provide an intermediate step in Pfanzagl's derivation. 
His final step, which involves the decomposition of UA(C) into P(A) times 
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u(c), where u = Us, requires the existence of independent events. Given 
events A and B such that none of A, B,.d and/~ is in JK', we say that B is 
independent of A iff 

laBia(cd) = gBl.~(cd) for all c, d E ~.  

This says that (cBd)Ae ~ (cBd)Ae and leads to the equality P(BIA) = P(B[.4) 
of conditional subjective probabilities. 

Let Y '  = {A E g :  A q~ A/', X q) J/ '} and assume 

(9) For every A E J '  there is a B E J '  that is independent ofA.  

Then there is a unique probability measure P on .Ywith P(B) = 0 i f fB E JK', 
such that, for all A E .9"\.APand all B E g ,  

U(UBIA(ed) ) _ P(A fhB)u(c) + 1 u(d). 
P(A) P(A) ] 

Among other things, this leads to the representation 

cAd~-c'Bd' iff P(A)u(c) + P(A)u(d) >P(B)u(c') + 

+ P(~)u (d') 
for all Ramsey acts. 

An interesting aspect of Pfanzagl's derivation is the 'simultaneous' mea- 
surement of utility and probability by way of his decomposition ua(c  ) = 
P(A)u(c) + k. In other words, the u A functions, which are related by positive 
affine transformations for events in Y \~P,, involve both the subjective 
probabilities and the holistic utilities. Related 'simultaneous' derivations 
are found in several other theories, including Suppes (1956), Fishburn (1967) 
and Luce and Krantz (1971). In contrast to this, Ramsey (1931) first obtains 
u on the basis of E and then defines P on the basis of u, whereas Savage 
(1954) reverses this procedure. As noted in the next section, Savage first 
constructs P on Y and then obtains u from P. 

6. SAVAGE 

The inspiration for Savage's theory came primarily from the works of Ramsey 
and yon Neumann-Morgenstern, and from de Finetti's (1937) seminal contri- 
butions to personal probability. 6 Luce and Raiffa (1957, Chapter 13), Luce 
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and Suppes (1965, pp. 298-299),  and Fishburn (1975) summarize Savage's 
approach, Arrow (1966) gives a partial derivation of his results, and Fishburn 
(1970, Chapter 14) presents a complete derivation of Savage's representation- 
uniqueness theorem. Here I shall outline the main aspects of Savage's theory, 
discuss structural restrictions that have motivated later axiomatizations, and 
mention other Savage-type theories. 

6.1. The basic theory 

Savage's basic primitive sets are ~ and S, with Y and ~ "  respectively con- 
structed as 2 s and cd s (or some large subset of ~ s ) .  In comparison to 

Ramsey, his major conceptual innovation was the definition of acts as func- 
tions from S into ~ and the application of >- to the Savage act set #~. 

Savage uses seven axioms, including asymmetric weak order for >- on ~ -  
and a nontriviality condition. To describe the other five, we define fA as the 
restriction of Savage act f t o  A E Yand  define his null event set by 

~4/'= { A E J ' :  f ~ g  whenever f.~ = gff}. 

Preference statements involving consequences in ~ are defined in the obvious 
ways from >- on ~q"using constant acts f - - c  If(s) = c for all s ES] or con- 
stant restricted acts f a  -=c [fa(S) = c for all s EA ] .  In addition, f a  ~ ga 

! t t 
means that f ' > - g '  whenever .fit =.fa ,  ga = g a  and f.~ =g~ .  It should be 
noted that the following axioms never compare )'), and ~r when A v~ B. The 
axioms apply to all f ,  g, f ' ,  g' E ~,,  all A, B E Y,  and all c, d, c', d' E ~.  

(1) I f fA ' ' f y , = g ~ , a n d f ~  ' i f f f '  ' =fJ~,ga = g a ,  = g ~ , t h e n f > - g  >-g ; 

(2) IfA E J \  Jl/~,fa = c  andgA =d ,  t h e n f  a ~ g A  iffc >-d; 

(3) If c > - d , f a  =c,fy~ =d,  g B =c ,g~  = d, and similarly f o r c ' , d ' , f '  
and g', then f >-g i f f f '> -  g'; 

(4) If f >-g then there is a finite partition 5 ~o f  S such that, VA Es~, 

(f.~ - c,.f~ = f.~ ) ~ f '  >" g and (g'a - c, g'ff = g.;, ) ~ . f  >- g' ; 

(5) If fA >" g(s) for all s E A (i.e., fA >" hA when h a -g ( s ) )  then 
fa  ~ g A  ; i f g ( s ) ~ f a  for alls EA theng A ~ f a -  

Axioms (1) and (2) explicate Savage's sure-thing principle: 7 (1) says that 
>-is independent of states that have identical consequences for the two acts, 
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and is similar to (A2) and (B2) (section 4) and Pfanzagl's (6) in the preceding 

section; (2) aligns consequence preferences with 'restricted act' preferences 
on nonnull events. Independence axiom (3)is designed to make )-* on Y a n  

unambiguous asymmetric weak order when this qualitative probability 
relation is defined by 

A ~'* B iff f ) , -g  whenever c ~ d , f  A = c , j  A = d, 

gB = C and g~ = d. 

It is closely related to (7) and (8) in Pfanzagl's theory. 

Axiom (4) is a continuity condition that prohibits any consequence c 
from being 'infinitely desirable' or 'infinitely undesirable', and whose par- 
titioning feature plays a major role in the derivation of Savage's probability 
measure on Y .  In fact, weak order, nontriviality, and (1) through (4)imply 
that there is a unique P on Y such that, for all A, B C ~ ,  

A>-*B  iff P(A)>P(B) ;  

0 < ) ~ < I ~ P ( C )  = XP(B) for some C_CB. 

The latter condition says that events are 'continuously divisible' and obviously 
implies that S is uncountable. On the other hand, Savage's cg can contain as 
few as two consequences. 

Measure P is then used to construct lotteries from simple acts, and it is 
shown that the axioms, through (4), imply the von Neumann-Morgenstern 
axioms for ),- defined on the set..K/(~) of lotteries in the obvious way. This 
yields a utility function u on cg that is unique up to a positive affine trans- 
formation and establishes Savage's representation for simple acts. 

Axiom (5) is a dominance axiom that is similar to (A4) in section 4. 
Although Savage was not aware that (5) implies that u is bounded when he 
wrote his book, we later proved (Fishburn, 1970, p. 206) that this is the case. 
It then follows, as Savage proved, that, for any f, g E F, 

f> -g  iff ~s u ( f ( s ) )dP(s )>  f s  u(g(s))dP(s). 

6.2. Structural restrictions 

Although it may be too much to expect that people's indifference relations 
or even their preference relations will always be transitive (Luce, 1956; 



162 PETER C. FISHBURN 

Tversky, 1969; Fishbum, 1970), or that they will generally satisfy sure-thing 
principles and other independence axioms (Allais, 1953; Ellsberg, 1961; 

MacCrimmon, 1968; Slovic and Tversky, 1974), many writers argue that 

these conditions are appealing requirements for an ideally coherent and 

consistent individual. From the normative viewpoint, theorists have been 
more concerned with nonnecessary structural and existential assumptions. 

One of the structural features of Savage's theory that has been criticized 

is axiom (4) and its implication that events are continuously divisible, which 
prevents his theory from being applied directly to situations in which S is 
countable. Other theories that also give the nice uniqueness properties for 
(u,P)  obtained by Savage were designed in part for finite or arbitrary state 

spaces. These include the primary theories in the preceding section as well 
as the majority of theories discussed later. However, all of these pay a struc- 
tural price somewhere else in order to obtain uniqueness properties. 

For example, Davidson and Suppes (1956) require equally-spaced utilities, 
and others, including Ramsey (1931), Pfanzagl (1967) and Suppes (1956), 
require cg to be infinite with u(g) dense in a nondegenerate real interval. 
Another route to uniqueness with finite or arbitrary S (see section 8) is to 
construct lotteries from random devices or scaling probabilities that are 
causally independent of S. Savage (1954, pp. 33 and 38), in fact, alluded 
to this route. For example, with S arbitrary, replace it by S* = S x T, where 
T is a set of auxiliary states that are identified with the points on the peri- 
meter of a wheel-of-fortune device. Then P* on Y* is obtained from Savage's 

theory, andPon  g i s  defined from P* byP(A) =P*(A x T). 
Another criticism of Savage's structure is his use of 2 s as the set of events. 

Even when S has a nice structure, such as S = [0, o~), 2 s wilt contain subsets 

of S that are impossible to visualize. This and the fact that Savage's prob- 
ability measure need not be countably additive are discussed by Savage 

(1954, pp. 42-43)  and Dubins and Savage (1965). 
The most objectionable aspect of Savage's structure for some theorists 

appears to be his use of constant acts ( f =  c) and the associated ~"as  a large 
subset of cgs. In virtually any realistic problem that is formulated in the 

Savage mode, some consequences will be incompatible with some states or 
events, as is "carry an umbrella on a bright, sunny day" with 'rain'. In fact, 
the natural set of consequences that could occur under one state may be 
disjoint from the set that could occur under another state. This difficulty 
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did not greatly bother Savage since he felt that the preference comparisons 

required by his axioms were conceptually reasonable. However, others have 
taken exception to this opinion and have formulated theories (Fishburn, 

1970, section 13.2; 1973; Luce and Krantz, 1971; Richter, 1975) that 
substantially alleviate the "constant act problem". 

6.3. Savage-type theories 

Other axioms for ~- on ~"__C ~ s  have been presented by several writers. I 
have already cited Richter's (1975) polynomial-ring approach for the one- 
way Savage representation with finite S and cg. Elsewhere (Fishburn, 1975) 
I have discussed simpler conditions for >- as a strict partial order on Y with- 
out, however, giving axioms that are sufficient for the one-way representation. 
The other theories mentioned in this section assume that ~- is an asymmetric 
weak order. 

Stigum (1972) takes S finite with n ~> 3 states, lets ~ be the set of all 
nonnegative vectors in a finite-dimensional Euclidean space - as is often done 
in consumer preference theory, and represents .~-as the product set ~'" with 
each coordinate corresponding to a particular state. He assumes that ~- on 
cgn is preserved by a utility function that is continuous, increasing and 
strictly quasi-concave, then observes that an independence axiom that is 
tantamount to Savage's axiom (1) or to Debreu's (1960) independence axiom 

for additive conjoint measurement yields u l . . . . .  u ,  on ~ such that 

rl n 

c l . . . C n ~ ' d l . . . d  n iff E ui(cl)>Eui(di) '  
/=1 i=1 

for all c ~ . . .  c , ,  d l . . . d ,  Ecg ", with each ui continuous, increasing and 
strictly quasi-concave, and with ui(0 ) = 0 for each i. Within this setting he 
then states four conditions that are necessary and sufficient for the existence 
of u on C~(continuous, increasing, strictly concave) and P on 2 s such that 

C1' '  "Cn~'dl '"  .dn iff ~ P(si)u(ci)> ~. , P(si)u(di) 
i i 

for all pairs of acts. Stigum's first three conditions for this form are similar to 
Savage's (2), (3) and a finite-states version of (4). His fourth condition is a 
type of marginal rates of substitution axiom that makes connections between 
different states. 
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Narens (1976) considers tradeoffs between uncertainty and utility in two 

models, the first of  which applies >- to ~ '  x J o .  A generic element ca in 
~ x  g o  yields c if A obtains and 'nothing'  otherwise. Narens assumes that 

every c E ~ is preferred to 'nothing', and, using axioms that are related to 

Pfanzagl's (1967) and Savage's (1954) but involve some new twists due to 

the structure of  ~ '  x Y o ,  he obtains a positive u on ~ '  and a probability 

measure P on Y such that 

ca >-dB iff u(c)P(A)>u(d)P(B) ,  

for all ca, dB C ~ x Y o ,  with u unique up to a similarity transformation 

and P unique. Uniqueness up to a similarity transformation rather than a 

positive affine transformation is explained by the omission of  'nothing' 

from ~ and the representation. If  we let z = 'nothing',  then the foregoing 

could be written as 

cAz >- dBz iff P(A)u(c) + P(A)u(z)  >e(B)u(d)  + l'(B)u(z) 

with u(z) fixed at 0. Explicit inclusion of  z and removal of  the restriction 

u(z) = 0 would then give u unique up to a positive affine transformation. 

Narens's second model falls more directly into the Savage tradition. As in 

the first model, ~ and S are nonempty sets, Y is a Boolean algebra of  

subsets of  S, and each c E ~ is presumed to be better than 'nothing'. In the 

second model, >- is applied to a set ~ C U{~ A : A E Y0}  such that each 

fA E ~ '  is a 'gamble' or simple measurable act - of  the Savage type under 

the interpretation that it yields 'nothing' if .~ obtains. I shall denote the 

constant act .fk = C as c and the conditioned-on-A constant act fA = c as 

c A. Narens uses the following four axioms in addition to asymmetric weak 

order and an Archimedean condition. In the axioms, events are always in 

g o  and, as before, A + B always indicates that A N B = 0. 

(1) If ca >'eB then da  >- d B. If ca>" da then CB ~>"dB; 

(2) If  e >- d then c A ~ d for some A. For every g E ~ ,  g ~ e for some 

c E ~ ;  

(3) There exists e E ~ '  such that for all A, B, D: e a >- e B iff CA. D >- 
CB§ D. For all c E ~ a n d  all A , B ,  if ca >-eB then eD ~ e B  for 

some D C A ; 
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(4) For all c E 4 ,  all A, B, C, D, and all fc ,  gD E cJ: if C a "" fC and 

CB ~ gD then CA+ B "~ fc  "[" gO. 

In the final axiom, f c  +gD indicates that C A D  = 0 with h = f c  +gD the 
act in ~ defined on C U D that equals fc  on C and gD on D. 

Axiom (1) is an independence axiom for qualitative probability (CA ~" Cn ~ 

d a ~ 'dn)  and for consequence preferences (c a >"dA =*cB >"riB). The latter 

part of (1) is reasonable only if every event in g 0  has positive probability. 

Axiom (2) is a tradeoff condition. Given c ~" d, we imagine shrinking A to 

a point where c A becomes indifferent to d. The second part of  (2) provides 
a certainty equivalent for every act. 

The first part of (3) posits a valued consequence and a nontrivial additive 

qualitative probability structure. The second part of (3) is like the first part 

of (2). The final axiom calls for the preservation of indifference between 

a (restricted) consequence and acts under disjoint unions. It is similar in 

spirit to the Herstein-Milnor independence axiom (B2) in section 4, or to 
(A2) in the same section. 

Although fA has different interpretations for Savage and for Narens, the 

latter's axioms are very similar in their intentions to Savage's axioms, ex- 
cluding his axiom (5). Narens's axioms imply that there is a positive u on 

and a probability measure P on Y with P > 0 on Yo  such that 

fA >'gB iff SA u(fA(S))dP(s)> .In u(gB(s))dP(s), 

for all fA,  gB E ~ .  (Recall that each act in cj uses only a finite number 
of consequences and that 'nothing' is omitted from ~ ,  so that u ('nothing') 

P(tT) does not appear in the expected utility form for fA.) In addition, u 
is unique up to a similarity transformation, and P is unique. 

The final theory considered in this section is due to Roberts (1974). 
Like Luce (1972) (see section 9), Roberts uses an extensive measurement 

structure for 4 that posits a primitive binary operation * on 4 such that 
c*d E 4 whenever c, d E 4 .  The meaning of c*d is roughly 'c and d'. For 

example, if consequences are monetary prizes, then c*d = c + d. There is 
a subset J '  of null consequences in 4 ,  with c*d = c or c*d ~ c whenever 

d E ~  ~'. In the monetary case, ~A ~'' = {0}. An act f a  E ~ assigns a null 
consequence to every s E A  and a nonnull consequence in 4 \ A / "  to each 
s E A , f o r A  E Y \ ~ . .  
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Apart from * on c~, Roberts's theory is quite similar to Narens's (1976) 

for ~- on his 4 .  With *, Roberts provides a Savage-type theory with an 

extensive measurement structure. The binary operation * on ~ extends 

naturally to ~ '  with the definition (f*g)(s) = f(s)*g(s) for each s E S. Roberts 

proves that his axioms imply u on ~ '  and probability measure P on Y such that 

u(c) = 0 iff cEdY' ,  

u(c,d)  = u(c) + u(d), 

P(A) = 0 iff A E J V ' ,  
and 

f~-g iff Ss u(f(s))dP(s)> Is u(g(s))dP(s), 

for all simple measurable f ,g E ~.  For this representation, u is unique 
up to a similarity transformation, and P is unique. As Luce (1972) notes, 
u(c*d) =u(c)+u(d) is a very restrictive and often unrealistic conclusion. 
For example, it says that utility for money is linear in the amount, or u(c) = 
kc, when ~ is a set of monetary prizes. 

7. SUPPES 

As an alternative to Savage's approach, Suppes (1956) developed a theory 

based on a Ramsey event in conjunction with Savage acts. This enabled 

Suppes to adopt an arbitrary S in contrast to Savage's continuously divisible 

structure, but also forced ~ to be infinite in contrast to Savage's arbitrary 

cg. Like Savage, Suppes assumes that all constant acts are in ~r appears 

to take g = 2 s. He does not use a nontriviality axiom, but we shall presume 

that ~- is nonempty for expositional purposes. 
Suppes's basic primitives are cC, S and)'- on J ' x  .~ ,  where J - i s  a subset 

of ~ s  that contains all constant acts. He interprets fg E ~'-• Y a s  an even- 
chance gamble that yields f or g. The Ramsey event E implicit in this inter- 

pretation ( f  if E, g if E) is supposed to be independent of the state that 

obtains, and there need be no A E Y for which P(A) = 1/2. Needless to say, 
"fg ~ gf for all f, g E~  a ' - ' '  is one of Suppes's axioms. He assumes also that 
:>-on Y x ~ -  is an asymmetric weak order, and extends >- to Y by the 

definition f>-giffff>.-gg. The typical independence axiom " f > - g i f f  
fh >-gh" ensures that ~-on Y is an asymmetric weak order. 
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Suppes's other axioms consist of an additivity condition, a continuity- 

denseness axiom, an Archimedean axiom, two dominance conditions, and 
an existential continuity-midpoint axiom. We write these in the order indi- 

cated, with f(s)*, g(s)*, and so forth denoting constant acts with the desig- 
nated consequences. An approximate meaning of fgLnlh in axiom (3) is 
that h is between f and g with h one unit from fwhen the preference interval 
from f t o  g is divided into 2 n equal units. The axioms apply to all f , g , f ' ,  g', 

f" ,g" E 

(1) Iffg' ~ f ' g"  and f ' g  ~,~,I . . . . . .  g tnen/g >-~i . . . . .  g ; 

(2) If ]~, ~ f ' g '  and g >- g', then there is an h E Y s u c h  that g >- h>- 

g' andfg >-f 'h ;  

(3) If f >-g and f ' > - g ' ,  then there is an h E J - a n d  a positive integer 

n such that fgLnfh and f 'h ~fg'; 

(4) Iff(s)*g(s)* ~ f'(s)*~(s)* for all s E S, then fg ~ f 'g'; 

(5) There is an h E J - such  that h(s)* ~f(s)* and h(s)* ~g(s)* for 
every s E S; 

(6) There is an h E ~q"such that f(s)*g(s)* ~ h(s)* for every s C S. 

Only (1) and (4) place no structural demands on Y .  
Axiom (1) is Suppes's additivity or independence-cancellation axiom 

which, in the presence of fg ~ gJ~ is tantamount to Debreu's (1959) axiom (1) 
in section 5. Axiom (4) is a dominance condition that is related to Savage's 
axiom (5). It says that if fg is as good as f 'g '  for each state, then fg is holisti- 
cally as good as f 'g ' .  Its companion, axiom (5) above, says that for every fg 
there is an h that dominates both f and g. If Y were taken as cd8, then (5) 
would be unnecessary since we could define h(s) as the more preferred of 

.t(s) and g(s). 
Axiom (6) is a midpoint axiom in the sense that c'd* ~ e* indicates that 

e* is midway in preference between c* and d* according to the even-chance 
model. Axiom (2) posits an act h that is between g and g'(g ~- h >" g') which, 
when substituted for g' in fg ~-f'g', does not change the direction of prefer- 
ence. Given f >-g and f '  ~" g', axiom (3) essentially prohibits the preference 
differential between f and g from being infinitely greater than that between 

f '  and g'. 
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The foregoing axioms imply a real valued function ~ on f i "  such that 

f g ~ . - ' '  S g iff $( f )  + $(g) > ~b(f') + $(g') 

for all f, g , f ' ,  g' E ~ with $ unique up to a positive affine transformation. 
Then, defining u(c)= $(c*), it is shown that there is a probability measure 
P on Y such that 

~(f) = ~s u(Xs))dP(s) 

for all f E  Y t h a t  are bounded in the sense that {s: a < u(f(s)) <<, b} = S for 
some real a and b. Suppes thus obtains Savage's representation for bounded 
acts. 

Unlike the case for Savage, there is nothing in Suppes's theory that forces 
u to be bounded. Moreover, P need not be unique. For example, if ~ '-  con- 
sists only of constant acts, which is permitted by the axioms, then every 
probability measure P on g will satisfy r = f u(f)dP. 

Fishburn (1967, section 5; 1970, p. 189) presents a related Ramsey-Savage 
theory that applies >- to fl '-• ~ - w i t h  S finite and ~e-= cgs. He assumes 
that cC is a connected and separable topological space, that >-on f l"•  Y i s  

an asymmetric weak order, and that Debreu's axioms (1) and (2) in section 5 
hold for >- applied to ~ - •  fl '-rather than CCx 4 .  These axioms imply a 

continuous ~ on Y for which fg >-f'g' iff r  + r > ~b(.f') + r with 
~b unique up to a positive affine transformation. 

Two more axioms then imply a unique probability measure P on g = 2 s 

that satisfies O(f)= S u(.f(s))dP(s) for all acts when we define u on cg by 
u(c) = 0(c*). The first of these is a simple nontriviality axiom. The second 
is a sure-thing principle for each state. It says that if t E S and if {f(s), g(s)} = 

{f'(s), g'(s)} for all s E S\{t}, then 

f(t)*g(t)* ~ f'(t)*g'(t)* ~ fg ~ f'g'; 

f(t)* g(t)* >- f'(t)* g'(t)* and t nonnull ~ fg >-f'g', 

where t is null i fffg ~ .f'g' whenever {f(s), g(s)} = {f'(s), g'(s)} for all s 4: t. 

8. LOTTERY THEORIES 

In contrast to the use of a single extraneous Ramsey event as a measuring 
device (Suppes, 1956; Debreu, 1959), a number of writers have proposed the 
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use of lottery sets based on extraneous random devices or given scaling 

probabilities for measuring utilities and subjective probabilities. It appears 

from Arrow (1951) and Suppes (1956) that Herman Rubin made early 

contributions to this approach, but I do not know to what extent the theories 

reviewed in this section were anticipated by Rubin. 9 

As we proceed, it will become evident that the structure provided by 

lotteries allows more flexibility in the basic decision structure than is usually 

granted by theories that do not use extraneous measurement devices. This 

attractive feature of some lottery-based theories has not, however, en- 

gendered their general acceptance. For example, Krantz et al. (1971, section 

8.6) criticize theories for individual decisions under uncertainty that rely on 

extraneous scaling probabilities. Their main objection is that these prob- 
abilities are assumed a priori and are not derived from preferences. This type 

of criticism can be at least partially avoided by combining extraneous random 

events in an augmented state space as was suggested for Savage's theory in 
section 6. 

8.1. Anscombe and Aumann 

Anscombe and Aumann's (1963) aim was to define subjective probabilities 
for the states in a finite S on the basis of lotteries. Their consequence set cC 

contains at least two nonindifferent elements. They assume that the individ- 

ual has a preference relation >'o on the set ~/(cC) of consequence lotteries, 
and another preference relation ~-on the set~r162 of lotteries defined on 

horse lotteries in Jd' = [~K/(~)] s. Each relation is assumed to satisfy the 

von Neumann-Morgenstern axioms on its lottery set. They assume further 

that ~ '  contains a most-preferred consequence cl and a least-preferred 

consequence Co with ca ~ o  Co, and that hi ~-ho when these are constant 
horse lotteries with hi(s)= cl and ho(s)= Co for all s ES.  Here and later, 
c is identified with the lottery in ~/'(cC) that assigns probability 1 to c, and 

h E Y is identified with the lottery in f (~ g r  that assigns probability 
1 t o h .  

The foregoing assumptions imply the existence of linear, order-preserving 

Uo on ~ / ( ~ )  and u on oZe'(~K), which Anscombe and Aumann normalize 
so that Uo(Cl) = 1, Uo(Co) = O, u(hl)  = 1 and u(ho) = 0. Two more axioms 
are specified for all h, h' ,  h 1 . . . .  , h "  C ~ ,  all t ~S ,  and all nonnegative 

?,1 . . . .  , Xm for which NXi = 1 : 
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(1) Ifh(s)=h'(s)forallsES\{t},andh(t)~oh'(t),thenh ~h'; 

(2) Ifh(s) = ~i'n--1 ~ihi(s)forallsES, thenh'v ~'i=l'n ;kih i. 

Axiom (1) is a form of sure-thing principle that interconnects ~'o and >- in 

the expected manner. Axiom (2) says that the mixture of horse lotteries 

~)tih i is indifferent to the horse lottery formed by first applying the same 

probability mixture to each state. Whatever s obtains, h and Y.)tlh i have the 
same probabilities for the consequences. 

With Uo and u scaled as indicated, it then follows that there is a unique 
probability distribution P on S such that 

u(h) = e(S)Uo(h(s)) 
$ 

for all h E ~P. In addition, 

u ( ~  Xihi) = ~" ~ )tiP(s) s ~" 

for ~ti hl E~.~'(,~f), and 

u(f) = ~ P(s)uo(f(S)) 
s 

for Savage acts f. Thus, for all f ,  g E if,, where Y is viewed as a special- 
ization of Y ,  we have 

f~ .g  iff ~ P(s)Uo(f(s)) > ~ P(s)uo(g(s)). 
8 8 

Ferreira (1972) generalizes the theory of Anscombe and Aumann to 
accommodate an infinite state space. With Y = 2 s, he adopts Jensen's 

(1967) linear utility axioms for ~'o onA/(cC) and ~-on~/(ffd~), assumes (2) 
above along with h ~>'h' i f fx~-o y when h(s) =x and h'(s) =y for all s ES,  
and uses the following interconnecting dominance axiom (3) and monotone 
continuity condition (4): 

(3) Ifh(s) ~o h'(s)forallsES, thenh ~h'; 

(4) If h I ~ h 2 ~ . . . .  {s: hi(s) --/: h(s)} ~ ~, and h i ~ h' for i = 1, 

2 . . . . .  thenh ~ h ' .  
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Here {s: hi(s) 4= h(s)} $ 0 means that for every s there is a smallest i such that 
hi(s) ~ h(s) with k/(s) = h(s) for all/' > i. When the h i monotonically converge 

to h in this way and they do not increase in preference with h i ~h '  for 
all i, then (4)requires h ~ h ' .  This axiom, like Fishburn's (1972)condition 

for countable additivity, leads to a countably additive P. 

Ferreira does not assume that ~ has a best and a worst consequence. His 

axioms, along with nontriviality, imply the existence of linear Uo on ~r 

linear u on ~ ( d T ) ,  and a unique countably additive probability measure P 
on 2 s such that 

u(h) = ~s Uo(h(s))~(s) 

for all h E ~ .  This requires of  course that u and Uo be properly aligned. 

Under the normalizations of Anscombe and Aumann with cl) ,-o Co, we 

have P(A)=u(ha) when ha(s)=cl for all sEA and ha(s)=co for all 
s EA.  Ferreira proves also that every h E Y i s  bounded in the sense that 

P{s: a<,uo(h(s))<<,b} = 1 for some finite a and b, and that if there is a 

denumerable partition of S such that P(A) > 0 for each A in the partition, 

then Uo must be bounded (cf. Blackwell and Girshick, 1954). 

8.2. Pratt, Raiffa and Schlaifer 

The approach used by Pratt, Raiffa and Schlaifer (1964, 1965)is designed 
to simultaneously measure utilities and subjective probabilities in a direct 
and intuitively appealing way on the basis of  'canonical lotteries'. Like 

Anscombe and Aumann (1963), they assume that ~ has a best consequence 
cl and a worst consequence Co, and that g = 2 s. Because their primitive 
relation ~ is not presumed to be complete, it will be convenient to maintain 
it as primitive rather than >-, and to define ~ and >- by x m y  iff (x ~ y  and 

y ~ x), and x > -y  iff (x ~ y  and not y ~ x). 
As in their paper (1964), I shall assume initially that S is finite and let L 

denote the set of all functions x from S x [0, 1] 2 into 4 .  The function x is 

a canonical lottery that yields consequence x(s, a, [J) if s obtains and if a 

random device that selects a point in the unit square [0, 1 ]2 according to 
the uniform probability distribution on the square (independent of s) selects 

point (a,/3). 
They apply ~ to L and use the first component ofpointsin [0, 1] 2 to scale 
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utilities of consequences, with the second used to scale subjective prob- 

abilities of events as suggested by axiom (2) that follows. The relation ~ on 
L is extended to ~ in the natural way: c ~ d  i f fx  ~ y  when x(s, et,3)= c 
and y(s, t~,3)=d for all ( s , a , / 3 )~Sx  [0,1] 2. A generalized interval in 
[0, 1] 2 is a rectangle with sides parallel to the axes, or else a finite union of 

such rectangles. 
The first two axioms stated by Pratt, Raiffa and Schlaifer explicate their 

basic use of canonical lotteries. The first axiom applies to all c, d E W, all 
A C_ S, all generalized intervals 11,12 C__ [0, 1] 2 , and all xl ,x2 EL defined by 

xi(s'a'13) = ( dC if(s,o~,3)EAotherwise, xI~ 

We let p(I) denote the area o f / .  

(1) I fc~ 'dandla(I1)=p(I2) , thenxl  ~ x 2 ;  

if A = S, c >- d and/~(I1) >/a(I2), then x i ~- x2. 

The first part of this axiom indicates that the random device for [0, 1] 2 is 
viewed as independent of S by the individual, and that its probability distri- 
bution over [0, 1] 2 is believed to be uniform. Thus the present authors 
provide a behavioral basis for their extraneous scaling probabilities that 
relates to the suggestion made for Savage's theory in the second paragraph 
of this section. The second part of axiom (1) is an obvious monotonicity 
assumption. 

The second axiom uses the following special canonical lotteries: 

xA: XA(s,a,3) = Cl if s E A ,  = Co otherwise; 

x(X)l: x(X)l (s, a, [3) = ci if 0~<ot~<~, = Co otherwise; 

x(~)2: x(X)2(s, ot,3) = cl if 0~</3 ~<~, = Co otherwise. 

According to prior interpretations, x A yields cl iffA obtains, and x(X)i yields 
c 1 with probability X, with Co the outcome otherwise. 

(2) There exist Co,C1 E ~ w i t h  cl~-co,  u: cg_> [0, 1] ,andP:  g ~  
[0, 1 ] such that: 

VcE~, c ~ x ( u ( c ) h  ; 

V A  E ~ ,  x.4 ~ x ( e ( A ) ) ~ .  
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The u part of  axiom (2) leads to cl ~ x ( 1 ) l  and Co ~ x(0)x, hence u(ca) = 1 
and u (Co) = 0, with the utilities of  other consequences falling between 0 and 

1. The second part identifies P(A)  as the 'probabili ty '  at which you are 

indifferent between getting the preferred cl if A obtains and getting cl if 
an event with area P(A)  in [0, 1 ]2 obtains for the extraneous random device. 

In addition to (1) and (2), it is assumed that ;~ is transitive and that "~ is 

preserved under certain types of  substitutions: if corresponding 'pieces' of  

two canonical lotteries are respectively indifferent, then the whole canonical 

lotteries will be indifferent. It is then proved that u and P as posited in axiom 

(2) are unique and that,  for all Savage-type acts x and y of  the form 

x(s,a,13) = cs for e a c h s C S  and all(a,13) E [ 0 , 1 ] z ,  

y(s,  a, 13) = d s for each s E S and all (a,  13) E [0, 1 ] 2 

we have 

x ~ y  iff ~ P(s)U(Cs)>~ ~ P ( s ) u ( d s ) .  
81 s 

A variety of  related interesting results are also proved by the authors, but I 
shall not go into these here. 

Pratt, Raiffa and Schlaifer (1965, Chapter 8 )ex tend  the form Y,P(s)u(c,) 
to the more general f u ( f ( s ) ) d P ( s )  under three more axioms (dominance, 
general substitutability, continuity) in a manner similar to Ferreira's (1972) 

extension of  Anscombe and Aumann (1963). Their dominance axiom says 

that if x(s, a, 13) ~ y ( s ,  a, 13) for all (s, a,  13), then x ~ y .  General substitut- 
ability asserts that if x depends only on s, y depends only on s and a,  and if, 

for all (s, a) E S x [0, 1 ] ,y(s,  a) = ca if a <~ u(x(s))  and = Co otherwise, then 
x ~ y .  Their continuity axiom essentially says that if x is bounded in prefer- 
ence by two special sequences of  canonical lotteries, each of  which converges 

to y ,  then x ~ y .  

8.3. Preferences on horse lotteries 

We now consider theories for preferences on X or on a structure similar to 

Y r a t h e r  than on ~r a n d ~ ' ( Y )  as in the Anscombe and Aumann 
approach. Horse lotteries in ~g' are very similar to canonical lotteries in L 

as defined aboVe. For example, suppose for each s E S  that x E L  assigns 
a finite number of  consequences to the points in [0, 1] 2 such that each 
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{(a,/~): x(s, a,/~) = c} is Lebesgue measurable with measure /as(c). Then x 
corresponds to the horse lottery h for which h(s) = I~s for each s E S. Hence 
the structure discussed below can be viewed as a variant of that used by 

Pratt, Raiffa and Schlaifer. 
We begin with S finite and X = [~r then consider generalizations. 

Fishburn (1967) shows that Jensen's (1967) linear utility axioms for ~-on 

X imply the existence of linear u s on ~ r  for each s such that 

h >" h'  iff ~. us(h(s)) > ~ us(h'(s)) 
$ s 

for all h,h'  E ~ ,  with the u s unique up to simultaneous (u 8 -->au s + b s, 
a > O) positive affine transformations. With ~-assumed to be nonempty, s 

is defined to be null iff h ~ h'  whenever h(t) = h'(t) for all t :/: s. Preferences 

on . g ( ~ )  are defined on the basis of constant horse lotteries in the usual 

manner, and the following is assumed for all h, h '  E Y and all t E S: 

(1) I fh(s)=h'(s)  for all s ES\{t},andh(t)  ~h ' ( t ) , thenh  ~ h ' ; i f ,  in 

addition, t is not null and h(t) ~ h'(t) then h >'h'. 

This sure-thing principle is similar to those mentioned earlier. It then follows 

that there is a linear u on ~/(cC) and a unique probability measure P on 2 s 

such that P(s) = 0 iff s is null, and 

h ~- h' iff ~ P(s)u (h(s)) > ~ P(s)u (h'(s)) 
$ s 

for all h , h ' E  ~i a. This representation gives a Savage-type representation 

under the usual identification conventions. 
A closely related theory is presented by Myerson (1979) with S a n d ~  

finite. Myerson uses another version of yon Neumann-Morgenstern type 
axioms for ~- on ~d ~ to obtain the initial representation in the preceding 
paragraph. His sure-thing axiom says that if h(t)=h'(t ' ) ,  h"(t)= h"(t'), 
h(s)=h"(s) for all s--/:t, and h'(s)=h"(s) for all s--/:t', then h ~ h "  iff 
h ' ~ h " .  His axioms yield the representation at the end of the preceding 
paragraph and imply that if >- is not empty then P(s)> 0 for every 

state. 
Fishburn (1970, section 13.2) relaxes the strong structure presumed 

above by not requiring all consequences to be relevant under every state. 
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He assumes that S is finite, lets ~'s denote the consequences that can occur 

i fs  obtains, and applies ~- to 

~ '  = {h on S: h(s) E~/(cgs) for each s E S}. 

Jensen's linear utility axioms for >- on X '  are presumed to hold, and null 

states and ~ on constant acts and consequences that can occur under every 

state are defined in the usual ways. Fishburn assumes also that 

(1) There are Co,C1E cg s for all s, such that cl ~" Co; 

(2) If  s and t are not null, h E ~ ' ,  and x and y are in both ~ / ( ~ s )  
and~/(cWt), then (h with h(s) replaced by x) ~- (h with h(s) 
replaced by y)  iff (h with h(t) replaced by x) ~" (h with h(t) 
replaced by y).  

According to (1), there need be no more than two Savage-type constant 
acts since, apart from Co and c l ,  the different cg s can be disjoint. Axiom 
(2) is a sure-thing/substitution axiom for the Y '  context. The cited axioms 
imply that there is a utility function u on U s fgs and a probability measure 
e on 2 s such that h ~ h '  i f f~e(s)u(h(s)) > ~e(s)u(h'(s)), where u(h(s)) = 
E [h(s) (c)] u (c). In addition, P is unique, P(s) = 0 iff s is null, and the restric- 
tion of u on the union of the ~ for nonnull s is unique up to a positive 
affine transformation. 

The standard horse lottery approach is generalized to arbitrary S in 

Fishburn (1969; 1970, section 13.3), with cg and S arbitrary and g = 2 s. 
Jensen's axioms are again used for ~- on Y along with a nontriviality axiom 

and the following sure thing and dominance axioms: 

(1) If A is not null, h(s) = x and h'(s) = y for all s E A, and h~ = h~,  

then h > -h '  i f fx  ~-y ;  

(2) I fh(s)~-h'  foralls, thenh ~ h ' ; i f h ' ~ - h ( s ) f o r a l l s , t h e n h ' ~ h .  

We then obtain linear u on r and unique P on g such that 

h ~" h '  iff Ss u (h(s)) dP(s) > Ss u (tl'(s)) dP(s) 

for all horse lotteries h and h' .  Moreover, every h is bounded, i.e. P{s: a <<. 
u(h(s))<~b}= 1 for some finite a and b, P ( A ) = O i f f A  is null, and u is 
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bounded if there is a denumerable partition of S such that P(A) > 0 for 

every A in the partition. 
Fishburn (1972) generalizes the preceding results by (i) using an arbitrary 

mixture set ~ / ins tead  of ~ / ( ~ ) ,  (ii) using an arbitrary Boolean algebra ~ of 

subsets of S in place of 2 s, and (iii) replacing the dominance axiom (2) by 

the formally weaker axiom that has h' as the constant horse lottery h'(s) = x 
for all s E S. The representatiQn of the preceding paragraph is obtained, 

without using axiom (2), for simple measurable horse lotteries. With axiom 
(2), and calling h u-measurable iff {s: u(h(s))El} is in 3 for every real 

interval 1, it is shown that every u-measurable h is bounded and that the 

representation holds for all such h. Another axiom for countable additivity 
(cf. Ferreira, 1972) implies that P is countably additive when ~ is presumed 

to be a u-algebra. 
In a related theory, Fishburn (1975, section 3) considers ),- on ~t'~that is 

not presumed to be an asymmetric weak order. He uses seven axioms, the 
last two of which are somewhat awkward, and shows that these axioms 
imply the existence of linear u on ~ / ( ~ )  and finitely additive P on 2 s such 

that the one-way representation 

h >- h' 

holds for simple horse lotteries h and h' .  This has not been generalized for 

h , h ' E  • t h a t  can assign an infinite number of lotteries in ~Z/(cg) to the 

different states in S. 

8.4. Towards generalized structures 

To conclude this section, we mention three theories that use mixture sets 

in different ways than the theories discussed above. The basic primitive 
sets in the first two of these are an act set ~ - a n d  a state set S. Consequences 
as used previously are replaced by act-state pairs fs E ~ " x  S. More generally, 

we can view the act-event pairfA E ~'-x J o  as {fs: s EA} and interpret it as 
"whatever might happen if you do f and A obtains". This description is 
purposefully vague in contrast to the precise conceptualization of conse- 
quences, although one can always write fs as f(s) and call it a consequence. 
In fact, consequences in preceding theories can be visualized in this way. 
However, since the ensuing theories do not depend on constant acts or 
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presume that J - x  {s} has entities identical to some elements in ~ - ' x  {t} 

when t :/: s, and since the notation u(fs) is more suggestive than u(f(s)) 
in conveying the idea that states as well as acts can contribute to utility, ~I 
shall use the new notation here. 

Fishburn (1973, 1974) applies ~- to ~r x Y 0 ,  where re '  is an arbitrary 
mixture set that can best be visualized as the s e t ~ # ( ~ - )  of mixed acts or 

lotteries on acts, and Y is a Boolean algebra of subsets of S. We interpret 

xA E ~r x g o  as whatever might happen if you 'do  x (which yields act f 
with~probability x(j0) and A obtains, and xA >-yB indicates that the indi- 

vidual would rather 'do' x under the assurance that A obtains than ' d o ' y  

under the assurance that B obtains. There may of course be conceptual 

difficulties in trying to compare act-event pairs that are based on different 

events (Fishburn, 1974, pp. 27-28) ,  but it is presumed that the individual 
is able to make such comparisons. 

In addition to asymmetric weak order for ~- on ~r x Y o  and a non- 
triviality condition, the present theory uses the following four axioms for 
allx,y:z ,w E ~ /and  aI1A,B E g o :  

(1) IfxA "~ zB andyA ~ wB then (ix + �89 ~ (�89 + �89 

(2) {a: (ax+(1--a)y)A~-zB} and {j3: zB~-(J3x+(1--13)y)A} 
are open subsets of  [0, 1] ; 

(3) IfxA ~xB  thenxA ~x(A  + B) ~xB; 

(4) If A ~ B = ~ then xA ~- xB and yB ~'yA for some x , y  E .g/. 

Axioms (1) and (2) are generalizations of the Herstein-Milnor axioms (B2)and 
(B3) respectively, axiom (3) is an averaging condition, and (4) is a special struc- 

tural condition which says that no event in g 0  is dominated by a disjoint 

event in Y o  in the sense that xA ~ xB for all x E ~r Although (4) will some- 

times fail in realistic situations, something like it is needed in the absence of 
things like constant acts to obtain a nice representation for preferences. 

The axioms in the preceding paragraph imply u on ~r x Yo that is linear 

in its first component -u (Xx  + (1 - -X)y ,A)  = Xu(xA) + (1 - -X)u(yA) - 

and nonnegative real numbers P(A iA + B) and P(BIA + B) that sum to 1 for 
each pair of disjoint A and B in Y o ,  such that 

xA>"yB iff u(xA)>uO'B) 
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and 
u (x, A + B) = P(A IA + B)u (xA) + P(BIA + B)u (xB) 

for all x,y  E M'and  all A , B E  go, with P unique and u unique up to a 
positive affine transformation. However, P does not necessarily behave like 

a probability measure, and in order to guarantee such behaviour we need 

to use another structural condition: 

(5) If A, B, C E g o  are mutually disjoint and xA "" xB for some 

x E ~g/, then exactly two ofyA,  yB and yC are indifferent for 

some y E ~r 

If this 'linear independence' axiom fails then, as shown in Fishburn (1973, 

1974), the unique P can be nonadditive. When (5)holds, it follows that each 

P ( I A )  for A E 5" o is a finitely additive probability measure on {A NB: 
B E Y},  that P(AIC)=P(AIB)P(BIC) whenever A C B C C and A, B, C C 

Yo, and that if {A1 . . . . .  An} is a measurable partition ofA E g o ,  then 

n 

u(xA) = Z P(AiIA)u(xAi). 
i=l 

Fishburn (1973, 1974) uses the dominance axiom 

(6) Ifxs >"yB for all s EA,  then xA ~yB; 

ifxA >-ys for all s E B, then xA ~yB,  

under the assumption that {s} E ~ for every s E S, to extend the preceding 

form to 

u(xA) = ~a u(xs)dP(stA) 

for all xA that are u-measurable and bounded. The extended form is the 

same as 
1 c '  

u(xA) - P(A) Ja u(xs)dP(s), 

provided that P(A) = P(A[S) is positive. A number of criticisms of the theory 
just outlined as well as those mentioned in the next two paragraphs have been 

offered by Pratt (1974). 
Balch (1974) proposes an alternative to the theory just presented that 

applies ~- to ~r  Y o )  rather than to ~Kc(Y) x Yo- This simplifies 
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several technical aspects of the preceding theory but introduces mixtures 
X(xA)+ (1- -X)(yB)  based on different events that Fishburn sought to 

avoid. Balch notes that axioms similar to weak order and (1) through (4) 
above lead to u(X(xA) + (1 -X)CvB)) = Xu(xA) + (1 --X)u(xB) plus a 
representation like that stated prior to (5), and shows that, when x(A + B) 
X(xA) + (1 --X)(xB),X=P(AIA +B). 

Finally, Balch and Fishburn (1974) outline an approach to a conditional 

theory of subjective expected utility that begins with a primitive set ~ - o f  
acts and a state set Sr for e a c h f E  ~'-, with J r  a Boolean algebra of subsets 
of Sf for each f. This theory was motivated by the Luce-Krantz theory dis- 
cussed in the next section and by the practical difficulty of constructing 
a manageable set S of Savage states in many situations (cf. cCJ- in section 2). 
The tailor-made state set Sf for each act precludes the powerful structure 
enjoyed by Savage and others, and leads to strong structural conditions 
in the Balch-Fishburn theory that I shall not recount here. 1~ Their theory 
applies ~- to ~'(cC*), where ~ *  is the set of all act-event pairsfA for which 
f E  ~'-and A E Yt\{0}. Their axioms include the Herstein-Milnor axioms 
for ;>- on M/(c~*), an averaging condition like (3) above for each f, and the 
special structural conditions. With u(fA) defined from the order-preserving 
linear u on .#,/(<6,,) in the usual way, the representation includes 

u(f,A + B) = Pr(AIA + B)u(fA) + Pf(BIA + B)u(fB) 

for disjoint A and B in ..9" f\{0}. The Pt have the usual probability properties. 
Because states and events are conditioned on acts, each act carries its own 
event probabilities. 

9. LUCE AND KRANTZ 

The theory of Luce and Krantz (1971), which is discussed also in Krantz 
etal. (1971, Chapter 8), was designed to provide a qualitative theory of 
conditional decisions that admits a conditional subjective expected utility 

representation and enjoys a level of generality comparable to Savage's (1954) 
unconditional theory. Its basic primitive sets are S and ~ ;  constructed 
primitive sets are a Boolean algebra J of subsets of S, a subset jV'__C Y of 
null events that contains O, and a set ~ of conditional acts f a  ,gB . . . .  that 
map nonnull events A, B . . . .  in g into ~ ' .  I shall let f a  + gB denote the 
function from A + B into ~ that equals f a  on A and gB on B. 
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Luce and Krantz apply >- to c~, and assume that cj  is closed under dis- 

joint unions and nonnull restrictions, so that, for all A,B E Y \ J / / ' a n d  all 

fA,gB E CJ, 

(1) f a  + g n  E ~ ; i f B _ C A  then the restriction of fA to B isin ~' .  

As with A + B, fA + gB always signifies that A rq B = 0- 

Their basic representation involves u on the acts in ~ (unique up to a 

positive affine transformation) and a finitely additive probability measure P 

on Y (unique) such that u preserves ~-,  P(A) = 0 i f fA E ~ , ,  and, for all 

fA,gB Ec.r ', 

u(fa + g~) = P(AIA + B)u(:a) + e(BIA + B)u(gB). 

The authors view at least some acts in ~ as natural objects of  choice, while 

others - formed from disjoint unions and restrictions of  natural acts - are 

artificial. Depending on what one views as the natural acts, the + in f a  + gB 

has several interpretations, as we shall discuss shortly. Unlike Balch and 

Fishburn (1974), all acts conditioned on A have the same P ( I A )  values on 

subevents in A. Thus, at least for natural acts, the individual's choice can 

delimit the states that are relevant to that act but cannot influence the 

conditional probabilities in the relevant event. In addition, the Luce-Krantz 

state set S differs from Savage's. This difference along with other important 

points is best illustrated by an example. 

9.1. An example 

An individual plans to travel from New York to Boston by either air (A) or 

bus (B). Several carrier options are available for each mode of travel. If  he 

goes by air - act f.~ for airline i - then the states relevant to this mode and 

over which he has no control comprise event A. If  he goes by bus - act g~ for 

bus line ] - then the states relevant to the bus mode and over which he has 

no control comprise event B. We shall assume that A tq B = 0 and that there 

are interdependencies between A and B due to factors such as the weather. 

One state in each of  A and B will obtain, but only one of  the two obtaining 

states will be relevant to the mode he actually chooses. The natural acts are 

the fit  and g~. The composite act fit  + g~, which indicates that he will either 

take airline i or bus line j ,  is an 'artificial' act. 

The Luce-Krantz state set is S = A + B. Savage's state set would be A x B: 
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one and only one Savage state (SA, SB)EA X B will obtain. If P* is Savage's 

probability measure, and if singleton events are in g for Luce and Krantz, 
then their conditional probabilities will be 

P(SAIA) = ~ P*(SA,S~), 
B 

P(sBIB) = Z P*(SA,SB). 
A 

Interdependencies between A and B preclude calculation of P* on the basis 

of P ( I A )  a n d P ( I B ) .  
Suppose for the moment that ~ = {0, A, B, S} with A + B = S. Assuming 

that A and B are nonnull, the Luce-Krantz representation uses only P(A) = 
P(AIS) and P(B)=P(BtS)= 1 -P(A)  in addition t o P ( 0 ) =  0 andP(S )=  1, 
and both P(A) and P(B) are positive. The representation written above gives 

u(fjt + giB) = P(A)u(fjt) + P(B)u(gJn), 

and the axioms of their theory imply that fit >-g~ for some i and ], and 

g~ ~-f .~ for some k and m. Hence, it makes no sense to view P(A) as the 

probability that the individual will choose the A mode independent of i and 

] when he is confronted with fit + g~. Even if there were only one available 

airline and only one available bus line, and we assume that f a  +gB, it still 
makes little sense to view P(A) as the probability he will fly, given an open 

choice of either flying or riding, since then P(A) would presumably be either 

0 or 1 (Balch, 1974). Moreover, P(A) is not the probability that some Sa E A 
obtains independent of what the individual does, for this probability is unity, 
as is the probability that some SB E B obtains. 

Luce and Krantz favor the interpretation that P(A) is the individual's 
subjective probability (not necessarily 1/2) for an extraneous event E, with 

P(B) his probability for ft. Accordingly, f~t + g]~ is viewed as an act in which 

he 'gets'f.~ i fE  andg~ if if, much as we interpreted Ramsey acts in section 5. 
We can think of E as an event that lies behind the Luce-Krantz system that is 

available for structural-scaling purposes although it (or more general ex- 
traneous event sets) does not appear explicitly in their axioms. Thus, we shall 
think of P(A) in this way when fA  and gB are natural acts although it has no 
particular relationship to Savage's P*. 
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To consider restrictions of natural acts, and disjoint unions formed from 
such restrictions, we partition A into its subset Ao of 'foul weather' states 
and its subset A 1 of 'fair weather' states, and let fg and f~ be respectively 
the restrictions off.~ to A0 and to A 1. Similar notations apply toB. Assuming 
that these new events are in Y,  we then encounter the following types of 
expressions in the representation: 

u(fio + f~ )  = P(AotA)u(fio) + P(AllA)u(f~), 

u(f~o + gJo) = P(AolAo + Bo)u(f~o) + P(BolAo +Bo)u(goJ), 

u(fd + gi) = P(AolAo + BOu(f~o) + P(B,IAo + B1)u(gi). 

In the first expression, fg + f l  m says "fly on airline i in foul weather and on 
airline m in fair weather", and P(AolA) is the probability of 'foul weather'. 
The latter conclusion assumes that E is independent of A and B, and we 
maintain this assumption below. 

In the second expression, f~ + g~ says "fly i if E, take bus line j if if, 

given foul weather", with P(AoIAo+Bo)=Pr(E). Act f~ + g l  in the 
third expression is more complex. It says "fly i if E and go by bus line f if 
E, given foul weather in the first instance and fair weather in the second 
instance". On breaking down the conditional probability P(AoIAo + B1), we 
obtain 

P(AoIAo + B1) = 
e(Ao) 

e(Ao) + e(81) 

P(AoIA )P(A IS) 
P(Ao IA)P(A IS) + P(Bx IB)P(BIS) 

Pr('foul')Pr(E) 
Pr('foul')Pr(E) + Pr('fair')Pr(ff) 

er('foul')er(~) 
Pr(E) [2Pr ( ' fou l ' ) -  11 + 1 --Pr( 'foul ')  

If Pr(E) = �89 then P(AolAo +B1) =Pr( ' foul ' ) ;  if Pr('foul') = �89 then 
P(AolAo +B1) =Pr(E). In other cases, P(AolAo +B1) depends both on E 
and the state of the weather. 
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9.2. Axioms 

Luce and Krantz use nine axioms in their basic system. These include axiom 
(1), weak order, an axiom for Jg', an Archimedean axiom like those used by 
Krantz et al. (1971) for additive measurement, and an independence axiom 
for nonnull disjoint A and B which uses + to imply that if the preference 
'difference' between f~ and ~a is as large as that between f~ and f~,  and if 
g~ ~fJt  for i = 1,2, 3, 4, then the preference 'difference' between g~ and 
g~ is as large as that between g~ and g~. In the last of these, f.~ + hB 
J~a + hi3 and f~ + hB ~ f ~  + h l  indicate that the preference 'difference' 
between f~ and ~a is as large as that between f ]  and f~.  In terms of their 
representation, the stated (~,  ~) pair translates into 

p [u (1 - p )  = 

= 

where p = P(A IA + B). 
Their other four basic axioms are, for all A , B  E Y \ ~ / ' a n d  all ]~t ,f~t, 

f~t,fA+B,gB EC~ : 

(2) Y\~C/'contains at least three mutually disjoint events; >- is not 
empty; 

(3)  hA ~ gn for some h A E ~ ; if ]~ + gn ~ fA+B ~ fA + gn, then 
ha + gB ~ fA+n for some hA E c~; 

(4) If]A ~gB then fA +gB ~ f A ;  

(5) f 'A~'f f t  i f ff~ +gB~'f~t +gB. 

Axiom (4) is an obviously necessary averaging condition, and axiom (5) is 
a necessary sure-thing (additivity, cancellation) axiom. Unlike (4), (5) relies 
on the presumption that the probability of A given A + B does not depend 
on the particular A-conditioned act under consideration. 

Axioms (1), (2) and (3) are the nonnecessary structural conditions used 
by Luce and Krantz. Axiom (2) is their nontriviality condition. Its first part 
can be weakened to posit only two nonnull disjoint events (as in our 
example) if they strengthen their independence assumptions after the fashion 
of Debreu's (1959) axiom (1) in section 5 or Suppes's (1956) axiom (1) in 
section 7. The first part of axiom (3) implies that u has the same range for 
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acts conditioned on each nonnuU event, and is therefore quite strong. The 

second part of (3) is an existential intermediate-value axiom that involves 
P as well as u. Although Luce and Krantz acknowledge the strength of their 
structural conditions, they show that these conditions are less demanding 
than those used by Savage (1954). 

It is proved in Krantz et al. (1971, Chapter 8) that the nine axioms in the 
basic Luce-Krantz system imply the representation set forth in the paragraph 
after (1) above. 

9.3. Utilities for consequences 

The basic Luce-Krantz representation has u on cs only and not on ~ .  Two 

more axioms, based on constant conditional acts, are then used to obtain the 
representation 

fA ~ gB 
1 

iff p ~  YA U(fA(S))dP(s) 

1 
>-P--~) SB u(gB(S))dP(s)' 

for all simple nonnull-measurable acts in of. With c A the function from A 

into c~ that assigns c to every s EA,  the new axioms are: for all c @ ~ ,  

(6) c a E ~ for some A E Y \ ~ F ;  

(7) I f A , B E Y \ ~ P a n d c A , c B E ~ , t h e n c A  ~cn.  

Structural axiom (6) invokes the presence of some - but by no means all - 

constant acts. Axiom (7), which is implied by the new representation, asserts 

that the consequences embody all valued aspects of the situation. 
In section 6, I discussed Narens's second model using notation that is 

similar to the notation in the preceding paragraph. However, we have seen 
that the formulations of Narens (1976) and Lute and Krantz (1971) are 
substantially different, and I hope that the notational similarities will not blur 

these differences. 

9.4. Extensive measurement 

Luce (1972) shows how the Luce-Krantz theory can be modified to accom- 
modate an extensive measurement operation * on conditional acts or on 
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consequences. Like in Roberts's (1974) theory at the end of  section 6, if * is 

initially defined on ~ ,  it is extended to ~" in a natural way. In Luce's case, 

we define f a*  gB by 

fa(s) if s E A \ B  

(fa*gB)(S) = ~fA(s)*gB(s) if s E A  O B  
I 
I, gB(s) if s E B \ A ,  

with c*d interpreted as 'bo th  c and d'. It is assumed that .~ is closed under 

* and under nonnull restrictions. This replaces axiom (1), with f~a*gB now 

used instead o f f  A + gB as previously interpreted. Luce states ten axioms that 

he feels are somewhat easier to understand than the Luce-Krantz axioms, and 

shows that they imply an order-preserving u on ~ (unique up to a similarity 

transformation) and a unique probability measure P on g with P(A) = 0 iff 

A E ~ s u c h  that, for a l l f  a ,gB EcS,  

u( fa  * gB) = u( fa \n)P(A\Bla  U B) + u(gma)P(BkA[A O B) + 

q- [H(fANB) + U(gANB)]P(A n BIA u B). 

In this representation, fa \  B is the restriction o f fa  to AkB, and so forth, with 

u(fc)P(CID ) = 0 whenever C E JP .  

10. MONO-SET T H E O R I E S  

The final representation type that we shall consider was first discussed exten- 

sively by Jeffrey (1965a). Its initial axiomatization was given by Bolker 

(1967) on the basis of  mathematics developed in Botker (1966). Recently, 

Jeffrey (1978) modified Bolker's axioms to accommodate null events, and 

Domotor  (1978) axiomatized a finite S version of  the mono-set represen- 

tation. 

Mono-set theories apply ~- to part o f  a Boolean algebra 2, ~ ,  which I shall 

view as a set of  events from some S. An ideal ~r of  null events may be 

presumed. Events in g are both unce r t a in -  except for null events and 
their complements - and valued, so that subjective probabilities and utilities 

apply to the same entities. The basic mono-set representation consists of  real 
valued functions M and P on J such that 
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(i) M is a signed measure, with values unrestricted in sign and 

M(A + B)=M(A) + M(B); 

(ii) P is a probability measure with P(A) = 0 if and only ifA E ~AP; 

(iii) for allA,B E g \ ~ , ,  

A > - B  iff M(A)>M(B) 
P(A) P(B)" 

Viewing U(A)=M(A)/P(A) as the conditional subjective expected utility 
of event A, additivity gives 

U(A + B) = P(A IA + B) U(A) + P(BIA + B) U(B). 

Under suitable regularity conditions, the Radon-Nikodym Theorem yields 

u = dM/dP with M(A) = fA u(s)dP(s), hence 

U ( A ) =  1 e(A---) 
Thus the mono-set representation bears at least a superficial resemblance to 

the conditional theory of Luce and Krantz (1971). The main conceptual 

difference between the two is the distinction between consequences and 

states in the Luce-Krantz theory and their explicit formation of conditional 
acts. 

10.1. Interpretations 11 

Each s E S in a mono-set theory ideally specifies all aspects of  the situation 

that are of concern to the individual, including acts, consequences, Savage 

states, and so forth. It is understood that, whatever happens, the individual 
believes that one and only one s E S will 'obtain'. Although this approach 

blurs the often useful distinctions among acts, consequences and other 
entities that appear in other theories (Bolker, 1967, p. 335), Jeffrey (1965a, 
1965b, 1974) argues that it is somehow unnatural to break things up in a 
Savage manner, and finds the holistic mono-set viewpoint more appealing. 

According to Jeffrey, an act is any event A E Y that the individual 

thinks he has the power to make happen. Alternatively, an act is a collection 
of states that covers all possibilities under one or more specific courses of 
action, where the individual believes it within his power to follow some 
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course of action thus specified. We might visualize atomic acts as the 'minimal' 

events that the individual feels he can bring about (e.g., all states in which he 

carries his umbrella, or continues smoking, etc.), and composite acts - includ- 

ing S if it is not the only atomic act - as unions of  two or more atomic acts. 

Bolker and Jeffrey provide several related interpretations of A ~-B. One 

is that you would prefer to hear that some member of A will occur than to 

hear that some member o rB will occur. Another is that A ~ B "means that a 

random member of  A is preferred to a random member of B, where 'random' 

means 'selected from A, or B, according to our subject's own estimate, con- 
scious or not, of the actual conditional probabilities'" (Bolker, 1967, p. 335). 

While this seems reasonable for some events, for other events it could pose 

problems that relate to our discussion of Luce and Krantz (1971) and to 
Balch's (1974) criticism of their closure axiom. For example, if A and B are 
singleton states, or ifA and B are atomic acts, then A ~-B is easily visualized. 
However, when composite acts are involved, matters may be confused by 

the individual's ability and desire to make happen some subevent in the 

composite act. In Bolker's theory, A ;~ B requires A ~- A + B ~- B, but if one 
can make A happen then why wouldn't one have A ~ A + B? In other words, 
why wouldn't one have P(A IA + B) = 1 instead of P(A IA + B) < 1 (as 
required by Bolker) when A is an atomic act and A ~-B? 

Luce and Krantz avoid this type of problem by invoking extraneous events 

for composites like fA + gB when fA and gB are natural acts, but Botker and 
Jeffrey do not advocate a similar approach. Hence, when A and B are disjoint 

Bolker-Jeffrey atomic acts, P(AIA + B) has a different interpretation than 

was used in the preceding section: presumably, it is the individual's subjective 

probability that he would do A, given that he would do either A or B. Thus, 

as long as O<P(AIA + B ) <  1 when A is not indifferent to B, there is a 
strong suggestion of probabilistic choice in the theory. While I see nothing 

objectionable per se in this, it does tend to differentiate mono-set theories 

from those discussed in previous sections. 

10.2. Bolker's theory 

Bolker's (1967) event set Y i s  a complete (closed under arbitrary unions and 
intersections) atom free Boolean algebra, and hence a a-algebra. His null event 
set is effectively {O}, and ~ is applied to ~ o .  

Bolker assumes that ~- is a continuous asymmetric weak order. With all 
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designated events in Y o ,  continuity in the present setting says that if An r A 
(hence U A , = A )  or AnnA  (hence C3An=A), and if B>-A~-C,  then 
B >-A n ~ C  for all large n. Because of the powerful structure adopted by 
Bolker, he needs only two more axioms: 

(1) I fA>-B thenA>-A  +B>-B; i fA  ~ B  thenA ~ A  + B ~ B ;  

(2) If A, B and C are mutually disjoint, A "-B + C, and A + C 
B + C, then A + D ~ B + D for all D disjoint from A and B. 

Axiom (1) is an averaging axiom, and (2), which Bolker terms impartiality, 
is an independence condition that is related to axiom (5) in the preceding 

section. Bolker's representation and the hypotheses of (2) imply P(A) = P(B), 
which requires A + D ~ B + D to avoid a contradiction. To avoid the trivial 

case, we shall assume also that ~-is not empty. 

The representation implied by these axioms consists of (i) through (iii) 

above, plus: P and M are countably additive; J = {0} so that Y \  J / ' =  Y o ;  

and M(A) = fA u(s)dP(s) with u = dM/dP for eachA E Yo.  
Because of the mono-set structure, Bolker's uniqueness theorem differs 

from those in preceding theories. When (M,P) satisfies Bolker's represen. 

tation, so does (M', P') if and only if there are real numbers a, b, c, d such 

that --d/c is not in the interval of values {M(A)/P(A): A ~ Yo}; ad >bc; 
cM(S) + d = 1; M'(A) = aM(A) + bP(A) for all A E Se0 ; P'(A) = cM(A) + 
dP(A) for all A ~ Yo.  

The first condition requires c = 0 if {M(A)/P(A): A E J<~o} is the entire 
real line, and in this case d = 1 with P unique and U = M/P unique up to a 
positive (a > 0) linear transformation. More generally, with U ' =  M'/P', the 
foregoing gives 

U'(A) - aU(A) + b 
cU(A) + d 

and U is said to be unique up to a f~actional linear transformation subject 
to - -d /c~  {U(A): A E g 0 } -  so that the denominator does not vanish, 
and ad > bc - so that U' increases as U increases. 

10.3. Jeffrey's theory 

Jeffrey (1978) modifies Bolker's theory in a manner consistent with Jeffrey 
(1965). A main structural difference between the two theories lies in the 
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nature of g and its null event set A/'. Jeffrey assumes that g is a o-algebra, 

~r a proper o-ideal of g ,  every 'disjoint subset' o f g \ d K ' i s  countable, 

and every event in g \ A / ' i s  the union of two disjoint events in S \ A ~ .  

Jeffrey applies ~ to all of g and assumes that >- is an asymmetric weak 

order with A >- S >-.~ for some A (nontriviality), S ~ 0, and A ~ B whenever 
(AkB) tA (BkA) E ~V'. His other three axioms are very similar to Bolker's con- 

tinuity, averaging (1) and impartiality (2) axioms. 

Jeffrey's representation and uniqueness theorems are essentially the same 

as BoNer's with the exception of his treatment of null events. Jeffrey has 

A ~ ' B  iff U(A) > U(B),for all A ,B  E g ,  

if P(A) > 0 

if P(A ) = O. 

with 

U(A) = fA 
u(s) dP(s) 

t u(s) 
In addition, P(A) = 0 iffA E ~r 

10.4. A finite-states version 

Domotor (1978) provides necessary and sufficient conditions for a Bolker- 
type representation when g is a finite Boolean algebra. He then considers 
a nonstandard representation for arbitrary Boolean algebras. I shall comment 

only on the finite version. 
With S finite, Domotor assumes that g is a Boolean algebra with ~- an 

asymmetric binary relation on J o .  He then adopts a condition referred to as 

pro]ectivity, which is a sort of  super-independence axiom. In terms of prob- 
abilities and utilities, projectivity essentially says that if 

P(Ai)P(BOP(Ci)P(Di) [U(BI) -  U(AI)] [V(Di ) -  U(Cf)] = 0, 
i=1 

and if U(Bi) >~ U(Ai) for i = 1 . . . . .  n and U(DI) >1 U(CI) f o r / =  1 . . . . .  n - 1, 
then U(Cn)>/U(Dn). Like Richter's (1975) axiom, projectivity has little 
intuitive appeal although it illuminates the mathematical structure. 

Domotor subsequently proves that the conditions of the preceding para- 
graph are necessary and sufficient for the existence of a utility function U on 

g o  and a probability measure P on g with P positive on g o  such that, for all 
nonnull events (as a primitive, the null events form a proper ideal) A, B E g ,  
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A~'B iff U(A)>U(B), 

U(A + B) = ?(AIA + B)U(A) + ?(BIA + B)U(B). 

A modest variant of  the axioms that explicitly involves ~ replaces positive 
P on Y o  by P(A) = 0 i f fA E Jr Because of  finiteness, the strong unique- 

ness results obtained by Bolker do not apply to the finite case. 

11. SUMMARY 

AS we have seen, theories of  subjective expected utility exhibit both differ- 

ences and similarities in their primitives, axioms, and representation and 

uniqueness theorems. All theories apply a preference relation >- or a pre- 

ference-indifference relation ~ to a set of  entities often referred to as acts, 

and several theories use more than one such relation. There is always an 

ordering axiom and one or more independence or averaging conditions that 

serve to separate utility from subjective probability. Most theories also use 

an Archimedean or continuity condition to ensure that the representing 

functions will be real valued. Other prominent axiom types involve non- 

triviality conditions, additivity postulates, and dominance assertions. 

Virtually by definition, a representation for subjective expected utility 

involves a utility function and a probability function that combine in an 

expectational form. In most but not all cases the probability function is a 

finitely additive measure, and several theories use more than one measure 

conditioned on different events. In all but the mono-set theories, utility 

and probability are defined on different sets. 
Many of  the more structured multi-set theories give rise to unique sub- 

jective probabilities and utilities that are unique up to a positive affine 

transformation: uniqueness of  utilities up to a similarity transformation 

can arise when a binary operation is used or when the utility of  a worst 

consequence is set at zero. Less restrictive conditions on probabilities and 

utilities arise in some more loosely-structured theories and when the prefer- 
ence relation is not a weak order. Mono-set theories have slightly different 

uniqueness characteristics. 
Differences among theories arise mainly from different structures to 

which the preference relations are applied, but can also arise within the 

same structure owing to different preference axioms such as weak order 
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versus partial order. New theories have been motivated in part by earlier 

structural assumptions that are perceived to be too inflexible to accommo- 
date realistic aspects of decision making under uncertainty, or that create 
interpretational problems. However, many of the newer formulations, 
including those based on horse lotteries, combinations of conditional acts, 
and mono-set structures, have introduced new interpretational difficulties. 

Table I presents a brief and approximate summary of aspects of the 
theories discussed in sections 5 through 10. The table provides one ex- 
pression for the act space used in each theory, along with notes on special 
features and uniqueness. In the final column, 'usual' means that P i s  unique 
and u is unique up to a positive affine transformation, 'u similarity' means 
that u is unique up to a similarity transformation, and 'arbitrary' indicates 
something less restrictive than the usual type of uniqueness. I have not 
stated in the table that all theories in section 8 use something like extran- 
eous scaling probabilities along with one or more applications of yon 
Neumann-Morgenstern type axioms. 

I shall conclude with a few opinions on the question of which theory 

or theories are most satisfactory for a general normative treatment of decision 
making under uncertainty. My primary criteria in this regard are ability to 
characterize a diversity of situations in a realistic format, simplicity and 
intuitive appeal of the preference axioms, interpretability of structural 
conditions, and nice representation-uniqueness features that can be easily 
connected to methods for assessing utilities and subjective probabilities. 

The following theories seem unsatisfactory as general treatments on the 
basis of the foregoing criteria: all in section 5 (restricted act spaces); in 
section 6, Richter (1975) (restricted acts, loose structure, nonintuitive 
axiom), Stigum (1972) (specialized structure, axioms), Narens's (1976) 
first theory (restricted acts), Roberts (1974) (extensive type structure); 
in section 7, Fishburn (1967) (specialized act space); in section 8, Anscombe 
and Aumann (1963) (finite S, use of two relations), Ferreira (1972) (use of 
two relations - but fairly appealing), Fishburn (1972), Myerson (1979) and 
Fishburn (1970) for finite restrictions, and Fishburn (1975), Balch (1974) 
and Balch and Fishburn (1974) for nonintuitive axioms or interpretational 
problems; in section 9, Luce (1972) (extensive type structure); in section 10, 
Domotor (1978) (finite S, nonintuitive axiom). 

Among the other theories, I feel that all have shortcomings but that these 
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differ in degree. My main objection to Bolker (1967) and Jeffrey (1978) is 

the difficulty in sorting out the decisional aspects within their mono-set 

format. For this reason, I find some of the others more attractive. 

Savage's (1954) theory is suitable for a wide variety of situations, its 

axioms are elegant and intuitively sensible, and its representation-uniqueness 

result is easily connected to assessment techniques. Despite its use of constant 
and other specialized acts, and its implication of continuously divisible 

events, I regard it as one of the best. Narens's (1976) second theory has a 

similar appeal, and I would rate Suppes (1956), which replaces Savage's 
continuously divisible events by an infinite consequence set and an ethically 

neutral event, as a close contender. 

If one does not object to the direct use of extraneous scaling probabilities, 
then several theories in section 8 are quite satisfactory. Pratt, Raiffa and 

Schlaifer (1965) may be the best of  these. Their format allows general appli- 

cation with simple, interpretable axioms that tie in very closely with assess- 
ment. Fishburn (1969, 1972) uses a structure that is simpler in certain 
respects but does not tie in to assessment as directly as the structure used 
by Pratt etal. While Fishburn (1973, 1974) attempts to relax some of 
the structural restrictions of others, he has a few less-intuitive axioms and 
some potential interpretational problems in conditional preference com- 

parisons. 
Finally, although the theory of Luce and Krantz (1971) is appealing in its 

conditional approach and has reasonably straightforward axioms, I feel that 
it encounters serious interpretational difficulties. These arise from their 

combinations and restrictions of  conditional acts, which allow them to avoid 
extraneous probabilities while relaxing Savage's structure. However, there is 

room for question as to whether the latter positive features outweigh the 

interpretational problems in their approach. 

ACKNOWLEDGMENTS 

I am indebted to Duncan Luce and John Pratt for past discussions that have materially 
influenced the nature of this review, and to Luce, Pratt, Zoltan Domotor and Mike 
DeFazio for comments and suggestions on an earlier draft of the paper. 

Bell Laboratories, New Jersey 



A R E V I E W  O F  N O R M A T I V E  T H E O R I E S  195 

N O T E S  

1 See, for example, Allais (1953), Edwards (1954), Davidson, Suppes and Siegel 
(1957), Ellsberg (1961), Lute and Suppes (1965), Becker and McClintock (1967), 
Tversky (1967b), MacCrimmon (1968), Rapoport and Wallsten (1972), Slovie and 
Tversky (1974), Kahneman and Tversky (1979), and Grether and Plott (1979). 

See also Tversky (1967a), Shapiro (1979) and Richter and Shapiro (1978). By 
'one-way' we mean that the representation is not an "if  and only if"  model for pre- 
ferences but only seeks to attribute greater utility to one act than to a second act when 
the first is preferred to the second. 
3 Other renditions of the yon Neumann-Morgenstern theory are presented by Marschak 

(1950), Friedman and Savage (1952), Luce and Raiffa (1957), and Fishburn and Roberts 
(1978). 
4 Axiom systems to measure utility differences that are not based on even-chance 

gambles or an 'ethically neutral' event are presented by Suppes and Winet (1955), Scott 
and Suppes (1958), Suppes and Zinnes (1963, pp. 34-38) ,  Fishburn (1970, Chapter 6) 
and Krantz et al. (1971, Chapter 4). See also Pfanzagl (1959, 1968). While Ramsey talks 
about utility differences, he could just as well have talked about sums, or the simple 
representation of cEd by u (c) + u (d) or ~u (c) + ~u (d). 
s See, e.g., Debreu (1960), Luce and Tukey (1964), Fishburn (1970) and Krantz et al. 

(1971). 
6 See Savage (1967) and the commentaries following his article for additional dis- 

cussions of personal (subjective) probability. 
7 Various criticisms and defenses of this principle are presented by Savage (1954, 

pp. 101-103),  Eltsberg (1961), Raiffa (1961), MacCrimmon (1968) and Slovic and 
Tversky (1974), among others. 

See Krantz et al. (197t)  for a thorough discussion of extensive measurement. 
9 See, for example, Rubin (1949). As far as I know, Rubin's papers on this topic 

remain unpublished. 
10 Commentaries following Balch and Fishburn (1974), by David Krantz and Duncan 
Luce, Richard Jeffrey, Ethan Bolker, and John Pratt, go into this further. See also 
Spohn (1977). 
H In addition to the references given here, see Sneed (1966) and Schick (1967) for 
comments on Jeffrey's approach. 
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