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ABSTRACT. A stochastic model is developed to describe behavioral changes 
by imitative pair interactions of individuals. 'Microscopic' assumptions on the 
specific form of the imitative processes lead to a stochastic version of the game 
dynamical equations, which means that the approximate mean value equations of 
these equations are the game dynamical equations of evolutionary game theory. 

The stochastic version of the game dynamical equations allows the derivation 
of covariance equations. These should always be solved along with the ordinary 
game dynamical equations. On the one hand, the average behavior is affected 
by the covariances so that the game dynamical equations must be corrected for 
increasing covariances; otherwise they may become invalid in the course of time. 
On the other hand, the covariances are a measure of the reliability of game 
dynamical descriptions. An increase of the covariances beyond a critical value 
indicates a phase transition, i.e. a sudden change in the properties of the social 
system under consideration. 

The applicability and use of the equations introduced are illustrated by compu- 
tational results for the social self-organization of behavioral conventions. 
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1. INTRODUCTION 

This paper treats a mathematical model of the temporal change of 
the proportions of individuals showing certain behavioral strategies. 
Models of this kind are of special interest for a quantitative under- 
standing or prognosis of social developments. The description of 
the competition or cooperation in populations can be described by 
game theoretical approaches (cf. e.g. von Neumann and Morgen- 
stem, 1994; Luce and Raiffa, 1957; Rapoport and Chammah, 1965; 
Axelrod, 1984). In order to cope with time-dependent problems the 
method of iterated games has been developed and has been in use for 
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a long time. However, the game dynamical equations were discov- 
ered some years ago (Taylor and Jonker, 1978; Hofbauer etal., 1979; 
Zeeman, 1980). These are ordinary differential equations which are 
related to the theory of evolution (Eigen, 1971; Fisher, 1930; Eigen 
and Schuster, 1979; Hofbauer and Sigmund, 1988; Feistel and Ebel- 
ing, 1989). Therefore, one can also speak of evolutionary game 
theory. 

The game dynamical equations have the following advantages: 

• They are continuous in time, which is more adequate for many 
problems. 

• Ordinary differential equations are easier to handle than iterated 
formulations. 

• Analytical results can be derived more easily (cf. e.g. Hofbauer 
and Sigmund, 1988; Helbing, 1992). 

Up to now, there only exists a 'macroscopic' foundation for the 
game dynamical equations, i.e. a derivation from a collective level 
of behavior (cf. Section 5.1). This paper presents a 'microscopic' 
foundation, i.e. a derivation on the basis of the individual behavior. 
With this aim in view, we first develop a stochastic behavioral model 
for the following reasons: 

• A stochastic model, i.e. a model that can describe randomfluc- 
tuations of the quantities of interest and can cope with the fact 
that behavioral changes are not exactly predictable (which is a 
consequence of the 'freedom of decision-making'). 

• The phenomena appearing in the social system under consider- 
ation can be connected to the principles of individual behavior. 
As a consequence, processes on the 'macroscopic' (collective) 
level can be understood as effects of 'microscopic' (individual) 
interactions. 

• The probability of occurrence can be calculated for each strate- 
gy. This is especially important for small social systems which 
are subject to large fluctuations (since they consist of only a few 
individuals). 

• The stochastic model allows the derivation of covariance equa- 
tions (cf. Section 4). Since the covariances influence the average 
temporal behavior, they are an essential criterion for the validi- 
ty and reliability of behavioral descriptions using rate equations 
(which are actually approximate mean value equations). If the 
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covariances exceed a certain critical value, this indicates the 
occurrence of a phase transition, i.e. a sudden change of the 
properties of the social system under consideration. 

Different stochastic methods have been developed for the description 
of systems that are subject to random fluctuations (cf. e.g. Gardiner, 
1983; Weidlich and Haag, 1983; Helbing, 1992). One method is to 
delineate the temporal evolution of the probability distribution over 
the different possible states (which represent behavioral strategies 
here). This method is particularly suitable for an 'ensemble' of sim- 
ilar systems or for frequently occurring processes. In the case of 
discrete states, the master equation has to be used, whereas in the 
case of continuous state variables the Fokker-Planck equation is 
normally preferred since it is easier to handle (Fokker, 1914; Planck, 
1917). The Fokker-Planck equation can, to a good approximation, 
also be applied to systems with a large number of discrete states 
if state changes occur only between neighbouring states. It can be 
derived from the master equation by a Kramers-Moyal expansion 
(Kramers, 1940; Moyal, 1949), i.e. a second-order Taylor approxi- 
mation. 

Another method - the Langevin equation (1908) (or stochastic 
differential equation) - is applied to the description of the tempo- 
ral evolution of single systems affected by fluctuations. This con- 
sists of a deterministic dynamical part, which delineates systematic 
state changes, and a stochastic fluctuation term, which reflects ran- 
dom state variations. The Langevin equation can be reformulated in 
terms of a Fokker-Planck equation and vice versa (if the fluctua- 
tions are Gaussian and &correlated, which is normally the case; cf. 
Stratonovich, 1963, 1967; Weidlich and Haag, 1983). 

Although these methods have their origin in statistical physics, 
the application to interdisciplinary topics has a long and successful 
tradition, beginning with the work of Weidlich (1971, 1972), Haken 
(1975), Prigogine (1976), and Nicolis and Prigogine (1977). For 
social and economic processes, too, Fokker-Planck equation models 
(cf. e.g. Weidlich and Haag, 1983; Topol, 1991), as well as the master 
equation models (cf. e.g. Weidlich and Haag, 1983; Weidlich, 1991; 
Haag et al., 1993; Weidlich and Braun, 1992) have been proposed. 
In this paper we develop a behavioral model on the basis of the 
master equation (Section 2). For this purpose we have to specify 
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the transition rates, i.e. the probabilities per time unit with which 
changes of behavioral strategies take place. The transition rates can 
be decomposed into 

• rates describing spontaneous strategy changes, and 
• rates describing strategy changes due to pair interactions of 

individuals. 

In the following we will restrict our considerations to imitative pair 
interactions which seem to be the most important ones (Helbing, 
1994). By distinguishing several subpopulations a, one can take 
account of different types of behavior or different groups of indi- 
viduals. In order to connect the stochastic behavioral model with 
the game dynamical equations, the transition rates have to be cho- 
sen in such a way that they depend on the expected successes of the 
behavioral strategies (cf. Section 3.2). The ordinary game dynamical 
equations are the approximate mean value equations of the stochastic 
behavioral model (cf. Section 5.2). 

For the approximate mean value equations correction terms can 
be calculated. These depend on the covariances (of the numbers of 
individuals pursuing a certain strategy) (cf. Section 4.1.4). If one 
neglects these corrections, the game dynamical equations may lose 
their validity after some time. Calculation of the covariances allows 
one to determine the time interval during which the game dynamical 
descriptions are reliable (cf. Section 4.1.5). 

The equations introduced are illustrated by computational results 
for the self-organization of a behavioral convention by a competi- 
tion between two alternative, but equivalent strategies (cf. Sections 
3.3 and 4). These results are relevant for economics in regard to 
the rivalry between similar products (Arthur, 1988, 1989; Hauk, 
1994). 

2. THE STOCHASTIC BEHAVIORAL MODEL 

Suppose we consider a social system with N individuals. These 
individuals can be divided into A subpopulations a consisting of Na 
individuals, i.e. 

A 

a-----I 
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(1) 

Let 

Subpopulations allow one to distinguish different social groups (e.g. 
blue collar and white collar workers) or different characteristic types 
of behavior. In the following we will assume that individuals of 
the same subpopulation (group) behave cooperatively due to their 
common interests, whereas individuals of different subpopulations 
(groups) do not do so, having conflicting interests. 

The Na individuals of each subpopulation a are distributed over 
several states 

i e { 1 , . . . , S }  

which represent the alternative (behavioral) strategies of an individ- 
ual. For the time being we assume that every individual is able to 
choose each of the S strategies, i.e. the same strategy set is available 
for each subpopulation. If the occupation number n~ (t) denotes the 
number of individuals of subpopulation a who use strategy i at the 
time t, we have the relation 

S 

i=1 

( I  ° n : =  n , . . . , n i , . . . , n  

This vector is be the vector consisting of all occupation numbers hi .  
called the socioconfiguration since it contains all information about 
the distribution of the N individuals over the states i. P (n ,  t) denotes 
the probability of finding the socioconfiguration n at the time t. This 
implies 

0~<P(n , t )~<  1 and ~ P ( n , t ) =  1. 
n 

If transitions from socioconfiguration n to n I occur with a probability 
of P (n ' ,  t + At ln  , t) during a short time interval At, we have a 
(relative) transition rate of 

w (n ' l n ; t  ) := lim P ( n ' , t  + Atln,  t ) 
~t - - ,0  At 

The absolute transition rate of changes from n to n t is the product 
w(n ' ln;  t )P (n ,  t) of the probability P (n ,  t) that we have configu- 
ration n and the relative transition rate w(n~ln; t) to n I given the 
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configuration n. Whereas the inflow into n is defined by the sum 
over all absolute transition rates of changes from an arbitrary con- 
figuration n' to n, the outflow from n is determined by the sum over 
all absolute transition rates of changes from n to another config- 
uration n'. Since the temporal change of the probability P(n ,  t) is 
determined by the inflow into n reduced by the outflow from n, we 
find the socalled master equation 

d p ( n ,  t) = n -  n inflow into outflow from 

= ~_, w(n ln ' ; t )P(n ' , t )  
n ! 

(2) - ~ w(n ' ln ; t )P(n , t  ) 
,e 

(Pauli, 1928; Haken, 1979; Weidlich and Haag, 1983; Weidlich, 
1991). 
It will be assumed that two processes contribute to a change of the 
socioconfiguration n: 

• Individuals may change their strategy i spontaneously and inde- 
pendently of each other to another strategy i' with an individual 
transition rate ~a(i '[i;  t). These changes correspond to transi- 
tions of the socioconfiguration from n to 

a ( n l , . . . ,  . . . ,  _ . . . ,  n~,~ := (ni ~, + 1), (n~ 1), n A) 

with a configurational transition rate w(n~i [n; t) = n~zb,~(i'[i; t) 
which is proportional to the number n~ of individuals who can 
change strategy i. 

• An individual of subpopulation a may change the strategy from i 
to i' during a pair interaction with an individual of some subpop- 
ulation b who changes the strategy from j to j ' .  Let transitions 
of this kind occur with a probability ~vab(i', j'[i, j; t) per time 
unit. The corresponding change of the socioconfiguration from 
n t o  

" -  ( n l  . . . .  1 ) ,  . 1 ) , . . . ,  . -  , . . ,  - 

( n } , + l ) , . . . , ( n ~ - l ) , . . . , n  A) 

ab leads to a configurational transition rate w(ni,j,ij ]n; t) = 
a b ^ "l ' l  • ". rt i njWab(* ,3 [~,3, t) which is proportional to the number n ianjb 
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of possible pair interactions between individuals of subpop- 
ulations a and b who pursue strategy i and j ,  respectively. 
(Exactly speaking - in order to exclude self-interactions - 
nan~@~a(i',j'li, i;t)  has to be replaced by n~(n~ - 1)~a~(i', j '  I 
i , i ; t )  i f~j ,~baa(i ' , j ' l i ,  i;t)  << Cva(i'[i; t) is invalid and P(n,  t) 
is not negligible where n~ >> 1 is not fulfilled.) 

The resulting configurational transition rate w (fi lm t) is given by 

{ n~CVa(i'li;t) i f n  = n~i 
a b ^ "1 n I a b  (3) w(n' ln;t)  := ninjw~b(~, j ' l i ,  j ; t )  if =ni,j,ij 

0 otherwise. 

As a consequence, the explicit form of Master Equation (2) is 

~t P(n , t )  = ~ [ ( n ~  + 1)~ ( i l i ' ; t )P (n i~ , i , t ) -  
a , i , i  I 

a ~ "! ". 
-niWa(~ I~,t)P(n, t)] + 

1 
+ ~  ~ ~ [(n~, + 1)(n~, + 1) x 

a , i , i  I b , j , j  I 

. !  a b  x CObb(i, j li', 3 ; t )P(nej , i j ,  t) - 
a b ^  "! (4) - n  i njwab(~ , j 'li ,  j; t)P(n, t)] 

(cf. Helbing, 1992a). 
We have here restricted our considerations to pair interactions, 

since they normally play the most significant role. Even in groups 
the most frequent interactions are alternating pair interactions - not 
always, but in many cases. In situations where simultaneous interac- 
tions between more than two individuals are essential (one example 
for this is group pressure), the above master equation must be extend- 
ed with higher-order interaction terms. The corresponding procedure 
is discussed by Helbing (1992, 1992a). 

3. STOCHASTIC VERSION OF THE GAME DYNAMICAL EQUATIONS 

3.1. Specification of  the Transition Rates 

The pair interactions 

(5) i', j '  ~ i, j 
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of two individuals of subpopulations a and b who change their strat- 
egy from i and j to i ~ and j J, respectively, can be classified into three 
different kinds of processes: imitative processes, avoidance process- 
es, and compromising processes. These are discussed in detail and 
simulated in several publications (Helbing, 1992, 1992b, 1994). In 
the following we will focus on imitative processes (processes of 
persuasion) which describe the tendency to take over the strategy of 
another individual. These are of the special form 

(6a) i , i ~ - - i , j  ( i e j ) ,  

(6b) j , j  ~ i , j  (i e j ) .  

The corresponding pair interaction rates read 

(7a) ~Vab(i' , j '[i , j;t) = PabPba(i[j;t)~ii'~ij'(1 -- ~ij) + 

(75) +~abP~b(j[i; t)Sji '~ie(1 -- 8ii ), 

where the Kronecker symbol 5ij is defined by 

1 i f i = j  
6~j:= 0 i f / ~ j .  

The factors (1 - 5~j) result from the constraint i ~ j ,  whereas 
factors of the form 5~y correspond to conditions of the kind i = j 
which follow by comparison of (6a) and (6b), respectively, with (5). 
The parameter 

(8) -~b : =  Nb~ab 

represents the contact rate between an individual of subpopulation 
a with individuals of subpopulation b. p~b(j ]i; t) denotes the proba- 
bility that an individual of subpopulation a will change the strategy 
from i to j during an imitative pair interaction with an individual of 
subpopulation b, i.e. 

p~b(jli; t) = 1. 
J 

For j ~ i we will assume 

(9) pab(jli; t) := f~bRa(j]i; t) 

where the parameter fa~ is a measure of the frequency of imita- 
tive pair interactions among individuals of subpopulation a when 
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confronted with an individual of subpopulation b. /~a(Jli;~) is a 
measure of the readiness of individuals belonging to subpopulation 
a to change the strategy from i to j during a pair interaction. 

3.2. 'Microcsopic' Foundation of Evolutionary Game Theory 

The problem of this section is to specify the frequency lab and the 
readiness Ra(jli; t) =_ R~(jli; n; t) in an adequate way. For this we 
make the following assumptions: 

• By experience each individual knows - at least approximately 
- the expected success of the strategy used. We will define the 
expected success of a strategy i for an individual of subpopula- 
tion a in interactions with other individuals by 

(10) JEa(i,t) =/)a(i ,n; t )  := ~ ~ rabE~b( i , j ) ' ' n~ ) .  
b j 

Here, the parameter 
l/ab 

?~ab ~ ~ c  l/ac 

represents the relative contact rate of an individual of sub- 
population a with individuals of subpopulation b. nb(t)/_Nb is 
the probability that an interaction partner of subpopulation b 
uses strategy j. Eab(i, j)  is an exogenously given quantity that 
denotes the success of strategy i for an individual of subpopula- 
tion a during an interaction with an individual of subpopulation 
b who uses strategy j .  Since all these quantities can be deter- 
mined by each individual, the evaluation of the expected success 
JFa(i, t) is obviously possible. 

• In interactions with individuals of the same subpopulations an 
individual tends to take over the strategy of another individual if 
the expected success would increase: When an individual who 
uses strategy i meets another individual of the same subpopula- 
tion who uses strategy j ,  they compare their expected successes 
/)4 (i, t) and/~a (j, t), respectively, by exchange of their experi- 
ences. (Remember that individuals of the same subpopulation 
were assumed to cooperate.) The individual with strategy i will 
imitate the other's strategy j with a probability P~b(j I; t) that 
grows with the expected increase 

Aj~/)~ := E~(j,t) - E~(i,t) 
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of success. If a change of strategy would imply a decrease of 
success (Aji~;a < 0), the individual will not change the strategy 
i. Therefore, the readiness to replace the strategy i by j during 
an interaction within the same subpopulation can be assumed to 
be 

(11) R~(jlt;t)  := max( /~( j , t )  - Ea(i,t),O) 
where max(x, y) is the maximum of the two numbers x and y. 
This describes an individual optimization or learning process. 
In interactions with individuals of other subpopulations (who 
behave in a non-cooperative way), no imitative processes will 
normally take place. During these interactions the expected suc- 
cess Eb (j, t) of the interaction partner can at best be estimated by 
observation since he will not tell of his experiences. Moreover, 
due to different criteria for the grade of success, the expected 
success of a strategy j will normally be varying with the subpop- 
ulation (i.e./)a(i, t) ¢ / )b ( i ,  t) for a ¢ b). As a consequence, 
an imitation of the strategy of individuals belonging to anoth- 
er subpopulation would be very risky since it would probably 
be connected with a decrease of expected success. Hence the 
assumption 

1 
(12) fab := Sab = 0 

will normally be justified. 

i f a  = b 
i f a ~ b .  

Relation (12) also results in cases where the strategies of the 
respective other sub-populations cannot be imitated due to dif- 
ferent (disjunct) strategy sets. Then, we need not to assume 
that individuals of the same subpopulations cooperate, whereas 
individuals of different subpopulations do not. 

In Section 5 it will tum out that the game dynamical equations are 
the approximate mean value equations of the stochastic behavioral 
model defined by Expressions (7)-(12). In this sense, the model 
of this section can be regarded as stochastic version of the game 
dynamical equations. Moreover, the assumptions made above are 
a 'microscopic' foundation of evolutionary game theory since they 
allow a derivation of the game dynamical equations on the basis of 
individual behavior pattems. 
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3.3. Self-Organization of Behavioral Conventions by Competition 
Between Strategies 

As an example of the stochastic game dynamical equations we will 
consider a case with one subpopulation only (A = 1). In this case 
we can omit the indices a, b, and the summation over b. Let us 
assume that the individuals choose between two equivalent strategies 
i E {1, 2}, i.e. the success matrixE =-- (E(i , j))  is symmetric: 

(B+C B) 
(13) E : =  B B + C  " 

According to the relation 

nl ( t )  + n2(t) = N 

(cf. (1)), n2(t) = N - nl(t) is already determined by nl(t). For 
spontaneous strategy changes due to trial and error we will take the 
simplest form of transition rates: 

(14) w(jli;t) :=  W. 

A situation of the above kind is the avoidance behavior of pedestrians 
(cf. Helbing, 1991, 1992). In pedestrian crowds with two opposite 
directions of motion, pedestrians sometimes have to avoid each oth- 
er in order to prevent a collision. For an avoidance maneuver to be 
successful, both pedestrians concerned have to pass the other pedes- 
trian either on the right hand side (strategy i = 1) or on the left hand 
side (strategy i = 2). Otherwise, both pedestrians have to stop (cf. 
Figure la). Here, both strategies are equivalent, but the success of 
a strategy increases with the number ni of individuals who use the 
same strategy. In Success Matrix (13) we then have 

C > 0 .  

Empirically one finds that the probability PI of choosing the right 
hand side is usually different from the probability P2 = 1 - Pl of 
choosing the left hand side. Consequently, opposite directions of 
motion normally use separate lanes (cf. Figure lb). 

We will now examine whether our behavioral model can explain 
this symmetry breaking (the fact that P1 ¢ P2). Figure 2 shows some 
computational results for C = 1 and different values of W/u. If 

4 W  
(15) e c : = l - - - < 0 ,  

uC 
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(a) 

O 

~t 
0 0 • Io 1 
o(y ee ] O~,oo. o] 

I ~,zp~, 0", I 
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Fig. 1. (a) For pedestrians with an opposite direction of motion it is advantageous 
if both prefer either the right-hand side or the left-hand side when trying to pass 
each other. Otherwise, they would have to stop in order to avoid a collision. 
The probability Pl of choosing the right-hand side is usually different from the 
probability P2 = 1 - Pl of choosing the left-hand side. (b) Opposite directions 
of motion normally use separate lanes. Avoidance maneuvers are indicated by 
a r r o w s .  

the configurational distribution is unimodal and symmetrical with 
respect to nl = N/2  = n2, i.e. both strategies will be chosen by about 
one half of  the individuals. A phase transition (bifurcation) appears 
at the critical point n = 0. This is indicated by the broadness of the 
probability distribution P (n ,  t) =_ P(nl ,  n2;  ~) = P(nl,  N - hi; t) 
which comes from so-called criticalfluctuations (cf. Haken, 1983). 
The term 'critical fluctuations' denotes the fact that the fluctua- 
tions become particularly large at a critical point since the system's 
behavior is then unstable. Whereas the individuals behave more or 
less independently before the phase transition (n < 0), around the 
critical point the individuals begin to act in correlation due to their 
(imitative) interactions. However, the spontaneous strategy changes 
(represented by W) still prevent the formation of a behavioral pref- 
erence. Above the critical point (i.e. for n > 0) the correlation 
of  individual behaviors is strong enough for the self-organization 
(emergence) of a behavioral convention: the configurational distri- 
bution becomes multimodal in the course of time with maxima at 
nl ~ N / 2  so that one of the two equivalent strategies will very 
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= 

P ( n l , N - n  ; - - n l ; t  ) 

t 

~C ~ 0 . ~  n l  K" ~ n I 

Fig. 2. Probability distribution P(n ,  t) = P(nl ,  N -  hi; t) of the socioconfigura- 
tion n for varying values of  the control parameter n. For n = 0 a phase transition 
occurs: Whilst for n < 0 both strategies are used by about one half of the individu- 
als, for n > 0 very probably one of  the strategies will be preferred after some time. 
That means that a behavioral convention develops by social self-organization. 

probably be chosen by a majority of individuals. In this connection 
one also speaks of symmetry breaking (Haken, 1979, 1983). 

Behavioral conventions often obtain a law-like character after 
some time. Which one of two equivalent strategies will win the 
majority is completely random. It is possible that conventions differ 
from one region to another. This is, for example, the case for the 
prescription of which side of the road cars are to be driven. 

The model of this section can also be applied to the competition 
between the two video systems VHS and Betamax, which were ini- 
tially equivalent with respect to technology and price (Hauk, 1994). 
In the course of time VHS won this rivalry since (for reasons of 
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compatibility concerning copying, selling or hiring of video tapes) it 
was advantageous for new purchasers to decide for that video system 
which gained a small majority at some moment. Other examples of 
the emergence of a behavioral convention are the direction in which 
clock hands revolve, the direction of writing, etc. It is easy to gen- 
eralize the above model to the case of more than two alternative 
strategies. Of course, the model can also be adapted to situations 
where one behavioral alternative is superior to the others. However, 
the formation of a behavioral convention is then trivial. 

Finally, we should mention some related models that were pro- 
posed during recent years for the description of symmetry break- 
ing phenomena in economics: Orl6an (1992, 1993) and Orl6an and 
Robin (1992) presented a phase transition model using polynomial 
transition rates which base on a Bayesian rational. Durlauf (1989, 
1991) used Markovian fields to explain the non-ergodic (i.e. path- 
dependent) behavior of some economic systems. F611mer (1974) 
applied the Ising model paradigm (1925) to the modelling of an 
economy of many interacting agents and discussed the conditions 
under which a symmetry breakdown occurs. A similar model of 
polarization effects in opinion formation had already been suggest- 
ed by Weidlich (1972). Last but not least, Topoi (1991) presented 
a Fokker-Planck equation model for the explanation of bubbles in 
stock markets by mimetic contagion (i.e. some kind of imitative 
interactions) between agents. 

4. MOST PROBABLE AND EXPECTED STRATEGY DISTRIBUTION 

Because of the huge number of possible socioconfigurations n, in 
more complex cases than in Section 3.3 the master equation for the 
determination of the configurational distribution P(n, t) is usually 
difficult to solve (even with a computer). However, 

• in cases of the description of single or rare social processes the 
most probable strategy distribution 

(16) P?(t) := 
No 

is the quantity of interest, whereas 
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• in cases of frequently occurring social processes the interesting 
quantity is the expected strategy distribution 

(17) P~(t) := 

P¢(t) is the proportion of individuals within subpopulation a using 
strategy i so that 

P;(t) >. O and ~ P;(t) = 1. 
i 

Equations for the most probable occupation numbers f~(t) can be 
deduced from a Langevin equation (1908) for the temporal devel- 
opment of the socioconfiguration n(t). For the mean values (n~>t of 
the occupation numbers n~ only approximate closed equations can 
normally be derived. Measures of the reliability of f~(t) and (n~)t 
with respect to the possible temporal developments of n~(t) are the 

variances o-~ ~ (t) of n~ (t). If the standard deviation ~ becomes 
comparable to 0.12?~,~(t) or 0.12(n~)t, the values of 5~(t) and (n~)t, 
respectively, are no longer representative of n~ (t) (cf. Section 4.1.5). 
In the case that P(n,  t) is normally distributed this would imply a 
probability of 34% (5%) that the value of n~(t) deviates more than 
12% (24%) from f~ (t) and (n~>t, respectively. Moreover, if the vari- 
ances ~7~a(t) become large, this may indicate a phase transition, i.e. a 
non-ergodic (path-dependent) temporal evolution of the system (see 
Figure 2). 

4.1. Mean Value and Covariance Equations 

The mean value of a function f(n,  t) is defined by 

( f (n , t ) ) t  - (f(n,t)> := ~-~f(n, t )P(n, t ) .  
n 

Master Equation (4) can be used to derive the fact that the mean 
values of the occupation numbers f (n ,  t) = n~ are determined by 
the equations 

(18) dt - (m~(n,t)> 

with drift coefficients 

rna(n,t) :---= ~(n' ia--na)w(n' ln;t)  
n ¢ 
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(19) = }-~[~a(ili';t)n ~ - ~"(i'li;t)n~] 
i r 

and effective transition rates 

(20) ~a(i ' l ; t  ) :=~v, ( i ' [ i ; t )+E~E~v~b( i ' , j ' l i , j ; t )n~ 
b j '  j 

(cf. Helbing, 1992, 1992a). Obviously, the contributions 
5ab(i',j'li,j; t)n~ due to pair interactions are proportional to the 

b of possible interaction partners. number nj 

4.1.1. Approximate Mean Value Equations 
Equations (18) are not closed equations, since they depend on the 
mean values a b (n~ nj), which are not determined by (18). We therefore 
have to find a suitable approximation. Using a first order Taylor 
approximation we obtain the approximate mean value equations 

Ot  b,j 

(21) ----- ma((n), t). 

These are applicable if the configurational distribution P(n,  t) has 
only small covariances 

(22) ~ b 

Condition (22) corresponds to the limit of statistical independence 
(n~n~) = (n a) (n~) of the occupation numbers (and, therefore, of the 
individual behaviors). 

4.1.2. Boltzmann-like Equations 
Inserting (17), (19), and (20) into (21) the resulting approximate 
equations for the expected strategy distribution P? (t) are 

(23) dp¢( t )  = ~, [wa(ili';t)Pi?(t)-wa(i'ri;t)P¢(t)] 

with the mean transition rates 

(24) wa(i'li;t) = ~a(i 'Ji;t)+~ ~ ~ NbCVab(i',j'li,j;t)P~(~ ). 
b j '  j 
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Equations (23), (24) are called Bohzmann-like equations (Boltz- 
mann, 1964; Helbing, 1992, 1992a) since the mean transition rates 
(24) depend on the strategy distributions P~(t) due to pair interac- 
tions. Assuming (7), (8), and (9) we obtain the formula 

(25) w"(ili';t) = ~Va(ili'; Q + R~(ili ';t) ~ ~bf~bpb(~) 
b 

with Ra(i li'; t) : = / ) , ( i  [i'; (n); t) for the mean transition rates. Equa- 
tions (23) and (25) are a special case of more general equations 
introduced by Helbing (1992, 1992b, 1994) to describe the temporal 
development of the expected strategy distribution in a social system 
consisting of a huge number N >> 1 of individuals. 

4.1.3. Approximate Covariance Equations 
In many cases, the configuration no at an initial time to is known by 
empirical evaluation, i.e. the initial distribution is 

P(~,  to) = ~-~o. 

As a consequence, the covariances o-~ b vanish at time to and remain 
small during a certain time interval. For the temporal development 
of cr~', the equations 

dt 
(26) 

can be derived from Master Equation (4) (cf. Helbing, 1992, 1992a). 
Here, 

< ) ( n ,  t )  : =  a - 
f t t  

~ab(SW ~[n2W"(ilj;t) + n~ea(jli;t)]- 
\ J 

a - - a  " ",* C~ --(~ "f " 1 - [ ~ , w  (~l~ ;t) + ~ (~ I~;t)] + 
/ 

+ ~ ~[n]nb,~v.b(i,i'lj, j';t)+ 
jl j 

a b ^  . j r  +n~ ni, W~b(3, ]i, i';t)] - -  
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- ~ Y~.[n~n~,9~b(j, i'li,j'; t) + 
j, j 

(27) a b ^ • .~ • +njn ,wob(z,3 b, 

are diffusion coefficients. Equations (26) are again not closed equa- 
tions. However, a first-order Taylor approximation of the drift and 
diffusion coefficients mi: (n; t) leads to the equations 

( o 

e,k 

(cf. Helbing, 1992, 1992a) which are solvable together with (21). 
The Approximate Covariance Equations (28) allow the determina- 
tion of the time interval during which the Approximate Mean Value 
Equations (21) are valid (cf. Section 4.1.5 and Figures 5a, 5b). They 
are also useful for the calculation of the reliability (or representa- 
tivity) of descriptions made by Equations (21). Moreover, they are 
necessary for corrections of Approximate Mean Value Equations 
(21). 

4.1.4. Corrected Mean Value and Covariance Equations 
Equations (21) and (28) are only valid for the case 

(29) a~ b << (n~)(n~) 

where the absolute values of the covariances a~ b are small, i.e, 
where the configurational distribution P(n,  t) is sharply peaked. 
For increasing covariances, a better approximation of (18) and (26) 
should be taken. A second-order Taylor approximation of (18) and 
(26), respectively, results in the corrected mean value equations 

(30) 1 
Ot 2 b,j c,k 

and the corrected covariance equations 
da~. b 1 acdO2m;b.((n),t ) 

(acOm~((n), ) bcOmi((n)'t)) 
(31) -1- Y~.  /O ' ,k  -I- - -  
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(Helbing, 1992, 1992a). Note that the corrected mean value equations 
explicitly depend on the covariances a~ o, i.e. on the fluctuations due 
to the stochasticity of the processes described• They cannot be solved 
without solving the covariance equations. A comparison of (30) with 
(21) shows that the approximate mean value equations only agree 
with the corrected ones in the limit of negligible covariances cr~ b 
(cf. also (22)). However, the calculation of the covariances is always 
to be recommended since they are a measure of the reliability (or 
representativity) of the mean value equations. If the covariances 
become large in the sense of Equation (33), this may indicate a 
phase transition. 

4.1.5. Computational Results 
A comparison of exact, approximate and corrected mean value and 
variance equations is given in Figures 3-5a. These show computa- 
tional results corresponding to the example of Section 3.3 (cf. Figure 
2). Exact mean values (hi) and variances all are represented by solid 
lines, whereas approximate results according to (21), (28) are repre- 
sented by dotted lines, and corrected results according to (30), (31) 
by broken lines. 

For n/> 0 the Approximate Mean Value Equations (21) become 
useless since the variances are growing due to the phase transition. 
As expected, the corrected mean value equations yield better results 
than the approximate mean value equations and they are valid for 
a longer time interval. A criterion for the validity of the Approx- 
imate Equations (21), (28) and the Corrected Equations (30), (31) 
respectively are the relative central moments 

C ~ ( t )  - C.~'~m(t~ 
~1 ""~ro, \ v ]  

• . . .  ( n : ; /  

Whereas the Approximate Equations (21), (28) already fail, if 

(32) ]C~(t)] ~< 0.04 

is violated for m = 2 (compare to (29), (22)), the Corrected Equa- 
tions (30), (31) presuppose Condition (32) only for 3 ~< m ~< l with 
a certain, well-defined value I (cf. Helbing, 1992, 1992a for details). 
However, even the Corrected Equations (30), (31) become useless 
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Fig. 3. Exact (--), approximate ( . . . )  and corrected ( - - )  mean values (upper 
curves) and variances (lower curves) for a small configurational distribution 
P(n,  t): The simulation results for the approximate equations are acceptable, 
those for the corrected equations very well. 
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Fig. 4. As Figure 3, but for a broad configurational distribution: The corrected 
equations still yield useful results, whereas the approximate equations already fail 
since the variances are not negligible. 



STOCHASTIC GAME THEORY 169 

1 .00 ,  

Z 

A 

V 

Z 

0°75 

0 .50 ,  

0 , 25 ,  

0.00 
0.00 

~r = 0 .2  

. . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . i  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2.50 5.00 7,50 10.00 

Fig. 5a. As Figure 3, but for a multimodal configurational distribution: not only 
the approximate but also the corrected equations fail after a certain time interval. 
However, whereas the approximate mean value and variance become unreliable 
already for t > 1, the corrected mean value and variance remain valid as long as 
t~<3. 
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Fig. 5b. The relative central moments Cm(t) are a criterion for the validity of the 
approximate respectively the corrected mean value and covariance equations: If 
[C2(t) I(--) exceeds the value 0.04, the approximate equations fail. The corrected 
equations fail if IC3(t)](- - )  or IC4(t)l(" ") exceed the value 0.04. This is the 
case if IC2(t)l becomes greater than 0.12 (indicating a phase transition). 
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if the probability distribution P(n,  t) becomes multimodal, i.e. if a 
phase transition occurs. This is the case if 

(33) [C2(t)[ = (n~)(n~) <~ 0.12 

is violated (cf. Figure 5). 

4.2, Equations for the Most Probable Strategy Distribution 

After the transformation of Master Equation (2) into a Fokker-Planck 
equation by a second-order Taylor approximation, it can be refor- 
mulated in terms of a Langevin equation (1908) (cf. Weidlich and 
Haag, 1983; Helbing, 1992). This reads 

(34) dn~(t) ~%__ >> lm~(n,t)  +fluctuations 

and describes the temporal development of the socioconfiguration 
n(t) as it depends on process immanent fluctuations (that are deter- 

ab mined by the diffusion coefficients mij ). As a consequence, 

(35) 

are the equations governing the temporal development of the most 
probable occupation numbers ¢~ (t). Equations (35) look exactly like 
Approximate Mean Value Equations (21). Therefore, i f . ~  >> 1, the 
approximate mean value equations have an interpretation even for 
large variances since they also describe the most probable strategy 
distribution. 

5. THE GAME DYNAMICAL EQUATIONS 

5.1. 'Macroscopic' Derivation 

Before we will connect the stochastic behavioral model to the game 
dynamical equations, we will discuss their derivation from a collec- 
tive level of behavior. Let Ea(i, t) := /~a(i, (n); t) be the expected 
success of strategy i for an individual of subpopulation a and 

(36) Ea(t) := ~ Ea(i,t)P~(t) 
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the mean expected success. If the relative increase 

dP~/dt 
P?(t) 

of the proportion P?(t) is assumed to be proportional to the differ- 
ence [Ea(i, t) - E~(t)] between the expected and the mean expected 
success, one obtains the game dynamical equations 

(37) d p?(t) = u~Pa(t)[E~(i,t) - E~(t)]. 

According to these equations, the proportions of strategies with an 
expected success that exceeds the average Ea (t) are growing, where- 
as the proportions of the remaining strategies are falling. For the 
expected success Ea(i, t) one often takes the form 

(38) t~a(i; t  ) :-~- ~ A ~ b ( i , j ) P ~ ( t )  
b j 

where the quantities A~b(i, j) have the meaning of payoffs which are 
exogeneously determined. Consequently, the matrices 

Aab := (Aab(i,j)) 

are called payoff matrices. Inserting (36) and (38) into (37), one 
obtains the explicit form 

(39) 

d P?(t) uaP~(t) [~b,j Aab(i,J)P~(t)-- 

- ~i' Eb,i 5?(t)Aab(i"J)P~(t)] 

of the game dynamical equations. Equations of this kind are very 
useful for the investigation and understanding of the competition or 
cooperation of individuals (cf. e.g. Hofbauer and Sigmund, 1988; 
Schuster et al., 1981). Due to their nonlinearity they may have a 
complex dynamical solution, e.g. an oscillatory one (Hofbauer et al., 
1980; Hofbauer and Sigmund, 1988) or even a chaotic one (Schnabl 
et al., 1991). 
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A slightly generalized form of (37), 

(40a) d p ~ ( t )  = ~[~ba(ili,;t)p?:~,(t ) _ Fv,(i,li;t)p~(t) ] + 
i f 

(40b) +uaP?(t)[Ea(i, t) - Ea(t)], 

is also known as the selection mutation equation (Hofbauer and 
Sigmund, 1988): (40b) can be understood as an effect of a selection 
(if E~(i, t) is interpreted as fitness of strategy i), and (40a) can be 
understood as an effect of mutations. Equation (40) is a powerful tool 
in evolutionary biology (cf. Eigen, 1971; Fisher, 1930; Eigen and 
Schuster, 1979; Hofbauer and Sigmund, 1988; Feistel and Ebeling, 
1989). In game theory, the mutation term could be used for the 
description of trial and error behavior or accidental variations of 
the strategy. 

5.2. Derivation from the Stochastic Behavioral Model 

In this section we look for a connection between the stochastic behav- 
ioral model of Section 3 and the game dynamical equations. For this 
purpose we compare the approximate mean value equations of this 
stochastic behavioral model, i.e. the Boltzmann-Like Equations (23), 
(25) with the Game Dynamical Equations (40). Both equations will 
be identical only if 

lJabfab = l]a~ab. 

This condition corresponds to (12) if 

Ua = t~ aa. 

The insertion of Assumptions (10)-(12) into the Boltzmann-Like 
Equations (23), (25) gives the Game Dynamical Equations (40) as a 
result. We have only to introduce the identities 

Aab(i, j )  := r,bEab(i, j ) ,  

Ea(i,~) := ]~a(i, ( n ) ; ~ ) :  Z Z r a b E a b ( i , j ) p b ( ~ ) ,  
b j 

and to apply the relation 

max(Ea( i , t )  - Ea(j , t ) ,O) - max(Ea(j, t) - Ea(i, t) ,O) 

-=- E a ( i , ~ ) -  Ea(j,~). 
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The game dynamical equations (including their properties and gener- 
alizations) are more explicitly discussed elsewhere (Helbing, 1992). 
An interesting application to a case with two subpopulations can be 
found in the book by Hofbauer and Sigmund (1988: pp. 137-146). 
In the following, we will again examine the example of Section 3.3, 
where we have one subpopulation and two equivalent strategies. The 
Game Dynamical Equations (40) corresponding to (13) and (14) then 
have the explicit form 

(41) d P i ( t ) = - 2 ( P i ( t ) - 2 ) [ W + u C P i ( t ) ( P i ( t ) - l ) ] .  

According to (41), Pi = 1/2 is a stationary solution. This solution 
is stable for 

4W 
~ c = l - - - < 0 ,  

~'C 

i.e. if spontaneous strategy changes are dominant and, therefore, 
prevent a self-organization process. 

At the criticalpoint ~ = 0 symmetry breaking appears: For ~ > 0 
the stationary solution P~: = 1//2 is unstable and the Game Dynamical 
Equations (41) can be rewritten in the form 

dp~(t)  = - 2 ( P ~ ( t ) - l ) ( p ~ ( t )  1 2 v ~  ) 

1 
(42) x (Pi(t) - - - ~ )  . 

This means that, for ~c > 0, we have two additional stationary solu- 
tions, Pi = (1 + v/-~)//2 and Pi = (1 - x/~)//2, which are stable. 
Depending on initial fluctuations, one strategy will win a majority 
of 100. ~ percent. This majority is greater the smaller the rate W 
of spontaneous strategy changes is. 

6. MODIFIED G A M E  D Y N A M I C A L  EQUATIONS 

At first glance the pleat of P ( / ~ I ,  N - h i ;  t) at •1 = N/2  = n2  in 
the illustrations of Figure 2 appears somewhat surprising. A mathe- 
matical analysis shows that this is a consequence of the pleat of the 
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P ( n l ' H - n l ; t ) ~  ; P(nl' \ 

£ = 0.2 £ ~ n 1 
Fig. 6. Probability distribution P(n, t) = P(nl ,  N - nl; t)  of the socioconfig- 
uration n according to the modified stochastic game dynamical equations. The 
results are similar to those in Figure 2. For n < 0 both strategies are used by about 
one half of the individuals, for n > 0 very probably one of the staategies will be 
preferred after some time. Again, for n = 0 a phase transition occurs. 

func t ion  Ra(jli; t) -- max( /~a( j ,  t) - Ea(i, t),  0). It can be avoided 
by us ing  the modi f ied  approach  

1 exp[Ea( j ,  t) - / ) a ( i ,  t)] (43) Ra(jli;t) :=  ~ 

(43) also leads to a phase  transit ion for n = 0 (cf. Figure  6) and 
very similar  results  for the approximate  mean  value equat ions  since 
the g a m e  dynamica l  equat ions  result  as Taylor approximat ion  of  
those.  Accord ing  to (43), imitat ive strategy changes  f rom i to j 
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will again occur more frequent the greater is the expected increase 
AjiEa = Ea(j, t) - Ea(i, t) of success. 

Approach (43) originally stems from physics, where the expo- 
nential function for the transition probability is due to the need to 
obtain the Boltzmann distribution (1964) as stationary distribution. 
Its application to behavioral changes was suggested by Weidlich 
(1971, 1972) in connection with a Ising-like (1925) opinion for- 
mation model. Meanwhile, related models were also proposed for 
economic systems (Haag et al., 1993; Weidlich and Braun, 1992; 
Durlauf, 1989, 1991). In contrast to this, Orl6an (1992, 1993) and 
Orl6an and Robin (1992) prefer a transition probability which has 
the form of a polynomial of degree two and is based on a Bayesian 
rationale. 

The advantage of (43) is that it guarantees the non-negativity 
of / )a( j [ / ;  t). Moreover, the exponential approach factorizes into a 
pull term exp[/)~(j, t)] and apush term exp[-/~,~(i, t)]. For strategy 
changes it is not the absolute success/), (j, t) of an available strategy 
j that is relevant, but that the relative success [/~a(j, t) - /~a( i ,  t)] 
with respect to the pursued strategy i. 

Furthermore, Approach (43) can be related to a decision theoreti- 
cal model for choice under risk. For this let us assume that the utility 
of a strategy change from i to j is given by a known part 

U~(jli;t) := [J~a(j,t) - /~a(i, t)] 

and an unknown part ej (i.e. an error term) which comes from 
the uncertainty about the exact value of [/)a(j, t) - / )~ ( i ,  t)] (since 

b is subject to fluctuations). If the individual choice Ea(i, t) ,  like nj, 
behavior is the result of a maximization process (i.e. if an individual 
chooses the alternative j for which U~(jli; t) + ej > U~(i'[i; t) + c~, 
holds in comparison with all other available alternatives i') and if 
the error terms are identically and independently Weibull distribut- 
ed, the choice probabilities p~(jli;t) are given by the well-known 
multinomial logit model (Domencich and McFadden, 1975). This 
reads 

p~(jli;t  ) = exp[ / )a ( j , t ) - / )~ ( i , t ) ]  
E~,exp[E~( i ' , t ) -  [~a(i,t)]" 

(For a more detailed discussion cf. Helbing, 1992.) 
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Approach (43) can also be derived by entropy maximization (Hel- 
bing, 1992) or from the law of relative effect in combination with 
Fechner's law ofpsychophysics (Luce, 1959; Helbing, 1992). 

7. SUMMARY AND OUTLOOK 

A quite general model for changes of behavioral strategies has 
been developed which takes into account spontaneous changes and 
changes due to pair interactions. Three kinds of pair interactions can 
be distinguished: imitative, avoidance, and comprising processes. 
The game dynamical equations result for a special case of imita- 
tive processes. They can be interpreted as equations for the most 
probable strategy distribution or as approximate mean value equa- 
tions of a stochastic version of evolutionary game theory. In order 
to calculate correction terms for the game dynamical equations as 
well as to determine the reliability or the time period of validity of 
game dynamical descriptions, one has to evaluate the corresponding 
covariance equations. Therefore, covariance equations have been 
derived for a very general class of master equations. 

The model can be extended in a way that takes into account the 
expectations about the future temporal evolution of the expected 
successes Ea( i, t) (the 'shadow of the future'). For this purpose, in 
(40) Ea(i, ~) must be replaced by a quantity E~(i, t) which repre- 
sents the expectations about the future success of strategy i on the 
basis of its success Ea(i, ~1) at past times t I ~< t. Different ways 
of mathematically specifying the future expectations E2(i, ~) were 
discussed by Topol (1991), Glance and Huberman (1992) as well as 
Helbing (1992). 
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