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P O S I T I O N A L I S T  V O T I N G  F U N C T I O N S *  

ABSTRACT. Positionalist voting functions are those social choice functions where the 
positions of the alternatives in the voter's preference orders crucially influence the 
social ordering of the alternatives. An important subclass consists of those voting 
functions where numbers are assigned to the alternatives in the preference orders and 
the social ordering is computed from these numbers. Such voting functions are called 
representable. Various well-known conditions for voting functions are introduced and 
it is investigated which representable voting functions satisfy these conditions. It is 
shown that no representable voting function satisfies the Condorcet criterion. This 
condition and Arrow's independence condition, which are typical non-positionalist 
conditions, are shown to be incompatible. The Borda function, which is a well-known 
positionalist voting function, is studied extensively, conditions uniquely characterizing 
it are given and some modifications of the function are investigated. 

1. PROGRAM 

In the theory of social choice as it has developed after Arrow, one can 

roughly distinguish two approaches to the problem of finding good social 
choice functions: firstly, the positionalist view, which supports the Borda 

function and similar voting functions, where the positions of  an alternative 
in the preference orders play a crucial role for social choice; secondly, 

the non-positionalist view, where the social ordering is determined mainly 

f rom binary comparisons between the alternatives. Typical non-position- 
alist voting functions are those based on majority decisions. 

Various conditions for voting functions have been proposed to insure 

that the admissible voting functions agree with the one or the other view. 
The best known non-positionalist conditions are Arrow's  independence 
condition and the Condorcet condition. 1 Voting functions satisfying the 

Condorcet condition are favored by politicians and political scientists, 
since these functions seem to be the most natural extensions of  the 
majority rule for two alternatives. 

Bulky volumes have been written on Condorcet functions, where the 
so-called voting paradox (the term 'paradox '  stresses the influence of the 
majority rule) is possible, and on how to avoid it. Devoted to these prob- 
lems, very small efforts have been spared by theorists for positionalist vot- 
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ing functions. At best, the Borda function figures as an example contrasted 
with the Condorcet functions. However, the fact that the majority rule is 
used in two-alternative voting does not imply that some majority method 
should be used when voting on several alternatives. In fact, all voting 
methods proposed as reasonable reduce to the majority rule when re- 

stricted to two alternatives. 
In this paper we turn our attention to what we call posifionalist voting 

functions. A very cheering fact is that we can prove that Arrow's indepen- 
dence condition and the Condorcet condition are incompatible. This 
can be interpreted as showing that an unrestricted non-positionalist view 

is inconsistent in itself. 
Although the positionalist concept is somewhat vague, a typical 

positionalist voting function is a method where we assign numbers to the 
alternatives according to their positions in the preference orders and then 
determine the social ordering from the sum of these numbers for each 
alternative. Voting functions which can be defined in this manner we call 
representable. When placing certain conditions on the function, some of 
the number-assignments will be impossible. We investigate the effect 

of various well-known conditions. Remarkably, we find that there is no 
representable voting function which satisfies the Condorcet condition. 
We discuss to some extent the Borda function, which is the most famous 
positionalist voting function. We also state that a set of  conditions 
uniquely determines the Borda function. The final section is devoted to an 
investigation of some modifications of the Borda function, one of which 
turns out to be a Condorcet function! 

2. PRELIMINARIES 

The objects we study are voting functions. The arguments and values of 
voting functions are preference orders. In this section we will define these 
and other underlying concepts. 

We use A to denote the set of  alternatives. The set of  voters we denote 
by Vand its elements are caUedpersons (or individuals). A and V are sup- 
posed to be non-empty and finite. We will use xl, x2 .... xn to denote the al- 
ternatives (for the reader's convenience sometimes also x,y,  z and u) andpl,  
Pz .... Pm to denote the persons. Here n means the number of alternatives and 
m the number of persons (sometimes also written I AI and I VI respectively). 
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Each member of V is required to arrange all alternatives according 

to his preferences. For  each p~, this yields an ordering R~ of  A, which we 
call an individual preference order. From each preference order R (xRy 
intuitively meaning that x is at least as good as y) we define two other 
relations - strict preference and indifference - as follows: 

DEFINITION 2.1. xPy iff xRy & - (yRx) 
DEFINITION 2.2. xly iff xRy & yRx 
We assume the preference orders to be total weak orders, i.e. to fulfil 

the following axioms: 
AXIOM R1. xRy v yRx 
AXIOM R2. xRy & yRz--* xRz 
It follows that R is reflexive, that P is irreflexive, asymmetric and transi- 

tive and that I is an equivalence relation. P ' s  and I ' s  derived from a 
certain R will always carry the same subscript as that R. 

Two distinct alternatives x and y such that xIy are said to be in a tie in 
the preference order R. A preference order R without ties, i.e. an order 
where xPy or yPx holds for every pair of  distinct alternatives, is called a 

linear order. 
A set consisting of one preference order for each person will be called a 

situation. We use a, b, c etc. to range over situations. The set of all 
preference orders (for a given A) we denote D and so the set of  all situa- 
tions will be D". Thus we may regard a situation as an m-tuple of prefer- 

ence orders. 
DEFINITION 2.3. A voting function is a function from D 'n to D. 
The individual preference order forp~ in situation a will be denoted R~a, 

and the value of a voting function F, which we call the social preference 
order, will be denoted F(a) or Ra (when there is no risk of con- 

fusion). 
Our voting functions take a situation as argument and have a preference 

order as their value. This is the kind of  voting functions which Arrow [1] 
calls 'social welfare functions'. Other writers 2 use another kind of voting 
functions which have as their value a subset of A interpreted as the set of  
winning alternatives. These functions are sometimes called 'decision 
functions'. Here we shall not exploit the advantages of  either treatment, 
but simply hold to the voting functions. It is, however, convenient to 
distinguish the set of top-ranked alternatives in any preference order. 

DEFINITION 2.4. T(R)---- {x: Vy(xRy)} 
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We describe situations in the following manner: 

a :  1. xl, x2, (xa, x4) 
2. x 2, (xi, x3, x4) 
3. X2, Xl, X4, X 3 

R~. (x i, x2), x4, x3 

In this situation we have four alternatives and three persons, and the 
meaning of the scheme is that e.g. Pl has the following preference order: 
xlPlax 2, x2Plax a and Xzllax4 (consequently xlPl,xa, x1Plax4 and 
x2Pl,x4). We also have T(Rx,)= {xl }. Ra represents the social preference 
order (for an assumed voting function) which in this example is described 
by xiI~x 2, xlP~x 4 and x4P,x a. Hence, T(Ra)= {x l, x2}. 

3. R E P R E S E N T A B L E  V O T I N G  F U N C T I O N S  

If  one attempts to let the positions of an alternative in the individual 
preference orders have a crucial influence on the social ordering, a very 
natural way is to provide some kind of utility measure of the positions. 
Our way to do this is to assign a number to each alternative in a given prefe- 
rence order and then for each alternative compute the sum of the numbers 
attached to it in a given situation. The social preference order is then 
determined according to the magnitude of these sums. A well-known 
voting function, which is representable in this manner, is the Borda 
function. Although the class of positionalist voting functions is not 
precisely defined, the class of representable voting functions certainly is 
an important subclass of it. 

DEFINITION 3.1. A representation function is a real-valued function 
having D • A as domain. 

A representation function has two arguments; the first is a preference 
order and the second is an alternative. We will denote the value of a 
representation func t ionf fo r  arguments Ria and xi byf(Ria ,  xj) and this 
is according to the definition a real number. As shorthand for ~,f(R,a,  xi) 
we will use f~(xj). 

DEFINITION 3.2. A voting function F is representable iff there exists a 
representation func t ionf  such that x R j  Jiffy(x) >~fa(y). 

Our definition of a representable voting function is not the most general 



POSITIONALIST  V O T I N G  F U N C T I O N S  5 

one that can be imagined, so we will discuss some possible extensions 
in the sequel. 

A representable voting function to which we will devote some attention 
is the Borda function, characterized here by the number of alternatives 
that Pi thinks are worse than x, minus the number of alternatives that 
Pi prefers to x: 

D~FINITION 3.3. A representation function fdef ines  the Bordafunction 
i f f f  (Ria,x) = I{y:xe~.y}l--[ {y:yP~ax}l. For any given personp~, situation 
a and position x, f (Ri~,x) is called their Borda number. For further 
discussion, cf. sections 6 and 7. 

Measuring the 'value' of an alternative by a representation function is, 
in one sense, imposed by the function and independent of the situation in 
which the preference order occurs Z and, above all, also independent of 
the person for whom the order is given. Completely different problems 
arise if we allow the voters to choose the numbers to be assigned to the 
alternatives according to their preference intensities. This cannot be 
coped with within our theory, since to determine the result of such a 
voting method we must use more information than what we get solely 
from the preference orders. 

Under the influence of majority decision methods, political scientists 
dissociate themselves from group decision methods where the individual 
preference intensities have any influence on the result. Often they fail to 
observe the distinction between the methods based on numbers chosen by 
the voters and those based on imposed numbers. Thus, the Borda func- 
tion has been unjustly accused of being a (stupid) preference intensity 
amalgamating method. 

Returning to the representable voting functions, we note that the 
different voters have the same influence on the social ordering. Voting 
functions with this property are called symmetric. 

DEFINITION 3.4. Suppose situation a is like situation b, except that 
R~,=R~b and R~b=Ri~ for some Pl and p~. A voting function satisfies the 
symmetry condition iff Ra-=R b. 

The meaning of this condition (which we denote by S) is that all the 
opinions expressed by the individuals are of equal worth. It is sometimes 
referred to as the egalitarian principle. So, what is of interest is not who it 
is that votes for a certain alternative, but how many. 

A more general approach in the definition of a representable voting 
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function would have been to determine fa(x) as a weighted sum, where 
the weight given to any individual is decided e.g. on basis of his position in 
the community or his number of stocks. Instead of symmetry, various 
questions concerning non-dictatorship arise. However, we will not pursue 
this theme. 

For a given alternative, the numbers assigned to it in a situation can be 
regarded as the components of a vector. Then the social choice is deter- 
mined as that alternative whose vector has the greatest summation norm. 
Another possible extension of our definition of a representable voting 
function could be that we not merely use the summation norm, but also 
exploit other vector norms. If we temporarily change the definition of 

f~(x) to mean instead ~ f ( R ~ , x )  k, where k is some integer greater than 1, 
we will still get the same class of representable voting functions as before, 
since we can obtain all the old voting functions simply by a change of 
representation functions. 

4. N O N - P O S I T I O N A L I S T  CONDITIONS AND REPRESENTABILITY 

Typical non-positionalist conditions are formulated with the help of 
pairwise comparisons of the alternatives, disregarding their absolute 
positions. Arrow's independence condition and the Condorcet condition 
are the most familiar examples of non-positionalist conditions. We devote 
this section to a study of the compatibility of these conditions with 
representability. 

DEFINITION 4.1. A voting function satisfies the weak Condorcet condi- 
tion (WC) iff the fact that an alternative x has a strict simple majority 
over all other alternatives in the situation a implies that T(Ra)= (x}. 

DEFINITION 4.2. A voting function satisfies the strong Condorcet condi- 
tion (SC) iff the fact that there is any alternative x such that x has a simple 
majority over or gets equally many votes against all other alternatives in 
the situation a implies that T(Ra) is the set of all such alternatives. 

Voting functions which satisfy any Condorcet condition are worshipped 
by politicians. Almost every decision procedure used in parliaments is 
based on majority decisions. Majority votings work well when we have 
only two alternatives and this is probably the reason why politicians cling 
to Condorcet functions for several alternatives. The Condorcet criterion 
is not without disadvantages and malign tongues have called it 'the 
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principle of oppression by majority' since it allows an apathetic majority 
to defeat an engaged minority. 

DEFINITION4.3. Suppose situations a and b coincide as regards the or- 
ders between alternatives in a subset B ofA. Then a voting function F satis- 
fies Arrow's independence condition (AI) iffF(a) and F(b) coincide within B. 

This is the famous 'independence of irrelevant alternatives' as proposed 
in Arrow's monograph [1]. A weaker independence condition has been 
proposed and studied by Hansson [7]. 

DEFINITION 4.4. Suppose situations a and b coincide as regards the 
preference relations between x and the other alternatives. Then a voting 
function F satisfies the weak independence condition (WI) iff F(a) and 
F(b) coincide as regards x's relations to the other alternatives. 

We now proceed to examine the relations between the representable 
voting functions and the Condorcet conditions. 

THEOREU 4.1.4 There is no representable voting function which satisfies 
the weak Condorcet function, if IAI/> 3 and I VI I> 5. 

Proof. We prove the theorem in the case where [A[ =3 and IVI =5. Ob- 
vious additions of alternatives and individuals will prove the theorem in an 
analogous manner for the rest of the cases. Consider the six possible linear 
orders with three alternatives, R 1 :x, y, z; R 2 : X, z, y;  R 3 :y, x, z; R 4 :y, z, x; 
R 5 : z, x, y and R 6 : z ,  y, X. For an arbitrary representation function f ,  

suppose f ( R  1, x ) - f ( R l , y ) = a  l, f (R1 ,  Y ) - f  (R1, z)=bl ,  f (g2, x ) -  
f ( R  2, z) = a 2, f (R2, z) -f(_R 2, y) = b 2 etc. Consider the following situation: 

a: 1. x , y , z  
2. x, y, z 
3. x . y , z  
4. y , z , x  
5. y ,  z ,  X 

If  we assume WC, we have T(Ra)= {x}. Turning to the representation 
function, we conclude that 3 "a~ > 2"a4+2" b4. If  we now permute x and y 

we get the following situation: 

b: 1. y , x , z  
2. y , x , z  
3. y , x , z  
4. x, z, y 
5. x , z , y  
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A similar argument gives 3"a3 > 2"a2 + 2 .  b 2. Treating the remaining four 
permutations of the alternatives in a similar manner yields the following 
equations: 

3"a2 > 2"a6 +2-b6 
3"a4 > 2"a5 +2"b5 
3"a5 > 2"ax +2"bs  
3.a  6 > 2 . a  a+2-ba  

Adding these inequalities together gives 3.2~ai> 2.27ai+2.Zb~, which 
reduces to 27a; > 2.Zb~. Now consider the following situation: 

e :  1. x , y , z  

2. x, y, z 
3. z, y, x 

4. z, y, x 

5. y , x , z  

According to WC we have T(Rc)= {y}, i.e. a3 +2-  b 6 > 2" al. Permuting 
and calculating as before, we derive 2;a~ + 2.Zb~ > 2" Zai, i.e. 2.2~b~ > 27av 
This contradicts the previous inequality, so there is no representable 
voting function which also satisfies WC. 

THEOgnM 4.2. There is no representable voting function which satisfies 
the weak Condorcet condition, if [A[ f>4 and IV] 1>3. 

Proof-sketch. Consider the following situation: 

a :  1. x , y , z , u  

2. z, x, y, u 
3. y, u , x , z  

According to WC, T(Ra)= {x). Proceed as in the proof of Theorem 4.1, 
diligently permuting and calculating. 

For the cases where [A[=3 and IV[=3 or [V[----4 we cannot derive a 
contradiction since e.g. assignments of 4, 2 and 1 respectively to linear 
orders with three alternatives are perfectly compatible with the weak 
Condorcet condition. 

We omit the proof of the following theorem, since it is tedious and 
similar to that of Theorem 4.1. 

THEOREM 4.3. There is no representable voting function which satisfies 
the strong Condorcet condition if [A] 1> 3 and [V[/> 3. 

As regards Arrow's independence condition versus the representable 
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voting functions, we first note that all representation functions which 
assign a fixed number to an alternative independent of the preference 
order yield voting functions which satisfy AI. A less trivial example arises 

from the following representation function: For  two special alternatives 

x and y, we have f ( R  i, x ) = 2  iff xPy, f ( R  i, y ) = 2  iffyPix, f ( R  i, x ) =  
=f(Ri,  y ) =  1 iff xIiy and otherwisef(Ri,  x)=f(R~, y)=0 .  For  any alter- 
native z, distinct from x and y, we always h a v e f ( R  i, z )=0.  

If  we assume neutrality, these examples do not work, but then we can 
apply a theorem of Hansson's 5 (where we don' t  even need representabil- 

ity, but only symmetry) to show that even the function which for every 
situation always yields ties satisfies AI and is representable. 

We have found that in all the interesting cases there is no representable 
voting function satisfying AI or WC. 

These conditions are the clearest expressions of the non-positionalist 

view. Arrow's independence condition is explicitly against the view that 
the positions of an alternative will have a direct influence on the social 
ordering. Applying the Condorcet conditions, one completely ignores the 
positions of  an alternative and finds the optimal alternatives by pairwise 
majority votings. We will now prove the somewhat striking result that 
the non-positionalist view is inconsistent in itself, or more exactly stated: 
no voting function (operating on at least three alternatives) satisfies both 
AI and WC. It seems as if Arrow was not aware of this fact, but rather 
thought that the conditions were compatible. He mentions 6 the connec- 

tion between the conditions as follows: 

... the chief contribution has been what might be termed the Condorcet criterion, that a 
candidate who receives a majority against each other candidate should be elected. This 
implicitly accepts the view of what I have termed the independence of irrelevant 
alternatives. 

In fact, we can prove an even stronger result than that AI and WC are 
incompatible. 

TrIEOm~M 4.4.7 There is no voting function which satisfies the weak 
independence condition and the weak Condorcet condition, if ]A[~>3 
and [V[~>3. 

Proof Consider the following situation: 

a:  1. X1, X2, (X3, X4.. .  Xn) 
2. x2, (x3, x,~.., x,), x 1 
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3. (x3, x4 .... x,) ,  x l ,  x2 

4.-m. (x 1, x2...  x,) 

T(Ra) must be a non-empty set (it is of  course possible that it contains 
more than one element). We examine three cases: 

(i) xl ~ T(Ra). Then compare situation a with the following: 

b:  1. as in a 

2. x3, X 2, (X 4, X5. . .  Xn), X 1 

3. a s i n a  
4.-m. as in a 

This situation satisfies what is needed for the application of  WI as regards 
xx. So by this condition, xl ~T(Ra) iff xl ~T(Rb). On the other hand, xa 
now has a strict majority over the rest of the alternatives, so WC demands 
that T(Rb)= {x3}. This contradiction shows that xl CT(R~). 

(ii) x2~T(Ra). Compare situation (a) with the following: 

c:  1. a s i n a  
2. a s i n a  

3. x 1, (x3, x4-.. x,), x 2 
4.-m. as in a 

For the same reasons as before, WI demands x2~T(R,) iff x2ET(Rc), 
while WC demands T(Rc)= {xl). Hence, x2 C T(R,) 

(iii) Some of  the alternatives x3, x4...  x,, say xi, belong to T(Ra). 
Then compare a with the following situation: 

d: 1. x2, x1, (x3, x4.. .  xn) 
2. a s i n a  
3. a s i n a  

4.-m. as in a 

As before,  by WI, xi~T(Ra) iff x~T(Ra) and by WC, T(.Ra)~(X2). 
Therefore, xi ~ T(R,). We have now considered all posibilities for the top- 
ranked alternatives and in every case we reached a contradiction. This 
proves the theorem. 

COROLLARY. There is no voting function satisfying both Arrow's 
independence condition and the weak Condorcet condition, if [AI>~3 
and IV[~>3. 
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Notice that the situation a from which the proof starts is a variant of 
the voting paradox. 

This theorem shows that an unrestrained non-positionalistic view is 
untenable. We take this as a good reason for turning to positionalist 
voting functions. 

5. V ARIOUS CONDITIONS AND REPRESENTABILITY 

In this section we introduce some conditions for voting functions, familiar 
from other publications, and examine the properties of the representation 
functions for representable voting functions satisfying these conditions. 

5.1. Neutrality 

DEFINITION 5.1. Suppose situation a is like situation b except that the 
alternatives x and y have changed places in every individual preference 
order. A voting function F satisfies the neutrality condition (N) iff F(a) is 
like F(b) except that x and y have changed places. 

In short, this means that no alternative is favored for other reasons 
than the preferences expressed by the individuals. Neutrality plays the 
same role for the alternatives that symmetry plays for the indivi- 
duals. 

LEI~VIA 5.1. For any voting function satisfying neutrality and sym- 
metry, the social relation is xI, y in any situation of the following 
type: 

a :  1 - k  . . . .  x . . . .  y . . . .  
( k - k l ) - 2 k  . . . .  y . . . .  x . . . .  

( 2 k + l ) - m .  (any preference order with x and y in a tie) 

(The dots indicate that the individual preference orders are similar as 
regards all other alternatives). 

Proof. If we interchange x and y, we get a situation which has the same 
individual preference orders, but at different places in the situation. By 
S and N we can conclude xRay iff yRax. Hence, xI.y. 

LEMMA 5.2. Suppose the preference orders R1., R2~ and R3. are 
identical, except that x, y and z are located in the orders as indicated in the 
following situation. For any voting function satisfying neutrality and 
symmetry we must have xI.y and yI.z. s 
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a:  1. 

2. 
3. 

4.-m. 

Proof. Compare 

b:  1 . . . .  y ,  

2 . . . .  x, 
3 . . . .  z, 

4.-m. as in 

e: 1 . . . .  y, 
2 . . . .  Z ,  

3 . . . .  x, 
4.-m. as in 

... x, . . .y, ...z, ... 
. . .  y ,  . . . Z ,  . . . X ,  . . .  

. . . Z  . . . .  X, . . . y ,  . . .  

(any preference order with x, y and z in the same tie) 

a with the following situations: 

. . . X ,  . . . Z ,  . . .  

. . . z  . . . .  y . . . .  

. . .y  . . . .  x . . . .  
a 

. . . z ~  . . . x ~  . . .  

. . . x  . . . .  y . . . .  

... y . . . .  z . . . .  
a 

Situation b has arisen from a by way of interchanging x and y. Likewise e 
is constructed from b by interchanging x and z. Suppose we have xRay  

and yRaz. Using N, we conclude xRbz. By N again, zRcx. Since c is like a 
except for a different numbering of the preference orders, we have by S 
that zR~x. From x R ,  y, yRaz  and zRax, we derive xlay and yI~z. If  we 
start with another supposition of  the order R~, we will find exactly the 

same relations by an analogous proof. 
A representable voting function need not be neutral. It may happen 

that a certain alternative, e.g. standing for the status quo, is assigned a 
greater number than is assigned to any other alternative (at the corre- 
sponding places in the preference orders). We now proceed to find out 
which representable voting functions are neutral. 

DEFINITION 5.2. Two preference orders R 1 and R 2 have the same f rame  

iff there exists a mapping q~ from A onto A, such that xR~y iff ~0 (x)R29 (y) 
for all alternatives x and y. 

LEUMA 5.3. (The Dalby lemma) Let F b e  a neutral representable voting 
function and f a n  arbitrary representation function for it. Suppose that 
for the preference order R 1 we h a v e f ( R  1, x ) - f ( R 1 ,  y ) = a  a n d f ( R  1, y ) -  
- f ( R  1, z )=b .  Then for every preference order R k, which has the same 
frame as R~ (under the mapping ~o) and where every alternative except 
x, y and z has the same place in the frame, it holds t h a t f ( R  k, 9 ( x ) ) - -  

- - f  (Rk, q~(y))=a and f (Rk, (P(y) ) - - f  (Rk, q)(z))=b. 
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Proof There are three places in the frame at our disposal. The six 

possible arrangements of  x, y and z in these places are RI:  x, y, z; R2: 

x, z, y;  R 3: y, x, z; R4: Y, z, x;  R5: z, x, y and R 6 : z, y, x. Using the fact 
that a representable voting function is symmetric and Lemma 5.1, we 

derive that f ( R  1, y)+f(R2, y)=f(R~, z)§ z). Hence f(R2, z ) -  
- f (R2,  y)----f (R1, y)-T(RI, z)=b. Similarly, f(R3, y)- f (R3,  x)=a and 

f ( R 6 ,  z)--f(g6, x)=a+b. I f  we now assume f ( R  v x ) - f ( R  2, z)----c and 
f(R3, x)- f (R3,  z)= d, we can by diligent use of  Lemma 5.1 compute the 
remaining differences between the values of  the representation function. 

The result is shown in Table I. 

TABLE I 

R1. x (a) y (b) z 
.~. x (c) z (b) y 
Ra. y (a) x (d) z 
g4. y (b+c--d) z (d) x 
Rs. z (c) x(a+d--c) y 
R6. z(b+c--d) y(a+d--c) x 

I f  we apply Lemma 5.2 on R x, R 4 and R 5, using the situation described 

there, we get the following equations: 

(1) a + (a + d -  e) ---- (c + b -  d) + d (from the fact that xIay) 
(2) a + b = e + d (from the fact that xIaz) 

Adding (1) and (2), we find that a =  c and hence also b=d. I f  we substitute 

these values in the table above, we see that the difference between the 
numbers assigned to the first and second alternatives is always a and 

similarly the difference for the second and third alternatives is b. The 

lemma is proved. 
THEOREM 5.1. Let F be a representable voting function and f an arbi- 

trary representation function for it. Then the following statements are 

equivalent: 
(1) I f  R 1 is like R 2 except that x and y have changed places, then 

f(R1, x)- f (R1,  z)=f(R2, y)- f (R2,  z), for any z distinct from x and y. 
(2) I f  R 1 and R z have the same frame (under the mapping q~), then 

f (R1, x) -f(R~, y)----f (R2, q~ (y)) - fR2 ,  ~o(y)) for any alternatives x and y. 
(3) F is neutral. 
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Proof. (1) says that if R 2 arises from R1 through a transposition of two 
alternatives, then the assignments to the positions in the preference orders 
shall be essentially the same. (2) says that if R 2 arises from R1 through a 
permutation of the alternatives, then the assignments shall be essentially 
the same. Since any permutation is a composition of transpositions, (2) 
follows from (1). That (2) implies (3) is a direct consequence of the 
definitions. Finally, that (3) implies (1) follows from Lemma 5.3. 

This theorem shows that the neutral representable voting functions have 
remarkably simple representation functions. One need only know the 
numbers assigned to one preference order of each frame to determine the 
voting function. 

5.2. Pareto-Optimality 

DEFINITION 5.3. Suppose xP,ay for every Pi. A voting function satisfies 
weak Pareto-optimality (WP) iff xPay. 

DEFINITION 5.4. Suppose xRiay for every pl and xP~,y for some p3. 
A voting function satisfies strong Pareto-optimality (SP) iff xPay. 

The meaning of this condition is that if everybody thinks x is better 
than y (or at least as good as), then this shall be the case in the social 
ordering too. The conditions are also referred to as unanimity conditions. 
Obviously, any voting function which satisfies SP also satisfies WP. 

The following theorem shows the connection between Pareto-optimality 
and the representation functions. 

THEOREM 5.2. Let F be a representable voting function and f an 
arbitrary representation function for it. Then the following statements are 
equivalent: 

(1) xRy ifff(R,x)>~f(R,y) for any preference order R and any 
alternatives x and y. 

(2) F(<R, R .... R>)----R for any preference order R (the m-tuple is 
the situation). 
They imply the following: 

(3) F is strongly Pareto-optimal. 
Furthermore, if F is neutral and weakly Pareto-optimal, then it satisfies 
(1) and (2). 

Proof. That (1) and (2) are equivalent follows directly from the defini- 
tions. That (1) implies (3) is trivial. If F is neutral and xIy in the preference 
order R, we conclude that xIy in F (<R,  R .... R>) .  If F is weakly 
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Pareto-optimal and xPy in R, then xPy in F ( <  R, R .... R >). Thus (2) is 
satisfied and the theorem is proved. 

So, if F is a representable and neutral voting function, it is weakly 
Pareto-optimal iff it is strongly Pareto-optimal. 

5.3. Monotonieity 

DEFINITION 5.5. Suppose situation a is like situation b except that, for 
some Pi and some x, there is a z for which either xIiaz and XP~bZ or 
zP,ax and XR,bZ, and furthermore xP**y iff XP,by and yP,~x iff YPibx for 
every yr A voting function satisfies the monotonieity condition (M) 
iff xI~y implies xRby and xPay implies XPby for any alternative y. A 
voting function satisfies the strong monotonieity condition (SM) iff xR.y 
impfies XPbY for any alternative y such that yRiaz iff yR~b and zRi,y iff 
zRiby. 

In outline, this means that if p, changes his mind in favour of x, then, 
according to monotonicity, x is not moved backwards in the social 
ordering, and furthermore, according to strong monotonicity, if x is tied 
with some alternatives in R,, x is ranked before these in Rb. Thus, a 
voting function which is strongly monotonic avoids a large number of ties 
in the social preference order and generally such a function is very 
decisive. Decisiveness seems to be a desirable property of a voting func- 
tion, but still some people regard the strong monotonicity condition as 
too strict. 

LEMMA 5.4.9 Any voting function which satisfies strong monotonicity 
and neutrality also satisfies strong Pareto-optimality. 

Proof In any situation a where xI, ay for every p~, we conclude by N 
that xI~y. So in any situation b where xR,by for every p~ and XPjby for 
some p j, we can by iterated use of SM conclude that XPbY. Hence the 
voting function is strongly Pareto-optimal. 

The effects of the monotonicity conditions as regards the representation 
functions are not easily grasped, but the next theorem shows some 
connections. 

DEFINITION 5.6. A preference order R 2 is a straightening of R 1 iff xPly 
implies xPzy, for every x and y, and there is some z such that zllx but 
zP2x, for some x. 

THEOREM 5.3. Let F be a representable voting function and f an 
arbitrary representation function for it. Then the following statements are 
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equivalent: 
(1) F is [strongly] monotonic. 
(2) If  situations a and b and alternatives x andy  are as in Definition 5.5, 

f (R,a, x ) - f  (Ria, y) ( [  < ] f (R~b, x ) - f  (R,b, y). 
If  F is neutral, these statements imply: 
(3) If  R2 is a straightening of R 1 such that xI~z but xP2z, then 

f (R2, x) - f  (R2, Y) >t [ > ] f (R~, x) - f  (R~, y) for any y ~ x, a n d f  (R2, z ) -  
- f  (R2, y) <. [< l.f(R~, z ) - f  (R~, y) for any y C z. 

Proof. That (1) is equivalent to (2) is just a consequence of the defini- 
tions. Suppose Rz is a straightening of Rt. According to Lemma 5.2 it is 
always possible to find a situation a involving Ra such that xI~y. In a 
situation b where R 1 is replaced by R 2, w e  have xRby [xPby] since we 
assume [strong] monotonicity. Hencef  (R2, x ) - f ( R 2 ,  y) t> [ > ] f  (R1, x ) -  
- f (R1 ,  y). Similarly, using Lemma 5.2. again, it is always possible to find 
a situation c involving R2 such that zIcy. In a situation d where R2 is 
replaced by R~, we have, by [strong] monotonicity, yR,lZ [yPaz]. Hence 

f (R 2, z) - f  (R 2, y) ~ [ < ] f (R1, z) - f  (R 1, y). 

6. C O N D I T I O N S  C H A R A C T E R I Z I N G  THE B O R D A  F U N C T I O N  

The most familiar representable voting function is the Borda function, 
which will be the focus of our study in this section. The function was 
defined in Section 3, and before turning to the uniqueness theorems, we 
want to make some remarks on the properties of the function. 

Borda's original definition 1~ of the function was intended for linear 
preference orders only. Essentially, he proposed that the least preferred 
alternative (the last one in the preference order) should be assigned a rank 
of 0, the next to the last 1, the next again 2, etc. Our definition in Section 3 
is a generalization that can deal with weak orders, too. As is easily proved, 
the procedures are equivalent when restricted to linear orders. On the 
other hand, Borda's original definition can be extended to weak orders if 
we add the provision that to each alternative in a tie is assigned the mean 
value of what they would have been assigned if they were ranked in a 
linear order. For example, the preference order (xl, x2), x3, (x,, x5, x6) 
can be straightened to a linear order as e.g. x2, xl, x3, x4, x6, xs with the 
Borda assignments 5, 4, 3, 2, 1 and 0. Hence xa and x 2 shall be assigned 
1/2.(5+4), i.e. 4.5 points each and x4, x5 and x 6 shall be assigned 
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1/3. (2+  l-k0), i.e. 1 point each (xa is still assigned 3 points). This proce- 

dure yields the same social ordering as the one defined in Section 3. 
Summing up, every representation function for the Borda function is 

characterized by the following properties: 
(i) The difference between the numbers assigned to any two consecutive 

alternatives in a linear order is a positive constant. 
(ii) The number assigned to any alternative in a tie is determined as the 

mean value of  the numbers assigned to the alternatives in a corresponding 
linear straightening. 

Furthermore we note that, for the Borda numbers as defined in 
section 3, the sum ~x~afa(x) is always zero, a fact which we will use 
in the sequel. 

Before stating the uniqueness theorems, we informally describe two 
independence conditions as they ought to be according to the position- 
alistic view. 

In outline, an independence condition tells us how much we can change 
an individual preference order without changing the social ordering of a 
certain subset B of the alternatives. AI, which is the strongest among the 

independence conditions introduced in this paper, allows us to move 
around any alternative, except those in B, as much as we want, still having 
the same social ordering as regards the alternatives in B. WI entails that 
we regard an individual preference order as consisting of three subgroups; 
those preferred to x, those considered equally good as x and those 
considered worse than x. In these subgroups, one may move around the 
alternatives as one likes (but not from one subgroup to another), without 
altering the social relationships involving x. 

The intuitive idea behind a positionalist independence condition can be 
described in a similar manner. We regard an individual preference order 
as divided into five subgroups; those ranked before both x and y, those on 
a par with x, those between x and y, those on a par with y and those ranked 
after both x and y. We are now allowed to move around the alternatives 
within each subgroup freely, without changing the social relationship 
between x and y. The definition of  this condition, hereafter called posi- 
tionalist independence (PI),  can be found in Hansson [7], p. 46 this issue. 

A stronger condition comes up if one also demands that if an alternative 
is not tied to x o ry  or ranked between them, then it does not matter for the 
social relation between x and y whether it is ranked before or after both x 
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and y. The effects of this condition, which we call strong positionalist 
independence (SPI), can be described as for PI, but where the first and 
fifth subgroups coincide. A precise definition is given in Hansson [7], 
where also the relative strengths of the different independence conditions 
are investigated (p. 47 this issue). 

THEORE~ 6.1. Suppose F is a representable voting function which 
satisfies neutrality, weak Pareto-optimality and strong positionalist inde- 
pendence. Then for any situation which only contains linear orders, the 
social ordering is the same as for the Borda function. 

Proof  Compare the following situations: 

a;  1. xl ,  x2, x3. . .  x n 

2. x 2, x l, X 3 . . .  X n 

3.-m. (x l, x2...  x,,) 

b: 1. x 3, x4 ... xk, xl , xz, xk+l ... x,  
2. a s i n a  

3.-m. as in a 

According to Lemma 5.1., it holds that x l I ,  x z. Hence by SPI, xlIbx 2. For 
any representation function f for F i t  holds that f (R2b,  x2)-- f(R2b,  x l ) =  

= f (R ib ,  xl) - - f (Rlb,x2) .  Since Rla has the same frame as Rib and R2b, 
we can apply Theorem 5.1. We conclude that f ( R i a ,  x l ) - f ( R l a ,  x2)= 
= f ( R l a ,  xk ) - - f (R l , ,  Xk+l) for any k < n .  So, the difference between the 
numbers assigned to any two consecutive alternatives is a constant, say c. 
From Theorem 5.2. and the fact that we assume WP, it follows that c > 0. 
Therefore, for linear orders the representation function is essentially the 
same as for the Borda function and the theorem is proved. 

Suppose a voter changes his mind in favor of an alternative, but only 
slightly, e.g. straightens a tie to a strict preference. Then it seems reason- 
able to demand that there is no revolutionary change in the social 
preference order. This is the rationale behind the next condition, which 
demands that the 'effect' in the social order is not greater than the 'cause'. 

DEFINITION 6.3. The situations a and b are almost equal with respect 
to x iff there is at most onep~ and at most one z such that R~, is the same 
ordering as Rib on the set A - {z} and zP~,x and xIibz or xIi~z and xP~bz. 

The intended meaning of  this somewhat messy definition is that x is 
considered better in b than in a by p~, but only by a minimal amount. 
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DEFINITION 6.4. A voting function satisfies the stability condition (ST) 
iff not both yPax and xPbY for any y r  (where z is as in Definition 6.3) 
whenever a and b are almost equal with respect to x. 

In one sense, the stability condition is against decisiveness since it 
prevents radical changes in the social order. So it might be thought that 
stability and strong monotonicity are incompatible. This is not the case; 
but for all we know, there is only one reasonable voting function satisfying 
both these conditions, namely the Borda function. We take this as a good 
argument for the Borda function. 

THEOREM 6.2. The only representable voting function satisfying neu- 
trality, strong monotonicity and stability is the Borda function, if we 
assume that ]A[ ~>3 and ]VI t>3. 

Proof omitted. It is by induction on the number of alternatives involved 
in ties: first it can be proved that any representation applied to a linear 
preference order yields the same result as the Borda function. Then the 
induction base is established for preference orders with only two 
alternatives and a single tie, first for IA[ ~>3 and I VI 1>4, then for [AI >14 
and IV]/> 3. The induction step is established by constructing combina- 
tions of situations like those used for proving the induction base and by 
applying SM, ST and Theorem 5.1 as done there. Finally, the case for 
[AI =3 and IV[ =3 is taken and it is shown how the corresponding voting 
function must be the Borda function. 

7. S O M E  M O D I F I C A T I O N S  OF T HE  B O R D A  F U N C T I O N  

We first define three variants of the Borda function which are represent- 
able. Borda's original definition was intended for linear preference orders 
only, and the voting function we call the Borda function is one possible 
extension of the definition to weak orders in general. There are, however, 
other possibilities. 

DEFINITION 7.1. The restricted Borda function (RB) is the voting 
function which has f(Pia, x)=l {y:xPi,y}l as one of its representation 
functions. 

DEFINITION 7.2. Two alternatives x and y are at the same ranking level 
in the preference order R iff xly. This is an equivalence relation and the 
equivalence classes are called ranking levels. 

DEFINITION 7.3. The ranking-level function (RL) is the voting function 
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which is determined by the representation function f ,  where f(R~a, x) 
is the number of ranking levels ranked after x in R~a. 

Both these modifications yield the same social ordering as the Borda 
functio n , when applied to situations containing only linear orders. In the 
Borda function, the alternatives in a tie were assigned the mean value of 
what they would have become in any straightening to a linear order, while 
in the restricted Borda function they are assigned the minimum. In the 
ranking level function the difference between the numbers assigned to any 
two consecutive levels is constant. In connection with Theorem 5.3 this 
shows that neither RB nor RL satisfy strong monotonicity. 

DEFINmON 7.4. Letf(R~,, x) be as for the Borda function in Section 3. 
The squared Bordafunetion (SB) is the voting function which is determined 
by the representation function defined as ( f (R~,  x)) 2 iff(R~,, x) is non- 
negative and - ( f (Ri~,  x)) 2 iff(R~a, x) is negative. 

This voting function is interesting because it satisfies positionalist 
independence and strong monotonicity, but not strong positionalist 
independence. 

The next two modifications are not representable, as we will prove in 
the sequel, so we describe how to construct the social preference order. 

DEFINmON 7.5. The social ordering of the iterated Bordafunction (IB) 
is determined as follows: First use the Borda function to determine a 
preliminary social preference order. Then, if there are any ties in this order, 
regard the individual preference orders between the alternatives in any tie 
as determining a new situation. Use the Borda method on this restricted 
situation to determine the ordering of the alternatives previously involved 
in a tie. Repeat this procedure until there is no change in the social ordering. 

EXAMVLE 7.1. In the following situation, the procedure for the iterated 
Borda function works as follows: 

a :  1. x ,  y ,  Z 

2. x , y , z  
3. y , z , x  

The Borda function yields the social ordering (x, y), z. Since there is a tie 
between x and y, we study the restricted situation 

a': 1. x ,  y 

2. x , y  
3. y , x  
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Applied to this situation, the Borda function yields the ordering xPy. 

There remain no ties, so the social ordering for the iterated Borda 

function in situation a is Ra. x, y, z. 
DEFINITION 7.6. The social ordering for the elimination Bordafunetion 

(EB) is constructed in the following manner. First use the Borda function 
to determine a preliminary social ordering. The alternatives in the last 
ranking level will remain there in the final social ordering. The preference 
orders restricted to alternatives not in the last ranking level yield a new 
situation to which the Borda function is applied again. The last alterna- 
tive in this new order will become the next to last in the final order. 
Repeat this procedure until there is not more than one ranking level in the 
social order. 

EXAMPLE 7.2. We illustrate the procedure for the following situation: 

a: 1. x ,  y ,  z ,  u 

2. z , x , y , u  
3. y , u , ( x , z )  

The social ordering according to the Borda function is y, x, z, u. Hence u 
is last in the final order for the elimination Borda function. When u is 
eliminated, the restricted situation is: 

a': 1. x , y ,  z 

2. z , x , y  

3. y, (x, z) 

The result by the Borda function is x, y, z, so z is next to last in the 
final order. When z is also eliminated, the restricted situation becomes: 

a": 1. x , y  

2. x , y  
3. y , x  

The result according to the Borda function is x, y. Hence the social 
ordering for the elimination Borda function in situation a is x, y, z, u. 

We next introduce a condition, hitherto not discussed, which is of 
interest when comparing the different modifications of the Borda function 
here presented. In some sense, the condition expresses the principle that 
'the worse something is, the better is its absence'. 

DEFINITION 7.7. Suppose we get situation b from a by reversing all the 
individual preference orders. Then b is called the dual of  a. 
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DEFINITION 7.8. A voting function satisfies the duality condition (DU) 
iff for any alternatives x and y and any situation a, xR~y iffyRbx, where b 
is the dual of a. 

We have defined five modifications of the Borda function. All of  them 
fulfil symmetry, neutrality, strong Pareto-optimality and monotonicity. 
In Table II we show how they satisfy some other conditions. 

TABLE II 

representable SM WC PI SPI ST DU 

Borda yes yes no yes yes yes yes 
RB yes no no yes yes yes no 
RL yes no no no no yes yes 
SB yes yes no yes no no yes 

IB no yes no no no no yes 

EB no no yes no no no no 

Most of  the facts stated in this table are easily verified but some need 
proof. 

LEMMA 7.1. The iterated Borda function is not representable, if 

tAIl>3 and IV]~>3. 
Proof We prove the lemma for the case [A]=3 and I Vl=3.  This proof  

can easily be extended to a general proof. Suppose that IB can be rep- 
resented by the representation function f In the following situation we 
have three preference orders of  the same frame and since IB is neutral we 
may apply Theorem 5.1. 

a: 1. x , y , z  
2. x,y,  z 
3. y, z, x 

Ra. x, y ,  z 

Using the representation function, we conclude f (Rla ,  x)+f(R2, ,  x)+ 
+ f  (R3~, x) > f  (R~a, Y)+f(R2~, Y)+f(R3a, Y). According to Theorem 
5.1., this implies that f (Rx , ,  x)q-f(Rl, ,  z)>2.f(Rl~,  y). Now compare 
with this situation: 

b: 1. x , y ,  z 

2. z, y, x 
3. (x ,y ,z)  

"R b. (x, y, z) 



P O S I T I O N A L I S T  V O T I N G  F U N C T I O N S  23 

Hence, f (Rlb, x)q-f (R2b, x)=f  (Rlb, y)-kf (R2b, y). According to Theo- 
rem 5.1, this implies f(Rla, x)-kf(Rla, z)=2.f(Rxa, y ) since Rl,=Rlb. 
This contradicts the previous inequality, so the assumption that IB is 
representable must be false. 

Perhaps surprisingly, the elimination Borda function is a Condorcet 
function, as is proved in the following lemma. 

LEM~ 7.2. The elimination Borda function satisfies the weak Con- 
dorcet condition. 

Proof. Suppose x has a simple majority over all other alternatives in 
situation a. Taking the sum over all individual preference orders in a, 
we conclude that the number of alternatives ranked after x must be 
greater than the number of alternatives ranked before x, i.e. the Borda 
number fa(x) is positive. Since the sum of the Borda numbers for all the 
alternatives is zero, there must be at least one alternative with a negative 
Borda number. So x will not be in the last ranking level. This holds also 
when some of the alternatives are eliminated from the preference orders 
since x will still be a Condorcet alternative. Hence, when the elimination 
procedure is completed only x will be top-ranked. 

In fact, every alternative which should be top-ranked, according to the 
strong Condorcet condition, will be top-ranked, but there may be some 
other alternatives, too. 

The elimination Borda function is not representable in general, as we 
know from Theorem 4.1. That EB does not satisfy PI can be seen from the 
following two situations: 

a :  1. x,y ,u ,z  b: 1. a s i n a  
2. y , z ,u , x  2. y ,u , z , x  
3. z ,x ,u ,y  3. a s i n a  

R a. (x,y,z),u R b. x,y,(z,u) 

Since xI.y, PI demands xIby, which is false for EB. 
We let this voting function, which is somewhat of a hybrid between 

positionalist and non-positionalist methods, be a final example which 
shows the difficulty of drawing a sharp line between the two views. 

Department of Philosophy, 
University of Lund, Sweden 
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N O T E S  

* My thanks are due to professor Bengt Hansson for encouragement and several 
helpful suggestions. 
1 For a definition of these conditions, see Section 4. 

See e.g. [5]. 
a In [5] ch. 17 a more general approach is discussed, where the numbers assigned are 
dependent on the situation. 
4 This theorem is due to Bengt Hansson. 
5 See [6]. For a definition of the neutrality condition, see Definition 5.1. 
6 In [1], pp. 94--95. 

The proof of this theorem was found in collaboration with Bengt Hansson. 
s The situation we start from is again a variant of the voting paradox. 
9 This is also proved by Sen in [8]. 
10 Originally in [3]. For a discussion of this paper see [2]. 
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