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D E O N T I C  L O G I C  W I T H O U T  D E O N T I C  O P E R A T O R S  

A~SaW, hCT. The usual axioms and inference rules of deontic logic employ as a new 
primitive term an operator for 'obligatory' or for 'permitted'. These axioms and infer- 
ence rules are here derived from a language which instead of the operator contains a 
predicate 'admissible' defined on the set of state descriptions of an assertoric language. 
This approach eliminates the problem of constructing a deontic formalism of its own. 
The predicate version requires fewer and weaker decisions and is closer to intuitive 
notions than the operator version. The solutions of some open problems of deontic 
logic flow automatically from the well-known rules of the assertoric predicate calculus. 
Special attention is given to the relations between deontic and assertoric statements. 

The proposed formulation of deontic logic suggests a natural generalization by 
proceeding from two to any number of degrees of admissibility. When there is a con- 
tinuum of degrees of desirability, deontic logic becomes identical with the calculus of 
utilities. 

1. THE OPERATOR FORMULATION OF DEONTIC LOGIC 

The opera tor  formula t ion  o f  deontic logic may  be exemplified by yon  

Wright ' s  (1968, p. 17) axiom system. A n  operator  'w is applied to a tomic 

or  molecular  assertoric sentences 'p ' .  The result 'w is an a tomic deontic 

sentence read 'p is permit ted ' .  A tomic  deontic sentences can be negated 

and combined by the connectives o f  the proposi t ional  calculus to fo rm 

molecular  pure deontie sentences. Later  on von Wright  (1968, pp. 82f) 

also admits  mixed sentences, i.e. compounds  o f  pure deontic and pure 

assertoric sentences formed by the connectives o f  the proposi t ional  calculus. 

The deontic opera tor  is subject to the following axioms:  

(1) w 1 6 7 1 6 7  

(2) w v w  

Often another  deontic opera tor  is in t roduced by the fol lowing definition: 

(3) ! p =  - w  

' !p '  is read 'p is obl igatory ' .  Apply ing  the t ransformat ion rules o f  the 
proposi t ional  calculus, (2) can be written in the more  familiar fo rm 

(4) !p~w 
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' t - p '  says ' - p  is obligatory', i.e. 'p is forbidden'. 
Inference rules may be stated for systems of pure deontic sentences 

(von Wright 1968, p. 17) and for mixed systems (von Wright 1968, 
pp. 82f; Bergstr~m 1962, pp. 37f). On the other hand, Rescher (1966, 
p. 100) leaves open the problem of inference rules for mixed systems. 

Some of the problems arising in connection with the operator formula- 
tion of deontic logic are: 

(1) What is the contradictory of ' lp'? (BergstrSm, 1962, pp. 22ff; Ross, 
1968, pp. 169f). 

(2) Should obligation and permission be interdefinable according to 
(3)? (Von Wright, 1968, p. 17 n. 1; Frey, 1965, pp. 380ff). 

(3) Should '!p' imply ' t (pv  q)'? (Von Wright, 1968, pp. 20if; Ross, 
1968, pp. 160f). 

(4) What should the inference rules for sentence systems containing 
deontic expressions be like? (BergstrSm, 1962, pp. 37-51 ; Rescher, 1966, 
pp. 99f; yon Wright, 1968, pp. 17, 82f; Weinberger, 1970, pp. 217-221.) 
It is just the most recent of these studies that clearly shows a great deal 
of uncertainty concerning deontic inference. 

The predicate version of deontic logic will furnish a solution to each 
of these problems. 

2. O P E R A T O R - F R E E  D E O N T I C  L O G I C  

2.1. State  Descriptions 

Let us think of a language system containing n atomic assertoric sentences 

Pl,  P2, . . . ,  pn. 
We define: 

A state description is a conjunction of the n atomic sen- 
tences each of which may or may not be preceded by a 
negation. 

Thus a state description is a strongest consistent statement. It conveys 
information about the truth values of all the atomic sentences of the 
language system. There are 2" possible state descriptions. 

Any statement is logically equivalent to a disjunction of state descrip- 
tions (which is nothing but its full disjunctive normal form). An analytic 
statement is equivalent to the disjunction of all 2" state descriptions. A 
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contradiction is equivalent to the empty disjunction containing no state 
description at all. 

We define: 

The range ofp is the set of state descriptions whose disjunction 
is equivalent to p. 
The content ofp  is the complement of its range, i.e. the set of 
state descriptions with which p is incompatible. 

The content o fp  is identical with the range of - p .  The range of an ana- 
lytical statement is the universal set, its content the empty set. The range 
of a contradiction is the empty set, its content the universal set. 

Let us introduce an individual variable s whose values are state descrip- 
tions, and predicates P, Q,... defined on the set S of state descriptions 
where Ps says that s is in the range o fp  (P, Q,... being the capital letters 
corresponding to p, q .. . .  ). 

The concept of state description is defined analogously for the predicate 
calculus. If  the language system contains m primitive predicates and 
n individuals, a state description is a conjunction of mn sentences each 
of which assigns one of the predicates or its negation to one of the 
individuals. The number of possible state descriptions is 2"". The defi- 
nitions of range and content are the same as above. 

2.2. Assertoric Statements in Terms of  State Descriptions 

The set S of state descriptions consists of consistent statements only. 
Those analytic statements which are meaning postulates (definitions of 
extra-logical terms) exclude certain state descriptions from S as incon- 
sistent. E.g., the definition of 'bachelor' excludes those state descriptions 
by which some individual is said to be a bachelor and married or female. 

A synthetic statement p says that the true state description is in P, 
the range of p, so the state descriptions in - P  are said not to be true. 
I f  p is the premiss of an assertoric inference (when there are several 
premisses, 'the' premiss is their conjunction), then going from the premiss 
to the conclusion is equivalent to replacing S by P. The conclusion then 
is analytically valid within P, i.e., in P there is no state description that 
lies outside the range of the conclusion statement. Because we are 
interested in synthetic assertoric statements in so far as they are premisses 
in (mixed) inferences, we may adopt the convention that a synthetic 
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statement excludes certain state descriptions from S as empirically false, 
just as an analytic statement, as far as it is a meaning postulate, excludes 
certain state descriptions from S as inconsistent. So we have for all 

assertoric statements: 

(5) p -  (s) Ps 

When p is analytic in the narrower sense (e.g. if it is q v - q), (5) is also 
valid: it then expresses a property that the members of S possess in any 
case, instead of being a condition that excludes certain s's. 

The connectives of  the propositional calculus translate into state de- 
scriptions language as follows: 

(6) -p - ( s ) - e s  
(7) p & q-(s) (es & Qs) 

In general, i f  f (p, q, ...) is a molecular expression of the propositional 
calculus made up of  the atomic sentences p, q .... , then 

(8) f (p ,  q, . . . ) - (s) f (es ,  as,...) 

2.3. The Deontie Predicate 'Admissible" 

Now we construct a deontie logic by introducing the predicate A defined 
on S where 'As' says that s is admissible, or permitted (not, of course, 
in the sense of the formation rules of the assertoric language, but in the 
sense of  some evaluation to be expressed by the deontic language). A may 
be true of  any number of state descriptions; it may be true of all of  them 
(that would mean that everything is permitted). But a reasonable deontic 
system should not forbid everything; so we may accept as an axiom: 

(9) (Es) As 

i.e., at least one state is permitted. But note that a deontic system in which 
(9) is not true, i.e. in which everything is forbidden, would not be formally 
inconsistent in terms of the rules of the predicate calculus. 

Now we define the deontic operators in terms of A: 

(10) tp-(s) (As=Ps) 

(11) w (As &Ps) 

In words: 'p is obligatory' means that all admissible state descriptions are 



D E O N T I C  L O G I C  W I T H O U T  D E O N T I C  O P E R A T O R S  71 

within the range of p, or: there is no admissible state description outside 
the range ofp.  'p is permitted' means that there is at least one admissible 
state description within the range of p. 

As for the latter definition, one might ask whether it should not rather 
read: all state descriptions within the range o fp  are admissible. But this 
would mean that whenever p is realized, an admissible state is realized, 
no matter which further statements are true; and this would not corre- 
spond to the natural language meaning of 'p is permitted' which is: it is 
permitted to realize p, but if we at the same time realize q, this may not 
be permitted. E.g., it is permitted to smoke cigarettes, but it is not 
permitted to smoke cigarettes in a gasoline station. 

On this basis we can prove axiom (3) which defines one deontie operator 
in terms of  the other: Substituting (10) and (11) in (3) we get: 

(s) (As=es)= (As 8, 

Transforming the right side of the equivalence, we get: 

(s) ( A s = ~ ) - =  ( s ) -  (as  & - e s )  

(s) (As=Ps) - ( s )  (As=Ps), a tautology. 

This transformation works in reverse order as well. 
So problem 2 (Section 1) is settled for our deontic system. Of course 

one may debate the adequacy of axiom (3). Those who do not accept it 
usually argue that many things are neither explicitly allowed nor forbidden 
by the law or some moral system. But from (3) we get by substituting 
- q  fo rp :  

(12) l - q -  - w  

whence it follows that if q is not permitted, it is forbidden. If  we under- 
stand 'not permitted' as 'not explicitly permitted', then this consequence 
of (12) (and (3)) is at variance with practice: the law does not have to 
permit things explicitly, but it is understood that anything that is not 
forbidden is permitted. 

In this system of deontic logic we do not distinguish between explicit 
and implicit permission and prohibition; we stipulate that the predicate A 
is defined on the set S of state descriptions, i.e. that somehow for each 
state description there exists an evaluation as to whether it is admissible 
or not. 



72 H E R M A N N  V E T T E R 

Frey (1965, pp. 380ff) has proposed an intuitionistic calculus for charac- 
terizing a 'concessional system' where everything that is not forbidden is 
permitted, and an 'interdictional system' where everything that is not 
explicitly permitted is forbidden. In my opinion it is not necessary to 
resort to an intuitionistic formalism. The concessional system could 
simply be characterized by interpreting'! - p '  as 'p is (explicitly) forbidden', 
and 'w as 'p is permitted', and accepting (3); the interdictional system 
could be characterized by likewise accepting (3), interpreting 'w as 'p is 
explicitly permitted', and '! - p '  as 'p is forbidden'. One might also think of 
a system in which p can be explicitly forbidden, explicitly permitted, or 
neither (where the pragmatic meaning of the last possibility ought to be 
clarified). This system could be formalized in a non-intuitionistic predicate 
version of deontic logic by using, instead of the predicate A, a three- 
membered predicate family. 

Problem 1 (Section 1) is settled thus: - ! p  is the contradictory of !p; 
! - p  is a contrary of !p. This can be easily verified by using (10). 

2.4. Derivation of the Axioms of the Operator Version of Deontic Logic 

Applying (11) to (1) we get: 

(Es) (As & (Ps v Qs)) =- (Es) (As & Ps) v (Es) (As & Qs) 

Transforming the left side of the equivalence, we get: 

(Es) ((As &Ps) v (As & Qs)) = (Es) (As &Ps) v (es) (As & Qs) 
(Es) (As & Ps) v (Es) (As & Qs) =- (Es) (As & Ps) v 
v (Es) (As & Qs), a tautology. 

This transformation works in reverse order as well. 
So by applying the definition of the permission-operator in terms of 

the deontic predicate to the axiom (1) of the operator language and 
transforming according to the rules of the predicate calculus, the axiom 
is seen to be equivalent to a tautology. So it is seen that axiom (1) does 
not express anything specifically deontic about the operator 'w 

Applying (11) to axiom (2) we get: 

(Es) (As Ps) v (as -es)  
or equivalently 

(as) ((As a Ps) v (As a -Ps) )  
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or equivalently 

As 

So axiom (2) of the operator version is equivalent to axiom (9) of the 
predicate version which characterizes a reasonable system of evaluations 
which does not forbid everything. 

2.5. "The Burnt Letter Paradox" 

It is easily seen that 

(13) !p=!(pvq) 

is analytic when translated by means of (10) into the predicate language: 

(14) (s) (As=Ps)=(s) (As=(Psv Qs)). 

So from !p we can infer !(p v q) by modus ponens. 
When we interpret 'p' as 'x mails the letter' and 'q' as 'x burns the 

letter', then the uneasy situation arises that the command to mail a letter 
implies the command to mail or burn it. In contradistinction to yon 
Wright (1968, pp. 20if) and Ross (1968, pp. 160f), I wish to argue that 
this situation is only apparently uneasy, let alone paradoxical. 

In assertoric logic we have the undisputed inference from p to p v q. 
But p v q cannot replace p in any context; it is true whenever p is true, 
but it may be true when p is false. So from 'x=64 '  follows ' x=some  
positive integer', but a teacher would not be very pleased with the latter 
answer to his question 'what is 267'; and he would have every right 
to reject ' x=12 '  though it is a truth instance of ' x=some  positive 
integer'. 

The deontic case runs quite parallel. When John burns the letter, he 
can claim to have fulfilled some command following from the original 
command, but not the original command itself: p v q is true because q, 
which is incompatible with p, is true. One should not be upset by the fact 
that violating a command may fulfill some command that follows from 
it, just as one is not upset by the fact that a statement that is incompatible 
with some hypothesis may imply some consequence of the hypothesis. 
So the paradox, which is not a specific paradox of deontic logic in any 
case, is completely dispelled. 

In some situations there is a strong pragmatic expectation that one be 
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given the strongest true statement, not some (weaker) consequence of it 
(though it is also true). E.g., when someone asks 'which is the speed 
regulation in towns in this country?', he would feel deceived by the 
answer 'one must not go faster than 80 km/h' though it is a (true) conse- 
quence of the appropriate 'one must not go faster than 50 km/h'. 

2.6. Mixed Sentences Eliminated 

Let us consider a simple example of a mixed sentence: 

(15) p ~ !q 

e.g. 'when it rains, take an umbrella!'. Ross (1968, pp. 167f) argues that 
this is a meaningless formula, and that the intended meaning is expressed 
by 

(16) l (p=q)  

I feel the same way. (15) would say: 'when p is true, then it arises that q 
is obligatory'. But I do not see why the obligation should arise only after 
some state of affairs comes to be real. We can specify which states of 
affairs are admissible before we know which one will be the case. The 
predicate A is defined on the set of all possible state descriptions in 
advance. So (16) seems appropriate: p & - q  is inadmissible, and all the 
other state descriptions are admissible. 

The function of pure deontic sentences is to tell something about which 
state descriptions have the property A. The function of pure assertorie 
sentences is completely different and independent of the former: Synthetic 
assertoric statements tell something about which state descriptions are 
empirically false; analytic statements either are compatible with all state 
descriptions, or they are meaning postulates and then tell which state 
descriptions are contradictory. Let us therefore propose the following 
formation rule for deontic language systems: 

Only pure deontic and pure assertoric sentences are well- 
formed expressions, with an exception to be mentioned pres- 
ently. 

The exception concerns inferences from sets of premisses containing both 
pure assertoric and pure deontic sentences. In assertoric logic a set of 
premisses is understood as the conjunction of the premisses. Inference 
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rules are based upon this fact. The same thing should be laid down for 
mixed sets of premisses, for otherwise we could not automatically apply 
the inference rules of the predicate calculus. So we stipulate the following 
amendment to the formation rule: 

Conjunctions of pure deontic and pure assertoric sentences 
are well-formed expressions. 

2.7. Mixed Inference 
Rescher (1966, pp. 99f) had not been able to specify a general rule for 
inference from sets of premisses containing both deontic and assertoric 
sentences. His preliminary rule for mixed command inference (1966, p. 99) 
was invalidated by the following counterexample, which I here cite in 
slightly altered form: 

(17) ~p 

(18) p~q 
(19) !q 

John, work! 

John in fact drinks alcohol when he works 

John, drink alcohol! 

This inference is valid in our system, too: 

(17') (s) (As=Ps) 
(18') (s) (Ps= Qs) 
(19') (s) (As= as) 

Why do we not like the consequence !q? It might be because we evaluate 
drinking during work negatively, or because we do not want that anybody 
should be commanded to drink alcohol. These evaluations, however, are 
not expressed in any of the premisses, so that we cannot expect them to 
be taken account of in the conclusion. In so far the example would not 
speak against the inference schema. 

But even apart from the special content of q we might feel that our 
intention is to command p, and that it is illegitimate to infer from this 
some quite different command, !q. Here we should view the consequence 
!q not in isolation, but as contingent upon the premisses. !q is not the 
original evaluation of all logically possible states of affairs, but what 
remains of it when the range of possibilities is restricted by some synthetic 
premiss. The consequence !q is to be understood thus: given thatp & - q  
does not exist, all admissible states of affairs (happen to) fulfill 'q'. !q is 
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not a consequence of !p, but of !p and p = q; it is not to be mistaken for 
the comprehensive evaluation of all logically possible states of affairs. 
The contingence of the conclusion upon the premisses is especially im- 
portant when the synthetic premiss is not a consequence of laws of nature 
plus initial conditions that we cannot change (e.g., past conditions), so 
that it is physically possible for us to make the premiss false. This is the 
case for John's habit to drink while working; we may presume it can be 
changed, so that the consequence !q is valid only in case pDq happens 
not to be changed. 

A parallel example is easily constructed in assertoric logic. From 'When 
the weather is bad, I do not climb on mountains' and 'During all the 
holidays in my life the weather is bad' follows 'During all the holidays in 
my life I do not climb on mountains'. This consequence, taken in isolation, 
would draw a distorted picture of my policy of spending holidays; but 
nobody would charge the assertoric inference schema for it. 

Perhaps the most satisfactory analysis of the counterexample can be 
given on the basis of a generalization of deontic logic in the next section. 

There is another interpretation of the inference (17)-(19) which yields 
the 'Good Samaritan paradox' (Rescher, 1966, p. 100 n. 6): 

Victims of assaults should be helped 

Helping victims of assaults presupposes (implies) the existence 
of victims of assaults 

There should exist victims of assaults (i.e., victims of assaults 
should be brought about) 

Of course one could reformulate the Samaritan command (17) as 

(20) ! (q =p) 

i.e. when there is a victim of an assault, it should be helped, 

the predicate version of which is 

(20') (s) (As= (Qs=Ps)) 

It is easily verified that (20') together with (18') does not yield the con- 
clusion (19'). But this would not be a solution of the paradox, which 
consists in a counterexample to the inference schema (17')-(19'). We shall 
be able to solve the paradox in the next section. 

The point with mixed inference is that it is not necessary to devise any 
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special rules for it at all in our system: everything is settled automatically 
by the inference rules of the predicate calculus. 

3. G E N E R A L I Z A T I O N  OF D E O N T I C  L O G I C  TO ANY N U M B E R  OF 

D E G R E E S  OF A D M I S S I B I L I T Y ;  THE C A L C U L U S  OF U T I L I T I E S  

Ross (1968, p. 167 n. 2) discusses the following inference: 

Everyone... shall undergo a certain vaccination 

Everyone who has undergone the vaccination shall undergo 
a test 

Everyone shall undergo the test 

In symbols: 

(21) !p (21') (s) (As=Ps) 
(22) l (p = q) (22') (s) (As = (Ps = Qs)) 
(23) !q (23') (s) (As = Qs) 

The inference (21')-(23') is correct according to the rules of the predicate 
calculus. But Ross' example throws doubt upon the validity of the deontic 
inference. He comments (1968, p. 167 n. 2): "Let us assume that the 
demand for a vaccination is a relative(ly) unimportant regulation sanc- 
tioned only by an insignificant fine; but that the demand for a subsequent 
test is of high importance.., and therefore sanctioned by penalty of 
imprisonment. It would then be a serious injustice to sentence a person 
to imprisonment because he had neglected his obligation to undergo the 
vaccination." 

Ross clearly refers to different degrees of undesirability of states of 
affairs. Consequently, I should say, deontic logic cannot deal adequately 
with this situation when it distinguishes only two degrees: admissibility (A) 
and inadmissibility (-A). In this case we can only say" taking the vaccina- 
tion and the test is admissible, and all other states are inadmissible; but 
we cannot express that taking the vaccination and not taking the test is 
much worse than not taking the vaccination. 

The natural solution to this problem is to use, instead of the predicate A, 
an ordered family of predicates each of which expresses a level of admissi- 
bility/inadmissibility. Equivalently we can assign integers to the state 
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descriptions which are the rank numbers of  the levels of admissibility/ 
inadmissibility. And why should we limit ourselves to integers? We can 
assign real numbers to the state descriptions expressing their degree of  
desirability, or utility. So deontic logic would find its natural generalization 
in the calculus of  utilities. 

Now we can easily solve the Good Samaritan paradox: we simply say 
that the worst state is: an existing victim, and no helping; that a more 
desirable state is: an existing victim, and helping; but that it is still better 
if there exists no victim at all (and then, of course, no helping). 

In the alcohol example we shall say that the most preferable state is 
John's working and not drinking; as for the rest, we can say whether we 
prefer him to work and drink (e.g. when John is a writer) or rather not 
to work (e.g. when John is a bus driver). So when, according to (18), 
p & - q  does not exist, the consequence would be that either p & q or 
- p  is the most preferable among the remaining possibilities, and the 
other the least preferable. I.e., if  we are ready to accept John's drinking 
habit, we either tell him to work (and then, as accepted, to drink), or 
not to work. But we need not conceal from him our premiss which implies 
that the most preferable state would be his working and not drinking. 

University of  Mannheim 
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