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Summary 

It is shown how a self-organizing neural network such as the one introduced by Kohonen can be used 
to analyze features of molecular surfaces, such as shape and the molecular electrostatic potential. On 
the one hand, two-dimensional maps of molecular surface properties can be generated and used for the 
comparison of a set of molecules. On the other hand, the surface geometry of one molecule can be 
stored in a network and this network can be used as a template for the analysis of the shape of various 
other molecules. The application of these techniques to a series of steroids exhibiting a range of binding 
activities to the corticosteroid-binding globulin receptor allows one to pinpoint the essential features 
necessary for biological activity. 

Introduction 

The shape of a molecule and electronic properties such 
as the electrostatic potential strongly influence many 
chemical and biological properties of the molecule. The 
intuitively appealing picture of a key fitting into a lock 
for describing substrate-receptor interactions emphasizes 
the role of shape in biological activity. However, not only 
must the geometry of a molecule be appropriate for it to 
fit into a receptor, but also certain properties on the 
molecular surface such as hydrophobicity, the electrostatic 
or the hydrogen-bonding potential must fit to ensure an 
effective binding. Several approaches based on shape 
analysis have been developed to study structure-activity 
relationships within a series of individual compounds. In 
particular, the Comparative Molecular Field Analysis 
(CoMFA) approach [l] is widely used for such a compari- 
son on the basis of molecular fields and properties like 
electrostatic potential. In the last decade, the three-dimen- 
sional comparison of molecular electrostatic fields and 
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volumes was successfully applied in many cases to reveal 
effective structure-activity relationships [2]. 

The human brain is highly efficient in performing an 
analysis of three-dimensional objects and of properties on 
the surface of these objects such as shape, color, and 
texture. This is achieved by the generation of sensory 
maps of the environment in the visual, auditory, or soma- 
tosensory cortex. Artificial neural networks are models 
for the information processing in the human brain. The 
application of neural networks in chemistry has increased 
dramatically in recent years [3-51. The neural network 
method developed by Kohonen [6-81 is rather efficient in 
modeling the generation of sensory maps in the brain. In 
the Kohonen network, the artificial neurons self-organize 
in an unsupervised learning process and thus can be used 
to generate topological feature maps. This property of a 
Kohonen neural network (KNN) has already been used 
for the mapping of molecular surface properties such as 
the molecular electrostatic potentials (MEPs) into two 
dimensions [9-111. We will show here that a KNN can 
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Fig. 1. Mapping of a molecular surface into a Kohonen neural network. 

also be used to analyze the shape of molecules and give 
a quantitative definition of similarity for the geometry of 
molecular surfaces. In addition, themapping of molecular 
surface properties by Kohonen networks [6-81 is further 
extended to allow a quantitative comparison of the mo- 
lecular electrostatic potentials for a series of compounds. 
The combined application of a Kohonen network for 
both the analysis of the shape of a molecule and molecu- 
lar surface properties provides deep insights into the 
foundations of biological activity within a set of com- 

Fig. 2. Plane obtained by making two cuts into a torus. The cuts can 
be shifted into any direction. Thus, the two neurons marked by a 
crqss are direct neighbors, as are the two neurons marked by black 
squares. 

pounds. We show this here with a data set that has al- 
ready been studied by other groups and methods, a data 
set of 3 1 steroids exhibiting a range of activity for binding 
to the corticosteroid-binding globulin (CBG) receptor. 

Materials and Methods 

Mapping of surface properties 
The KNN is a self-organizing network, which can be 

used to generate a nonlinear projection of objects from a 
high-dimensional space into a lower dimensional space, 
usually a two-dimensional plane. This method enables the 
decrease of the dimensions of the information space while 
conserving the topology of the information as best as 
possible. Details on Kohonen networks can be taken from 
the literature [5-81; thus only the major features are re- 
peated here. Learning in a Kohonen network is an un- 
supervised competitive process such that an object is 
mapped into a neuron. Each neuron has as many weights 
wji as there are input variables xSi for an object s. The 
winning neuron, c,, will be the one that has weights that 
come closest to the input variables (Eq. 1): 

Cs * min ff(X,i - Wji)2 
[ i=l 1 

The learning process adjusts the weights such that they 
become even closer to the input variables, but it does so 
with a factor that decreases with distance from the win- 
ning neuron. 

We have shown that a Kohonen network can be used 
for the generation of maps of molecular surface prop- 
erties by projecting these surfaces of three-dimensional 
objects into two dimensions [9-l 11. For example, maps of 
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the molecular electrostatic potential (MEP) can thus be 
obtained. Input to the Kohonen network consists of the 
Cartesian coordinates of points on the molecular surface. 
With three input variables, each neuron also has three 
weights. The neurons of such a Kohonen network are 
arranged in two dimensions. In the projection of the 
molecular surfaces of the molecules studied here, an ar- 
rangement of 50 x 50 neurons was used. The surface of a 
molecule is continuous, without a beginning and ending. 
Thus, it seemed desirable to also have an arrangement of 
neurons without a beginning and ending. This can be 
achieved by arranging the neurons on the surface of a 
torus. For visualization, this torus is cut along two per- 
pendicular lines and then the torus surface is spread into 
a plane. Since these cuts can be made at arbitrary lines, 
the maps can,be shifted into any direction. 

The method for obtaining two-dimensional maps of 
molecules consists of training the Kohonen network with 
the three Cartesian coordinates of points randomly sam- 
pled on the van der Waals surface of the molecule with a 

density of 100 points per A’. With a Kohonen network of 
50 x 50 neurons, there are 3 x 50 x 50 = 7500 weights. The 
architecture of the Kohonen network is shown in Fig. 1. 

As the size of the network is much smaller than the 
size of the data set (number of points from the molecular 
surface), a neuron is normally excited by several points of 
the surface. In this case, the neuron obtains the average 
value of the information of those points that excite it. 

The information on the molecular surface - the prop- 
erties on the surface; in our case, the individual electro- 
static values of each coordinate of the van der Waals 
surface - is not used in the learning process. Thus, during 
processing by unsupervised learning the points with simi- 
lar coordinates are put close together by the network, 
into the same or adjacent neurons. 

It is emphasized again that the neurons are actually 
arranged on the surface of the torus. In the planar maps 
of molecular surfaces shown in the figures that follow, it 
has to be remembered that they have been obtained by 
spreading this toroidal surface into a plane. Thus, neu- 

Fig. 3. The surface of a reference molecule (n-butane) is stored in a Kohonen network that can be visualized by a map. This network can be used 
as a template for comparison with the surface of a second molecule (propanol) leading to a compared Kohonen network. 
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Fig. 4. Comparison of a circle and an ellipse using either the points on the ellipse (left-hand side) or the points on the circle (right-hand side) to 
train a reference Kohonen network. Points on the other shape, respectively, are sent through the reference network, resulting in different Kohonen 
maps. 

rons at the right-hand column are directly adjacent to 
neurons at the left-hand column (cf. the neurons crossed 
in Fig. 2) and neurons in the top line are directly adjacent 
to neurons in the bottom line (cf. the two filled neurons 
in Fig. 2). 

Clearly, the topology of a molecular surface, which is 
more like a sphere or an ellipsoid, is different from the 
topology of a torus. This must necessarily lead to topolo- 
gical distortions during the projection of the surface of a 
molecule onto the surface of a torus. During learning in 
a Kohonen network, the torus adjusts itself as best as 
possible to the molecular surface. Nevertheless, the topo- 
logical distortions manifest themselves in neurons that are 
not used during projection [12]. These empty neurons 
show up as white areas in the resulting Kohonen maps as 
can be seen in the following figures. 

Comparison of the shape of molecules 
It should be realized that the weights of a Kohonen 

network trained by the Cartesian coordinates of points on 
the molecular surface basically store the geometry of the 
molecular surface. This fact offers the foundation for a 
new method of comparing molecular surfaces: 

(1) A Kohonen network is trained with points of the 
surface of a molecule taken as a template (cf. n-butane in 
Fig. 3). The network thus obtained stores the coordinates 
of points on this surface and therefore can be taken as a 
template to compare the surfaces of other molecules. 

(2) Points of the surface of another molecule (l-pro- 
panol in Fig. 3) are sent into this template network. If the 
points find a neuron with weights that are quite similar to 
the Cartesian coordinates of this point (cf. Eq. l), they 
are mapped into this neuron. Points of the surface of the 
reference molecule that have no counterparts in the com- 
pared molecule stay empty and lead to white areas in the 
maps of the surface of the molecule to be compared with 
the reference molecule. The more the surfaces of the two 
molecules are different, the larger the number of empty 
neurons. Thus, the number of empty neurons can be 
taken as a quantitative measure of the difference between 
the molecule to be compared and the reference molecule. 

When applying this technique, one has to take into 
account that the choice of the template structure largely 
influences the results. Even if only two compounds are 
compared, the outcome may be different depending on 
the chosen reference structure. This can easily be seen in 
Fig. 4. There are two shapes that are compared, a small 
circle and a much larger ellipse. On the left-hand side of 
the figure, a template Kohonen network was trained with 
points from the surface of the ellipse and then points 
from the circle were sent through this network. As they 
are all mapped into neurons that represent the right part 
of the ellipse, a large part of the corresponding Kohonen 
map will remain empty. A totally different result is ob- 
tained when the template network is trained with points 
from the surface of the circle and those from the ellipse 
are sent through the network afterwards. This results in 
a completely filled Kohonen map because every part of 
the ellipse corresponds to a different part of the circle. 
Therefore, changing the template structure may reveal 
details that would otherwise remain hidden. 

Calculational procedure 
The following procedure was applied in this study: 
(1) The 3D structures of the molecules were built from 

the connection tables and stereochemical information 
derived from wedge and dot graphics using the 3D struc- 
ture generator CORINA [13-151. Because of the relative 
rigidity of the molecules studied here, steroids, each com- 
pound was represented by a single conformation, as pro- 
duced by CORINA. 

(2) Partial atomic charges were calculated by the empi- 
rical PEOE method [16,17]. 

(3) The molecular electrostatic potential (MEP) was 
calculated on the van der Waals surface by Coulomb’s 
law using a unit positive charge probe at surface points 
randomly sampled with a density of 100 points per A” 
and partial atomic charges as calculated by the PEOE 
method. 

(4) A Kohonen network was trained with the Cartesian 
coordinates of the randomly sampled points. 

(5) The trained neurons were then colored according to 
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Fig. 5. Steroid structures of the data set used in this study. 
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Fig. 6. The 31 Kohonen maps of the steroids of Fig. 5 colored by the MEP. The maps are ordered according to decreasing CBG affinity. 

the MEP values existing at those points on the molecular 
surface that were mapped into a neuron. For this pur- 
pose, the arithmetic average of all the MEP values as- 
signed to a neuron was calculated and one out of ten 
colors was given to that neuron according to the calcu- 
lated average. 

(6) The resulting Kohonen maps were aligned by man- 
ually shifting, mirroring, and rotating them by 90”. 

(7) MEP patterns were compared within the Kohonen 
maps obtained from the individual molecules, the 31 
steroids, of the data set. 

(8) The steroids were divided into three different clas- 
ses of activity: compounds with high affinity, intermediate 
affinity, and low affinity to the CBG receptor. For each 
class of compounds an averaged map was generated. 

(9) Shapes of the molecules were compared with a 
reference molecule, the most active compound, by using 
the trained net of this reference molecule as a template. 

(10) The weights of the Kohonen network were inter- 
preted as Cartesian coordinates and the corresponding 
shape was plotted in 3D space. This procedure allows one 
to investigate in which way the areas in the 2D maps 
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Fig. 7. Three-dimensional model of corticosterone, 6; parallel projection of the electrostatic potential onto the van der Waals surface of cortico- 
sterone, and the corresponding Kohonen map indicating the MEP features corresponding to (1) the side chain at position 17 with a large negative 
value; (2) the area below the D-ring and the side chain at 17 with a large positive value; (3) the hydroxyl group at position 11 b; and (4) the C3- 
carbonyl group with a conjugated double bond at 0%. 

correspond to the 3D shapes of the structures under con- 
sideration. 

Data set 
The methodology was tested with 3 1 steroids for which 

the CBG affinities were known [l&20]. This data set was 
chosen because it had been selected for the introduction 
of the widely used CoMFA method [l] and has also been 
studied with other methods [21-231. 

A set of steroids and their binding affinities to human 

CBG (31 molecules) were extracted from the literature 
[1,21]. The structural formulas of the individual com- 
pounds are shown in Fig. 5. It has to be emphasized that 
most of the compilations of this data set widely distrib- 
uted in printed or electronic form all contain coding 
errors. These errors have been eliminated in Fig. 5 by a 
reexamination of the original literature. The experimental 
binding affinity data are listed in Table 1. The distribu- 
tions of the compounds in high, intermediate, and low 
affinity classes are defined as in Ref. 2 1. 

Fig. 8. The averaged maps of the electrostatic potential on the van der Waals surface of the sets of (a) high, (b) intermediate, and (c) low active 
compounds of the CBG series. 



TABLE 1 
CBG AFFINITY DATA FROM REF. 21 

Compound Affinity (PK) Activity class” Compound Affinity (PK) Activity class” 

1 6.219 2 17 5.225 3 
2 5.000 3 18 5.000 3 
3 5.000 3 19 7.380 1 
4 5.763 3 20 7.740 1 
5 5.613 3 21 6.724 2 
6 7.881 1 22 7.512 1 
7 7.881 1 23 7.553 1 
8 6.892 2 24 6.779 2 
9 5.000 3 25 7.200 1 

10 7.653 1 26 6.144 2 
11 7.881 1 27 6.247 2 
12 5.919 2 28 7.120 2 
13 5.000 3 29 6.817 2 
14 5.000 3 30 7.688 1 
15 5.000 3 31 5.197 2 
16 5.225 3 

a 1: high; 2: intermediate; 3: low; this classification was obtained by dividing the data set into three classes of comparable size. 

Results and Discussion 

Molecular electrostatic potential 
The 31 trained Kohonen maps of the molecular elec- 

trostatic potential (MEP) of the steroid molecules (cf. Fig. 
5) are shown in Fig. 6. The maps are ordered according 
to decreasing CBG binding affinity. For each molecule of 
the series a Kohonen net was trained, using the three 
Cartesian coordinates of points on the molecular surface 
as input to the network. The values of the electrostatic 
potential on the surface were not considered in the leam- 
ing process; thus training was unsupervised. Only after 
the map was trained, a MEP value was allocated to each 
neuron by taking the MEP values of those points on the 
molecular surface that were mapped into this neuron. 
These values of the MEP determine the colors of the 
map. The maps can be compared directly to one another 
by using the shared color-palette. 

Depending on the random initialization of the Koho- 
nen network and the chosen learning parameters and the 
way in which the data points are presented to the net- 
work, as well as to the sites chosen for making the cuts 
into the torus, the Kohonen maps can be oriented in a 
variety of ways [9]. Therefore, the maps were aligned in 
order to achieve similar positions for all patterns, particu- 
larly the red-yellow colored spots (the most negative 
value of the MEP) and the violet spots (the most positive 
value of the MEP). This was done by manually shifting, 
mirroring, and rotating them by 90”. Basically, this corre- 
sponds to cutting the torus at different positions. 

Details of the mapping of the MEP on the van der 
Waals surface of corticosterone, 6, are shown in Fig. 7. 
This representation permits one to realize the correspon- 
dence between the spatial arrangement of the functional 

groups of the steroid and the colors in the 2D Kohonen 
map. Corticosterone, 6, has two sites with a large nega- 
tive value of the MEP, the carbonyl group at position 3 
(4 in Fig. 7) and the side chain COCH,OH at position 17 
(1 in Fig. 7). Consistent with this, the Kohonen map 
shows two areas with a red-yellow color for these sites. 
The spatial distance of these groups is reflected by two 
different shapes of the projection of the MEP into the 
Kohonen network. The third site with a negative value of 
the MEP stems from the hydroxyl group at position 11 (3 
in Fig. 7). For this group, an area with a light green color 
is reserved in the map. Furthermore, the large positive 
MEP area of corticosterone is below the D-ring and the 
side chain at position 17 (2 in Fig. 7). The projection of 
the MEP into the Kohonen map indicates the location of 
this violet area close to the area of negative MEP caused 
by the COCH,OH side chain at position 17. 

It can be noted that the Kohonen maps of Figs. 6 and 
7 contain white spaces (white lines and spots), which 

OH 

Fig. 9. The chemical structure of corticosterone, indicating the ring 
junction atoms used for the superposition of the steroid molecules. 
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Fig. 10. Compared c-KNNs of steroids 1-31 (identified here as Sl-S31) obtained by processing through the reference KNN of 6, the most active 
CBG analogue. 

correspond to empty neurons. These spots are the result 
of topological distortions [12] which are due to the differ- 
ence in topology between a sphere and a torus and the 
fact that the molecular surface is more globular (sphere- 
like). It was found that these distortions try to avoid 
cutting through atoms [9]. 

As shown in Fig. 6 (see the upper row of the panel), 
the maps of highly active molecules usually contain these 
two red-yellow spaces (projections of the negative values 
of the MEP) and one violet space (positive values of the 

MEP) as well. A difference of the MEP pattern between 
the most active in the top rows and the least active in the 
bottom rows is clearly visible. Compounds with higher 
affinity show larger negative (red-yellow) and positive 
values (violet) of the MEP compared to compounds with 
lower affinity. 

For a more objective analysis, the averaged maps for the 
sets of high, medium, and low active compounds (see Table 
1) were generated (cf. Fig. 8). For this purpose, each 
neuron in the Kohonen maps of the single compounds 
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was assigned a color index in a range of ten values repre- 
senting the color the neuron obtained during the training 
process. Then, the colors of the neurons in the averaged 
maps were obtained by averaging the color indices of the 
neurons in the single maps. 

The MEP pattern of the most polar area in the aver- 
aged map of the highly active compounds is the most 
pronounced. In the three averaged maps, the destination 
of the polar spaces decreases according to decreasing 
activity of the compounds. The averaged map of the 
highly active compounds can be used to build a phar- 
macophore model. Therefore, a comparison of the maps 
of steroids with the averaged map allows one to establish 
whether a molecule belongs to the active or inactive CBG 
compounds. 

Shape analysis 
In the first part of the discussion, the 31 steroids were 

compared for their MEP similarities without consider- 
ation of the molecular shape. In the template approach, 
the shape will be considered by using a reference molecule 
within a series of molecules to prepare a template net- 
work which then forms a basis for the comparison of the 
surface of the other molecules. A reference network was 
trained with the van der Waals surface coordinates of 
corticosterone, 6, the compound having the highest CBG 
activity. This compound supplies the reference Kohonen 
neural network (r-KNN), a template, while the analogues 
are filtered through this r-KNN to produce a series of 
individual compared KNNs (c-KNNs). In contrast to the 
previous approach, the template approach requires a 
superposition of all molecules onto the template molecule. 

TABLE 2 

The ring junction atoms 5, 8, 9, 10, 13 and 14 of the 
steroid system (see Fig. 9) were used to produce the su- 
perposition. 

The resulting compared Kohonen maps can be marked 
with any molecular surface property. In our case, again 
the values of the MEP were used, specifically the MEP 
values on the surface of the steroid that is compared with 
corticosterone. The maps obtained in this procedure using 
the most active compound in this series, corticosterone, 6, 
as the template molecule are shown in Fig, 10. The pat- 
terns with blank (white) areas represent a spatial mismatch, 
while non-blank areas indicate spatial similarities of the 
molecules. The maps of Fig. 10 show that the compounds 
with low CBG activity have rather large white areas of 
empty neurons. In fact, it has been shown that the num- 
ber of empty neurons can be taken as a quantitative 
measure of the similarity of the surface of two molecules. 
Table 2 gives the number of empty neurons for the maps 
shown in Fig. 10; again the molecules are arranged in 
order of decreasing activity (cf. Fig. 6 and Table 1). 

The results of the template approach can be better 
understood using a backprojection of the generated maps 
onto the molecular surface of the reference compound. 
This method clearly shows those parts of the surface 
where the two molecules that are compared are different. 
As an example, two maps of Fig. 10, the first, 6, and the 
last one, 3, of that series, corresponding to the compounds 
with the highest and the lowest CBG activity, are taken 
and projected onto the shape that is obtained by plotting 
the weights of the reference Kohonen network in 3D 
space. Figure 11 shows the backprojection of map 1 and 
map 31 of Fig. 10 (corresponding to molecules 6 and 3) 

NUMBER OF EMPTY NEURONS FOR THE MAPS OF CBG COMPOUNDS 

Compound Number of empty neuronsa Compound 

6 0 12 
7 15 31 

11 52 4 
20 61 5 
30 6 16 
10 50 17 
23 13 18 
22 149 14 
19 58 15 
25 46 13 
28 113 9 

8 75 2 
29 1.52 3 
24 79 
21 296 

1 225 
27 69 
26 357 

Total number of neurons = 2500. 
a The number of empty neurons is given relative to the reference compound, 6. 

Number of empty neurons’ 

324 
28 

350 
417 
749 
108 
130 
636 
700 
644 
378 
344 
332 
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TABLE 3 
NUMBER OF EMPTY NEURONS IN THE COMPARATIVE 
KOHONEN MAPS SHOWN IN FIG. 13 

Comparative map no. Number of empty neurons 

1 918 
2 1112 
3 1195 
4 1663 
5 826 
6 1484 
7 2011 
8 739 
9 1089 

10 561 

Total number of neurons = 2500. 

onto the shape of 6, the reference molecule. Figure 11 
clearly indicates that part of the surface of the reference 
molecule corticosterone, 6, that leads to the empty neu- 
rons in the Kohonen maps of 5-androstenediol, 3, because 
no corresponding points are found on the surface of 5- 
androstenediol. Since in 3 (5-androstenediol), the long 
side chain of 6 (corticosterone) is replaced by the hydrox- 
yl group, the surface of this area is empty. In the non- 
blank areas, the differences of the MEP are clearly vis- 
ible. 

In Fig. 10, up to map 21, 4, the large red spotted area 
comes from position 3 of the steroid system (the carbonyl 
group), which in the other maps is predominantly yellow 
or totally absent. From map 22,5, onward all compounds 
have a hydroxyl group in this position. The second red 
spot of the maps comes from position 17 occurring up to 
map 14, 24. These maps come from the steroids with the 
side chain COCH,R (R=H or OH) at position 17. From 
map 15, 21, onward all maps except maps 16, 20, 25 and 
26 have blank spaces in this area. The violet spotted area, 
which indicates the positive electrostatic potential below 
the D-ring and the side chain at position 17 (a COCH,R 
group with R = H or OH), is more or less apparent up to 
map 14, 24. With a few exceptions (maps 20, 24, 25 of 
molecules 31, 17, 18), this area is not visible in the low 
active compounds. The exceptions 31, 17, 18 also possess 
this side chain at position 17. Thus one can find this 
pattern again. 

In general, a considerable amount of information con- 
cerning related compounds can be extracted from each 
map. The analysis performed here shows that the com- 
pounds with high, intermediate, and low activity for CBG 
binding can be distinguished in different clusters due to 
effects determined by shape and the MEP. It can be con- 
cluded that for CBG affinity both the negative potential 
areas at position 17 and at the carbonyl at position 3 
with a conjugated double bond at C4-C5 in the A-ring 
are important, as is the positive potential area below the 
side chain at position 17 and the D-ring. 

The largest deviation was found for compound 31, a 
compound of intermediate activity. The corresponding 
map (see Fig. 10, S31) shows a good spatial match and 
an MEP pattern similar to the template map. From this 
Kohonen map, we cannot find any shape and/or MEP 
difference to the most active compound 6 (the first map). 
In order to find any differences between the shapes of 31 
and 6, we turn the investigation around and use molecule 
31 as the template molecule to produce a reference net. 
Compound 6 can then be compared with the template 
molecule using KNN. Figure 12a shows the obtained 
Kohonen maps. Now the map of 6 contains patterns with 
additional blank areas. The projection of these two maps 
onto the shape that is obtained by plotting the weights of 
31 (see Fig. 12b) reveals that the blank space in the map 
of 6 corresponds to the region close to position 3 of the 
A-ring. Furthermore, the regions below the ring junction 
in these maps show different patterns of MEP values. 
Compared to 6, 31 has an additional methyl group at 
position 2a and a fluorine atom at position 9a (see Fig. 
5). These results suggest, as a reason for the low affinity 
of 31, a sterically unfavorable effect near the A-ring and/ 
or an unfavorable electrostatic interaction below the ring 
junction. 

These results show that the selection of an appropriate 
reference molecule is of importance in the template ap- 
proach to properly analyze existing differences. No sig- 
nificant differences in the features of the maps 6 and 31 
could be realized when 6 was used as the template mol- 
ecule. However, producing a template network with 31 as 
the reference revealed differences in shape and MEP be- 
tween the two molecules. This shows that, in certain cases, 
finer details in the shape differences can be discovered by 
interchanging the reference and the compared molecule. 

Optimization of overlap 

The template approach can also be used for finding the 
best alignment of two molecules. This is demonstrated 
with two steroids from the data set, 5-androstenediol, 3, 
and corticosterone, 6. A series of 10 different spatial ar- 
rangements of the two molecules was manually generated 
by random transformations of each of the three coordinate 
axes. These different alignments are shown in Fig. 13. 

One of the two molecules, the highly active cortico- 
sterone, 6, is taken as the reference structure and points 
from the surface of this molecule are used for training a 
Kohonen network of size 50 x 50 neurons. Points of the 
surface of 5-androstenediol, 3, are sent through this refer- 
ence neural network for each of the 10 different positions 
of 3 against 6 (see Fig. 13). These 10 experiments result 
in 10 different compared maps, as shown in Fig. 14. 

The goodness of fit is evaluated by the number of 
empty neurons, N,, in the compared maps, which are 
given in Table 3. 
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a 

b 

Fig. 11. Backprojection of the maps of (a) corticosterone, 6, and (b) 5-androstenediol, 3, onto the shape obtained by plotting the weights of the 
reference network trained with the corticosterone data. 

The best superposition can be deduced from the lowest Orientation 10 shown in Fig. 13 has the lowest number of 
number of empty neurons indicating the largest corre- empty neurons (cf. Fig. 14 and Table 3) and therefore can 
spondence in the geometry of the two surfaces, that of the be taken as the best alignment from the 10 tested align- 
reference structure, 6, and the superimposed structure 3. ments of the two molecules shown in Fig. 13. 

a 

b 

Fig. 12. Backprojection of the Kohonen maps of (a) 6 and (b) 31. Molecule 31 was used to obtain the reference KNN. 
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Fig. 13. Ten random alignments of 5-androstenediol, 3, and corticosterone, 6. 

Fig. 14. The reference KNN of corticosterone, 6, and 10 compared KNNs of random orientations of Sandrostenediol, 3, obtained by processing 
through the reference KNN. 
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Conclusions 

In the discussion of structure-activity relationships in 
the steroid series, the 2D Kohonen maps serve as a versa- 
tile tool to elucidate the structural factors responsible for 
biological activity. In cases like the CBG example, the 
comparison of trained maps of each molecule directly 
allows a classification whether a molecule is active or not. 
Therefore, the approach supplies a straightforward tool 
to qualitatively predict the activity of an unknown mol- 
ecule. Due to its simplicity, it might even be used for 
screening large sets of molecules in order to find potential 
de novo compounds. In this sense, it supplements methods 
aiming at quantitatively modeling biological activity such 
as the CoMFA method [1] or the coding of the molecular 
electrostatic potential by autocorrelation vectors [22]. 

The technique of averaging the maps of active com- 
pounds enables one to elucidate the essential features of 
active compounds. Thus, these maps can be used to de- 
fine a 2D representation of a pharmacophore model. The 
projection of the 2D Kohonen maps onto the shape that 
is obtained by plotting the weights of the template net- 
work in 3D space allows one to address areas of the 
molecular surface where active and inactive compounds 
differ significantly. Such information can be used for 
designing new substituents at the positions found in the 
molecular scaffold. Thus, the backprojection technique is 
the link between the nonintuitive form of information 
encoded in the Kohonen maps and the 3D world of mo- 
lecular structures. The Kohonen map approach is not 
limited to the electrostatic potential and the shape factor 
as presented here. Hydrophobic, hydrogen bonding, di- 
pole and multipole features, etc. can be mapped on the 
surface of molecules and then be used to study the inter- 
play of these different factors for structure-activity rela- 
tionships. 
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