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ABSTRACT. Multiple criteria decision problems with one decision maker have been 
recognized and discussed in the recent literature in optimization theory, operations 
research and management science. The corresponding concept with n-decision makers,  
namely multicriteria n-person games, has not yet been extensively explored. 

In this paper we first demonstrate that existing solution concepts for single criterion 
n-person games in both normal form and characteristic function form induce domination 
structures (similar to those defined and studied by Yu [39] for multicriteria single deci- 
sion maker problems) in various spaces, including the payoff space, the imputation space 
and the coalition space. This discussion provides an understanding of some underlying 
assumptions of the solution concepts and provides a basis for generalizing and generating 
new solution concepts not yet defined. Also we illustrate that domination structures 
may be regarded as a measure of power held by the players. 

We then illustrate that a multicriteria problem can naturally arise in decision situa- 
tions involving (partial) conflict among n-persons. Using our discussion of solution 
concepts for single criterion games as a basis, various approaches for resolving both 
normal form and characteristic function form multicriteria n-person games are proposed. 
For multicriteria games in characteristic function form, we define a multicriteria core 
and show that there exists a single 'game point' whose core is equal to the multicriteria 
core. If we reduce a multicriteria game to a single criterion game, domination structures 
which are more general than 'classical' ones must be considered, otherwise some crucial 
information in the game may be lost. Finally, we discuss a parametrization process which, 
for a given multicriteria game, associates a single criterion game to each point in a 
parametric space. This parametrization provides a basis for the discussion of solution 
concepts in multicriteria n-person games. 

1. INTRODUCTION 

Due to  the  fact  tha t  m a n y  d i f fe ren t  so lu t ion  concep t s  have been  and will 

p robab ly  be p roposed  for  n -person  coopera t ive  games wi th  a single cr i ter ion,  

a perplexing issue con t inues  to  intr igue researchers in game theory .  That  

issue is, for  a par t icular  n -person  game,  which  solut ion co n cep t  should  be 

used and why? A jus t i f ica t ion  o f  the  choice  o f  a par t icular  solut ion co n cep t  

usually relies on b o t h  ma themat i ca l  p roper t ies  o f  the  solut ion co n cep t  and 

the  in t e rp re t a t i on  o f  the  so lu t ion  concep t  as appl ied in a specific s i tuat ion.  

In this paper  we t ry  to  shed new light on the  p ro b l em o f  under s t and ing  

the  re la t ionships  among solut ion concep t s  by  examining  a c o m m o n  under-  

lying ma themat i ca l  p r o p e r t y  o f  the  concep t s ,  namely  domina t i on  s t ruc tures  

induced  by  the  concepts .  Fur the r ,  we describe h o w  the  domina t ion  s t ruc tures  
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are used to generate the solutions. These domination structures also indicate 

some natural generalizations of the solution concepts. A generalization of the 

core, such as the relaxed core, can be easily derived from the domination 

structure induced by the core. We also illustrate that domination structures 

which are more general than 'classical' structures can be used to indicate the 

power held by the players. The details of these ideas are presented in Section 2. 

It is commonly known that the scope of applications of n-person games 

has not met the expectations of many early researchers in the field. In this 
paper we suggest that the extension of single criterion n-person games to the 

multicriteria case provides a more realistic model and will perhaps permit 

more extensive applications. We illustrate that multicriteria game models can 

naturally and frequently arise in situations with n-decision makers. 

Based on the discussion of solution concepts for single criterion n-person 
games, we propose various solution approaches to multicriteria games in both 
normal form and characteristic function form. A new solution concept 

for multicriteria characteristic function form games, namely the multicriteria 

core, is defined. We prove that the multicriteria core is the same as the core 

of a particular game point. When a multicriteria game is reduced to a single 

criterion game point, it is shown that a more general domination structure 

than the classical one must be used for otherwise, some crucial information 

concerning the game situation may be lost. (See Section 3.2.2. i Various 

parametrization approaches which associate a single criterion game to each 

point in a parametric space are examined. Under certain conditions, the 

parametrized game point is a continuous function of the parameter vector. 
These ideas are presented in Section 3. 

To conclude the introduction, it is appropriate to discuss some related 

literature which may be of interest to the reader. Multicriteria problems 

with a single decision maker have been discussed in the recent literature (see 
[40] for a short bibliography), but a survey of recent literature reveals that 
multicriteria n-person games have rarely been discussed. The following are 
some related papers. 

In [4] Blackwell considers two-person, zero-sum matrix games with vector- 

valued random variable payoffs. His paper is directed toward establishing an 

analogous form of the minimax theorem, namely, that in an infinite sequence 
of plays, the 'center of gravity' of the payoff is in or 'close' to a given set S 
under certain conditions. The fact that the payoffs are vector-valued is equiv- 
alent to a multicriteria payoff. 
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Further work on two-person, zero-sum matrix games having random 

variables as entries in the payoff matrix can be found in [6, 7, l la ,  11b]. In 
our formulation when a characteristic function is derived from a parametrized 

normal form game, the two-person, zero-sum game matrices which arise in 

determining the value for the coalitions could be interpreted as matrices 

with random variable entries satisfying certain special conditions. (See Sec- 
tion 3.2.1 .) 

In [9a, 9b] Charnes and Granot study n-person games in stochastic charac- 
teristic function form, i.e., the values assigned to each coalition are random 

variables with given distributions. In some instances, the parametrized charac- 

teristic functions for multicriteria games in this paper can be viewed as 

stochastic characteristic functions satisfying special conditions. However, our 

solution approaches are entirely different from those given by Charnes and 
Granot. 

In [8, pp. 785-797],  Charnes and Cooper suggest that a multicriteria deci- 

sion problem may be approached by converting it to an n-person game where 

each criterion is associated with a different player. They give a traffic example 

to illustrate this idea. Charnes and Sorensen [33] discuss the resolution of an 

n-goal programming problem by associating each criterion function with a 

player in an n-person game. These ideas are implicitly used in our considera- 

tion of the multicriteria normal form full payoff space where one can view 

each criterion for each player as being associated with a separate player in an 
enlarged player set (see Section 3.1.1). 

2. S I N G L E  C R I T E R I O N  N - P E R S O N  GAMES 

In this section we shall discuss some well-known solution concepts that have 

been proposed for single criterion n-person games. We first discuss a single 

decision maker's problem with multiple criteria. Then the concepts of ordering 

(complete or partial), domination structures and nondominated solutions will 
be briefly discussed. 

For some well-known solution concepts for n-person games in both normal 
form and characteristic function form we discuss the underlying domination 
structures and related nondominated solutions. In order to avoid too much 
repetition we shall examine some representative solution concepts and leave 
the rest to the reader. 

We will also illustrate that domination structures which are more general 
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than 'classical' ones naturally occur and can be used to indicate the relative 

balance of  power among the players. 

2.1. Ordering, Domination Structures and Nondominated Solutions in Single 
Player Decision Problems 

In this section we introduce the concepts of  domination structures and non- 

dominated solutions (see [38], [39] and [40]) as they have been applied to 

problems with a single decision maker and multiple criteria. These problems 

are characterized by the following elements: 

(i) A set of  decisions, W. An element of  W is denoted by  w and W is called 

the decision space. 

(ii) A set of  criteria represented by a vector-valued function u = (ul ,  ..., u~) 

defined for each decision w E W. The set of  all possible outcomes is called the 

outcome or criteria space and is denoted by U = u(W) = {U(W) [w E IV} 1 . 

(iii) The decision maker 's  preference ordering (partial or complete)  on 

the criteria (outcome) space. Given u 1 and u 2 in U, we shall write u a ~ u 2 to 

denote that  u I is preferred to u 2 . 

A final decision should be some w ~ E W such that  no other feasible u I is 

preferred to u(w~ i.e., there is no u a E U\(u(w~ such that u l ~  - 

u(w~ 
Alternatively, with each point  u ~ E U, we can associate a set D(u ~ so that  

u E u  ~ + D ( u ~  {u ~ + d  [ d E D ( u ~  u ~ u  ~ if  and only if  u ~  u. 

Intuitively, we can think of  the preference u~ u as occurring because of  

a factor in D(u~ 
We shall assume that  D(u) is a convex c o n e )  This means that i f d  1 , d 2 E 

D(u) and X1, ?~2 > 0 ,  then ?~ld I + ?~2d 2 E D ( u ) .  For  convenience D(u) will 

be called the domination cone for u. Intuitively, D(u) has the proper ty  that  

given a 'bad '  factor d ED(u),  then any positive multiple of  d is also a 'bad '  

factor. Also, given two 'bad '  factors, d 1 and d 2 E D ( u ) ,  the sum d I + d 2 is 

again a 'bad '  factor. 
The family {D(u) I u E U), denoted simply by D(") ,  is called the domina- 

tion structure of our decision problem. 

Given a set U, a domination structure D ( . )  defined on U a n d  u 1, u 2 E U, 

we shall say that u 2 is dominated by u 1 if  and only i f u  2 Eu  ~ +D(u 1) and 

u 2 4~ u I . A point  u ~ E U is a nondominated solution (or nondominated 

outcome) i f  and only if  there is no u x E U  such that  u ~ 4:u ~ and u ~ Eu  1 + 
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D(u 1 ). Thus u ~ is nondominated if and only if it is not dominated by any 

other outcome in U. 
Similarly, in the decision space W, a point w ~ E If is a nondominated solu- 

tion (or nondorninated decision) if and only if there is no w 1 E If  such that 
u (w 1 ) r u (w ~ ) and u (w ~ ) E u (w 1) + D(u (w I )). The set of all nondominated 

solutions in the decision space and the criteria space will be denoted by 

N w (D(-)) and Nu(D( ' ) ) ,  respectively (or by Nw and N U, respectively, when 

the domination structure is clear from the context). 

It is clear that a 'good' final decision must be nondominated. In [39] and 

[40] it is shown that one may convert preference information into a domina- 

tion structure. It is also shown that each of the existing solution concepts 

(such as utility construction, satisficing solutions, Pareto optimality, efficiency 

and compromise schemes) for single decision maker (one-player) multicriteria 
problems in fact induces a special domination structure. The concepts of 

domination structures and nondominated solutions will play an important 

role in our subsequent discussion. 

2.2. A Classification of  Solution Concepts 

In Table I we give a brief classification of solution concepts ~ for single crite- 

rion n-person games according to (i) whether the solution concept is defined 

for a payoffin normal form or in characteristic function form and (ii) whether 

the solution concept usually yields a set (or sets) of many solution points or 

a unique solution point. Throughout Section 2 we will implicitly use Table I 

to provide a conceptual framework for the discussion. 

A large amount of literature concerning solution concepts is available. 

There are several game theory books which provide an introduction to many 
solution concepts. For instance, see [24], [25] and [27]. In the brackets 

following each solution concept in Table I we have indicated some additional 

references where that solution concept has been introduced and/or discussed. 

Clearly, we have not provided a complete listing of the available references. 

A further characteristic of the 'many point' solution concepts is the kind 
of stability implied by the concept. The core and stable sets are 'globally' 

stable while the bargaining sets and kernel have a stability which is more 
'local' in nature. See [23] for a further discussion of this aspect. 

Additionally, there are many categories of games which are outside the 
scope of this paper. These include games without side payments [3, 32], 
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games in partition function form [35], constrained games [14, 33], differen- 

tial games [5,20] and some new forms discussed in [26]. The interested reader 

may consult the cited references and extend the concepts in this paper to 

other classes o f  games. 

In the next sections we shall focus on some solution concepts in each 

category of  Table I and describe the underlying domination structures. We 

will develop our presentation so that it can easily be extended to multicriteria 

n-person games. 

TABLE I 

Solution concepts 

Concepts (usually) yielding 
a set or sets of many solu- 
tion points 

Concepts (usually) yielding 
a unique solution point 

Normal form 

Characteristic function 
form 

Pareto optimal set [40] 
Satisficing solutions [40] 

Core [12a, 23, 30, 34] 
(e-Core [12b, 21]) 
Stable sets [23, 28, 36] 
Bargaining sets [ 1] 
(Competitive bargaining 
sef~ [19]) 
Kernel [15, 21] 
~0-stable sets [24, 27] 
Core-stem solutions [ 13a, 
13b, 33] 
Subsolutions [28] 

Nash arbitration solution [18] 
Compromise solutions [16, 17, 
37] 

Shapley value [I0, 21, 31] 

Nucleolus [12b, 21, 22, 29] 
Convex nuclei [ 10, 12b] 
(~p-centers [34] ) 

2.3 Solution Concepts and Domination Structures for Games in Normal Form 

For games in normal form we assume that each player i, i = 1 ..... n, has a 

real-valued payoff  function pi which is defined over a joint decision space W. 

We assume that player i 's  preference is increasing with pi, i.e., the greater the 

value ofp i, the more preferred is the payof fp  i. 

In the simple matrix game, assuming cooperation among all the players, 

W would be set of  probability distributions (mixed strategies) on the cartesian 
product of  the pure strategy sets for the individual players. Then the payoff 
space, denoted byP ,  is given b y P  = p ( W )  = (p(w) I w E W}. Where p = (t71, 
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p2 ..... pn).4 To illustrate games in normal form, we give a numerical example 
of a three-person matrix game. 

EXAMPLE 2.3.1. Denoting player i's pure strategy set by Qi, let the pure 

strategy sets be QI = {al, a2}, Q2 = {31, 3:} and Q3 = {')'1, 72}. The 
payoff function for pure strategy choices is given by the following matrix. 

(1) 

3'1 3'2 

a131 I (5, 1,2) (1 ,1 ,2 )  1 al t32 (3, 1,4) (1, 1,3) 
a2 31 (2, 3, 5) (2, 3, 5) 
a232 (5,4, 1) (1, O, 5) 

The ith coordinate of each three-dimensional vector in this matrix indicates 
a payoff for player i. For instance, if player 1 uses a l ,  player 2 uses 32 and 
player 3 uses 72, then the payoff is 1 to player 1, 1 to player 2 and 3 to 
player 3. 

In this example W is the set of probability distributions over the eight 
element set II~= 1 Qi = {al/~13'1, oq H1 "Y2 ..... a2 32 72 }. Thus we can write W 
= {w E R s I w ~ 0, ~= 1  wi = 1}. The payoff for pure strategy choices is 
extended to an expected payoff function on W. Thus P = {~=1 wip l [w E W} 
where pl ..... pS represent the eight payoff vectors in the matrix (1). 

As illustrated in this example for matrix games, W is compact and convex 
and p is linear implying that P is also compact and convex. These desirable 
properties may not be present in more general settings. In [37] Yu gives a 
formulation for normal form games which is more general than the matrix 
game. In that fomulation a general decision space W and payoff function p 
are required. The payoff space, P, is not necessarily compact or convex and 
p is not necessarily continuous, 

We will now discuss the solution concepts. 

2.3.1. Concepts (usually) yielding a set of  sets of  many solution points. We 
shall discuss the Pareto optimal set and satisficing solutions in this section 
(see Table I). These solution concepts involve multiple dimensional comparisons. 

A payoff pO is Pareto optimal if and only if there is no pl E P such that 
pl :/: pO and pl => pO. Further, a (joint) decision w ~ is Pareto optimal if 
p(w ~ is a Pareto optimal payoff. 
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This concept induces the following natural domination structure whose 
nondominated solutions are the Pareto optimal points. For each p EP, let 
D(p) = A =< = {d E R n I d =< 0}. Then the set of nondominated payoffs, 

Np, is the set of Pareto optimal payoffs and N w = {w E W I p(w) ENp} is 
the set of Pareto optimal decisions. 

EXAMPLE 2.3.2. (Continuation of Example 2.3.1) Here P is the convex hull 
of pl ..... p8 which are the eight payoff vectors in the matrix (1). By con- 

sidering these eight vectors we determine that the set of nondominated 

extreme points of P, denoted by Nex, is given by Nex = {(5, 1, 2,), (2, 3, 5), 
(5, 4, 1)}. By Theorem 2.3. and Theorem 2.5 of [41] one can verify that the 

set of Pareto optimal payoffs is Np =~(Nex) (the convex hull of Nex). 

REMARK 2.3.2. Throughout this paper we will use the notation introduced 
above, namely A --< = {d E R n I d __< 0} and similarly A => = {d ~ R n I d __> 0}. 

In a satisficing model each player first establishes a satisfaction level, s 
which is a minimally acceptable payoff level for that player, s Given a vector 
of satisfaction levels, s E R n , a payoff pO is a satisficing solution if and only 

i fp  ~ _> ~. 
Using a satisfaction level vector ~ E R n, we can define a domination struc- 

ture on P for each player i as follows. For each p E P, let 

I {dERn  [di<=O, di=Oforf--/=i}, if pi<=12i. 
Di(p) = 

{0}, otherwise. 

Then the set of satisficing solutions is given by an intersection of sets of non- 

dominated payoffs, namely ~m=l Np (Di(')). 

EXAMPLE 2.3.4. To illustrate the concept of satisficing solutions, sup- 
pose the players in the game of Example 2.3.1 have established satisfaction 
levels given by s = (4, 3, 2). In this case satisficing solutions exist, for exam- 
ple, (14/3, 3, 2) = 1/3(3, 1, 4) + 2/3(5, 4, 1) is a satisficing solution. 

2.3.2. Concepts (usually) yielding a unique solution point. For the concepts 

considered in this section one defines a real-valued function over the payoff 
space so that the solution is a payoff which maximizes or minimizes this 
function. Thus, a one-dimensional comparison is employed here in contrast 
to the multiple-dimensional comparisons used in Section 2.3.1. Such a solu- 
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tion process is often called an arbitration scheme and usually yields a unique 

solution point. We will now discuss two solution concepts, the Nash arbitra- 

tion solution and compromise solutions, and their induced domination 
structures. 

To obtain the Nash arbitration solution we first locate a 'security level', pO, 
for each player i. An immediate approach which we follow to let pO be player 
i's maximin payoff, i.e., the maximum payoff he can obtain when all of the 
remaining players cooperate to minimize his payoff. For a different method 

of determining a security level, see [ 18] and [27]. 
To obtain existence and uniqueness of the Nash arbitration solution, we 

make the reasonable assumptions that P is compact and convex 6 and that 
there is some payoff p such that p > po. This last assumption implies that 
each player has an incentive to cooperate since there are payoffs where every 
player receives more than his security level. 

Given a security level vector, pO ~ p, let pO = {p E P [ p >__ pO }, Then the 

Nash arbitration solution is that payoff~ which solves 

n 
(2) maximize 11 (pi-p~ 

p~pO i = 1  

To define a domination structure on po yielding ~ as the unique non- 
dominated solution we first observe that (2) is equivalent to 

n n 
(3) maximizeln II (pi-p~ E l n (P i -p~  

p ~ p O  i = 1  i = 1  

Then for each p E P we let 

(4) D(P)= (d@Rnld 'V(  ~ ln(pi-P~ 

= { d E R  n Id"  _pO, ..., < 0 } .  
Pl Pn -P~ = 

We note that the domination cone D(p) is a half space which varies with p. 
Since the function being maximized in (3) is strictly concave, and since pO is 
convex and compact, a unique maximum point, ~, will exist, and Np (D(.)) = 
{?) 

EXAMPLE 2.3.5. For the game in Example 2.3.1 the maximin security level 
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is p O =  (1, 1, 2). Clearly po  :~b,  since, for instance, the Pareto optimal 

extreme point, (2, 3, 5), is in p0 .  Therefore the assumptions yielding a unique 

Nash arbitration solution, if, are satisfied and ff is the payoff  solving 

(5) maximize (Pl - 1)(p2 - 1)(p3 - 2 ) .  p~pO 

Since ~ is clearly Pareto optimal, we can restrict our attention to pO r Np 
where Np = ~ (Nex) is determined in Example 2.3.2. It is easily seen that 

problem (5) is a standard nonlinear programming problem. 

To define compromise solutions we can either translate the payoff  space 

so that the security point pO is at 0 or introduce constraints so that, without 
loss of  generality, we may assume that p >= p6 for every p ~ P. Following Yu 

[37] we then make the reasonable assumptions that Ir is compact  and p is 

continuous. Since Pi is consequently a continuous function defined on a com- 

pact set, it has a maximum value p*over  W. The vector of  these maximum 

payoffs,  p*,  is called the utopia point for the game. 

Next we consider the following 'regret' functions defined 7 on P: 

n 
Rq(p) = [ ~ (p?-pi)q] 1/q for q => 1 

i = 1  

R ~  (p) = maximum ((p* -Pi) ] i = 1, 2 . . . . .  n ) .  

A point pq in P which minimizes Rq(p) over P will be caUed a compromise 
solution with parameter q. For 1 < q < 0% Rq (p) is strictly convex and hence 

i f P  is convex (see note 6), pq is unique. 
For 1 < q < o~ we define the following domination structure which will 

yield pq as the unique nondominated solution: 

(6) Dq(p)= (dER n Id "VRq(p)~=O). 

As in the case of  the Nash arbitration solution we obtain a variable half space 

domination structure and Np (Dq (')) = (p q). For q = 1 and q = ~ a domina- 
tion structure can be similarly constructed. We shall not elaborate this here. 

To illustrate the concept of  compromise solutions we give the following. 

EXAMPLE 2.3.6. For the game in Example 2.3.1 the security point is p ~ = 
(1, 1, 2) and we use the constrained payoff  spaceP '  = ~p E P  I P => (1, 1, 2)). 
The utopia point is p* = (5, 4, 5). Therefore, for 1 =< q < ~ ,  to obtain the 
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compromise solution with parameter q, we must minimize Rq 09) = [(5 - p  l) q q- 
(4 - -p2)  q -b (5 --p3)q] 1/q over P'. In [37] it is shown that for 1 _<q < ~ ,  

the compromise solution with parameter q is Pareto optimal, consequently to 

obtain pq we can reduce our problem to miniming Rq (p) over~(Nex ) (q P' 
usingY(Nex) from Example 2.3.2. As in Example 2.3.5, for each q (except 
q = 1 which yields a linear problem) we obtain a nonlinear programming 
problem. We shall not elaborate the details here. Also, compromise solutions 
with the parameter q = oo can similarly be found. 

2.3.2. General domination structures. In Section 2.3.1 we saw that for Pareto 
optimality there is a constant domination cone, A => , which is 1/2 n o f  the 

entire space, while from (4) and (6) we observed that each domination cone 

was a half space for the solution concepts in Section 2.3.2. The difference 
between 1/2 n of the space and a half space is quite large when n is large. One 

may wonder whether there are domination structures lying between these 

extremes. In the following discussion we illustrate that such intermediate 
structures do occur. 

Consider a game between two middle level managers in a business; suppose 
one is a production manager and the other a marketing manager. Suppose 

that for each important issue the president of the business is to make the final 
decision. In doing so he will ask the production and marketing managers to 

give their evaluation of the impact of each possible decision w on production 
and marketing, respectively. Denote these evaluations by Pl (w) and P2 (w) 

respectively. Note that Pl (w) and P2 (w) may be regarded as the payoff result- 
ing from the decision w to the production and marketing divisions, respectively. 

Now assume that the president will make his final decision may maximizing 

Xl Pl (w) + X2 P2 (w) over all possible decisions where Xi is the weight given 
to Pi. While the president may not be able to specify an exact weight vector, 
X, he may be able to specify that the weight ratio X2/Xx must lie an a certain 
interval, say �89 < X2/Xl < 2. 

Let A =  {(Xl, X2) 1 1<X2/X1 < 2} and A* = {(d~, d2) I d, + 2d2 <= 0 
and 2d 1 + d2 =< 0} (see Figure 1). Note that A* is the polar cone 8 of A. 

For (Xl, X2) E A it can be shown that a solution which maximizes X~ px + 
X2 P2 must be a nondominated solution for the domination structure D(p) = 
A* (for all p ~ P). See [40]. Observe that A* is much larger than A --< but is 
smaller than a half space. 

The decision process illustrated above is not unusual and indicates that in 
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Fig. 1. The cones A and A*. 

realistic game situations various general domination cones can arise. Thus we 

see that the cones of Sections 2.3.1 and 2.3.2 are actually special cases. 

Further, the above approach is equivalent to an arbitration process among the 

players to determine bounds (i.e., a cone A) for the weight vectors. Since A 

gives bounds for weights indicating the relative importance of each player's 

payoff, it may also be interpreted as a measurement of power among the 

players. Since the domination cone A* and the cone A uniquely determine 

each other, we may as well regard domination cones as a tool for measuring 

the relative power held by the players. Methods for actually determining 

domination cones in specific applications can be found in [40]. 

2.4. Solution Concepts and Domination Structures for Games in Characteristic 
Function Form 

In this section we focus on solution concepts for n-person games in character- 
istic function form. We shall first briefly describe basic concepts of character- 
istic function form games. Then we introduce 'classical' domination structures 
in the imputation space and in the coalition space. These domination struc- 
tures will aid our intuitive understanding of the solution concepts and help to 
clarify relationships between the concepts. In Section 3 we will see that 
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multicriteria n-person games induce domination structures more general than 

the 'classical' ones. 

2.4.1. Characteristic function form for N-person games. An n-person game 

in characteristic function form is given by a set of players N = {1, 2, .,., n} 

together with a real-valued function, v, (the 'characteristic function') defined 
on f =  {S [ S _CAr} such that v(~) = 0. Each element S e JV~represents a 

coalition and v(S) can be regarded as the total amount guaranteed to the 

members of S if they cooperate as a coalition. 

Following yon Neumann and Morgenstern [36], an n-person characteristic 

function form game can be induced from an n-person zero-sum normal form 

game as follows: 
v(S) is the maximum total payoff obtainable by the players in S when they 

cooperate, assuming the players in N~S are cooperating to minimize the pay- 

off to S. This construction of a characteristic function form game has been 

criticized on several gounds (see [24] and [33]), nevertheless, the character- 

istic function form remains an important tool for analyzing cooperative n- 

person games. To illustrate this construction we give the following 

EXAMPLE 2.4.1. The characteristic function form induced by the normal 

form game of Example 2.3.1 is the following 9 : 

v(1) = 1 ,  v(2) = 1 ,  v(3) = 2 ,  

v ( 1 2 ) = 4 ,  v ( 2 3 ) = 5 ,  v ( 1 3 ) = 7 ,  and v (123)=10 .  

A characteristic function form game derived from a normal form game is 
superadditive (i.e. v(S) +v(T) <= v(S U 7) for all S, T E~dPwith S N T = r 

Of course, we may assume that a characteristic function form game is given 

without reference to any underlying normal form game. In these cases we will 

not assume superadditivity, but instead will assume the following condition: 

n 
(7) ~ v(i) < v ( ~  

f = l  

The reason for this assumption will be discussed shortly. 
Two games, v and v', are strategically equivalent if there exist real numbers 

k > 0 and ai, i = 1 ..... n, such that v '(S) = kv(S) + Gi~sai is satisfied for all 
S EJ~. A game v is (O,1)-normalized if v(i) = 0 for all i E N  and v(N) = 1. 
The reason for our assumption (7) is that v is strategically equivalent to a 
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(0,1)-normalized game if and only if (7) is satisfied. (See [24] for instance, for 
the normalization procedure.) Consequently, we can study each game in this 

paper by passing to its strategically-equivalent (0,1)-normalized form. 1~ 

To illustrate (0,1)-normalization we provide the following 

EXAMPLE 2.4.2. 

is 
The (0,1)-normalized form of the game in Example 2.4.1 

v ' ( / ) = O  for i E N  
v'(12) = 1/3, v '(23) = 1/3, v '(13) = 2/3 

and v '(N) = 1. 

To apply the definition of strategic equivalence to find v', we used 

1 k - -  __1 
3 

v(s)-  ~ v(i) 
i = 1  

and a i = -kv ( i )  implying that ai = -1 /6 ,  a2 = -1 /6  and a3 = -1 /3 .  
An imputation for an n-person characteristic function form game v is a 

vector x ~ R n satisfying (i) xi >= v(i) for i E N and (ii) n ~i=1 xi = v(N).  

The set of all imputations, denoted by I, will be called the imputation 
space. For (0,1)-normalized games the imputation space has obvious con- 

venient properties and is given by I = (x  E R n I x ~ 0 and zn=l xi = 1). 
The imputation space is empty, if ~n=l v(i) > v(N), and contains one point, 

namely (v(1), v(2), ..., v(n)), if ~in_-i v(i) = v(N). Consequently, by assuming 

(7) we are assuming that the imputation space is non-trivial. 

An imputation can be viewed as a potential rule ('distribution law') for dis- 

tributing v(N), assuming there is full cooperation among all n-players. A 

primary focus in characteristic function form games is to locate an imputa- 

tion or set of imputations which is stable in some sense or which provides a 
'fair' distribution law. 

Given an imputation x @ R n and a coalition S E ~,,  the coalitional excess 
of S with respect to x, denoted by es(x) ,  is given by es(x  ) = v(S) - x (S)  
where x ( S ) =  Zir xi. A positive coalitional excess, es(x  ), indicates that, as 
a coalition, the members of  S do not receive their full value in the game at the 
imputation x. (See Proposition 2.4.4 for further discussion.) 

Having presented the necessary preliminary concepts, we will now discuss 
solutions for characteristic function form games. 
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2.4.2. Concepts (usually) yielding a set or sets o f  many solution points. To 

illustrate 'classical' domination structures in both the imputation space and 
the coalition space, we will focus mainly on the core solution concept (and a 

related concept, the relaxed cores) in this section. This analysis can be ex- 

tended to the other concepts in the lower left-hand section of Table I, but 
we shall not include the extension in this paper. 

For a characteristic function form game v, we state the following. 

DEFINITION 2.4.3. For imputations x and y and for S E l , x  dominatesy 
via S, denoted x ~-sY, if and only if the following are satisfied: 

(8) x i > y  i forall i E S .  
(9) x (S) <= v(S). 

Condition (9) implies that x(S)(= ~i~s xi) is actually obtainable by the 

players in S. The players in S would rationally accept only imputations not 

dominated via S. The core of the game v, denoted C(v), is the set of all im- 

putations which are not dominated via any coalition S E~4/. ~ We immediately 

obtain the useful 

PROPOSITION 2.4.4. For S E ~,, an imputation x is dominated via S if  and 
only i f  x (S) < v(S). 

Proof For sufficiency, suppose x (S) < v(S). Let / E N \  S such that xj > 0. 

(Such a ] exists since x(S)<v(S)=<v(N)  implies that x ( N \ S ) =  v(N) - 
x(S) > o.) 

( xi + x j \ lS l ,  if i E S  
D e f i n e y = ~ 0 ,  if i = j  

t x i ,  otherwise 

Then y is an imputation which dominates x via S. 

For necessity suppose there is an imputation y such that y ~-s x. Then (8) 

implies that Yi > xi for all i E s and hence y (S) > x (S). (9) implies v(S) >= y (S) 
which together with y (S) > x (S) implies that v(S) > x (S). 

Q.E.D. 

From Proposition 2.4.4 we can immediately see that domination through a 
single player coalition is impossible. If S = (i), then x ( S ) =  xi >= v(i) since x 
is an imputation. Therefore, by the Proposition, x is not dominated via S. 
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We can also see that an imputation x is in the core if  and only if no coali- 

tional excess in positive. That e s ( x  ) = v ( S ) - x ( S ) < =  0 for all S E~YPis equiv- 

alent to v(S) <__x(S) for all S E ~ .  By Proposition 2.4.4, this is equivalent to 

x is not dominated via S for all S E J F o r  x E C(v). Thus we have 

(10) C ( v ) = { x E I l x ( S ) > = v ( S )  foral l  SE~r  

For the remainder of  Section 2.4.2 we will assume that the games we con- 

sider are in (0,1)-normal form. Then, letting rn = 2 n - n - 2 ,  we fix an order- 

ing for the proper coalitions which have more than one player in each coali- 

tion: $1, $2 .... , Sm. We will use Y to denote R m indexed by the coalitions 

$1, S~_ ..... Sm and will refer to Y as the coalition space. Each vector v E Y 

corresponds in the obvious way to a (0,1)-normalized n-person game. Conse- 

quently, we will refer to a point v E Y as a 'game point ' .  
As in Spinetto [34], we define the following mapping ~ on I into the coali- 

tion space Y which yields a one-to-one correspondence between ! and ~(/). 

For each player i, define the game point Vi E Y by 

= f  1, if i C S ]  
z,.(s i) 

t 0, otherwise 
( ~ r / =  1 , . . . ,m) .  

V i is a simple game having player i as a veto player. ~1 Then for x E / ,  define 

n 

(11) ~(x) = Z xi Vi. 
i = 1  

We will use Gn to denote r the image of I under ~. Clearly, Gn = ~ ( {  V1, 

�9 .., Vn }), the convex hull of  { V1 .... .  Vn }. Also, we observe that r maps the 

extreme points of  I to the extreme points of  Gn, namely VI .... .  Vn. The ex- 
treme points o f / a r e  the basic unit vectors in X, u ~, ..., u n 

.e., u} = 0, otherwise 

Then the definition of r in (11) implies that r i) = /7,.. 
Further, we can see that for an imputation x E I,  
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(12) 
n 

r = z x~ v/ 
i=1 

= (r (x )  . . . . .  Cs , , , (x ) )  

-~ ( ]~ X i . . . .  , ]~ X i )  
i E S  ~ i U=S m 

= ( x ( S 1 )  , . . . , x ( g m ) )  

By combining (10) and (12), for a game vE  Y, we have 

PROPOSITION 2.4.5. An imputation x is in C(v) if and only if r => v. 
From this Proposition we can immediately conclude the following which is 

Corollary 1 in Spinetto [34]: 

PROPOSITION 2.4.6. C(v) 4= r if and only if (v + A -->) C~ G n ~ ~b. Further, 
C(v) = {x E I  I q~(x) E (v + A>)). 

, , ~ -  I r l  i'~ I 'l 

i) 

u 2 = (0, 1,0) u I =(I, 0 , 0 )  

Fig. 2. C(v) in the imputation space. 

In Figure 2 we illustrate the core of the game in Example 2.4.2 in the 

imputation space, I. In the coalition space Y in Figure 3, we have located the 
game point v corresponding to this example and have illustrated @(C(v)), the 
image of the core in G n. In order to obtain an intuitive understanding, in 
Figure 4 we picture Y as a two-dimensional space with the interpretation that 
the set of coalitions is abstractly represented by two coalitions. The n-dimen- 
sional simplex, Gn, in the original space Y is now represented by a line 
segment. Then dp(C(v)) is given by the shaded portion of Gn. 
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@(C(v)) I 
s = (i, 3) 

V 3 I) 

I/3, 2/3) 

S 2 =  ~ , - ,  , . , j  

V2= (I, I, O) 

,z) 

Fig. 3. r in the coalition space. 

S 

•[• (C(v ) )  

v ~ ~ , , , . _  G n 

> Si  

Fig. 4. A representation of Y and r 
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Both Figures 3 and 4 illustrate the intuitive idea that C(v) 4: r if and only if 

v lies 'on or below' the simplex G n . 
We now define domination structures induced by the core concept. For 

S E f w e  define the cone 

A ~ =  { d E ~ n l d i < O  forall i E S } U  {0 }  

Then corresponding to each coalition S EL ~we define a domination structure 

on I as follows: 

A <, if x (S) <= v(S) 
(13) Ds(x)  

[ {0}, otherwise 

This domination structure is closely related to the concept of domination 

in Definition 2.4.3. We see that for imputations x and y, x ~- s Y if and only if 

y ~ x + D s (x) and y 4: x. For simplicity we let N(Ds) denote nondominated 

solutions in I under the domination structure, D s ( ' )  (in the notation of Sec- 

tion 2.1, N(Ds) = Nz(Ds(.))  ). We immediately obtain 

N(Ds m) [ , ] Sm 
I 
I 
I �9 
I 
I ~tN(Ds3) �9 

I i ] 
!/~ ̀Ds', Sz 

,, 

I 
I 

r-.......3 I 
L ~J m 

= n N ( D s j )  C(v) j=l �9 

[ N(DSl)[-~ 

Fig. 5. 'Levels' of domination structures. 
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PROPOSITION 2.4.7. For an n-person game, v, N(Ds)  = (x E l  Jx(S)~= 

v(S)} and C(v) = n~=l N(Dsi). 
One can regard the domination structures in (13) as defined on parallel 

copies or 'levels' of I indexed by $1 .... .  Sm (see Figure 5) such that for each 

/ = 1 .... , m, Ds.(X) indicates the domination directions on level S~. Thus we 
can think of locating the core of a game by projecting the nondominated 

points for each level down to a single copy of I and forming the intersection. 

This conceptualization will be useful when we discuss multicriteria n-person 

games. In that occasion, corresponding to each coalition and each criterion 
we have a domination cone as in (13) (see Section 3.2). 

We will refer to the domination structures in (13) as the 'classical' domina- 

tion structures on I. Other domination structures will be discussed in the 
following sections. 

This approach provides two immediate ways for generalizing the concept 
of the core. First, for an index set K _C {1, 2 .... , m} we can define the relaxed 

core indexed by K, denoted CK (v), by 

C~(v)= n N(Dsj). 

One may think of the coalitions indexed by K as the coalitions which are 

permitted or able to form; the imputations in CK (v) take into account objec- 

tions from only these coalitions. The concept of a relaxed core is closely 

related to core-stem solutions (see [13b] and [33]) and ~0-stability (see [24] 

and [27]). For further discussion, see Sections 3.2.2 and 3.2.4. 
Another method for generalizing the core is to replace A~ in (13) by an 

arbitrary cone As. This would generalize the binary relation ~ s  to a reason- 

able class of binary relations; yon Neumann and Morgenstern [36] point out 

the desirability of generalizing ~"s to new classes of relations. 
We now define a domination structure in the coalition space, Y, which also 

will yield the core of the game. For each v E Y, define the constant domina- 

tion cone 
D(v)  = {d = (dsl .... d s ~ )  I at least one 

dsj < O} u (0) = (Y\ A ~~ u {0). 

(Note that D(v)  is not convex in contrast to our usual assumption for 
domination structures. See Figure 6 where Y is represented abstractly as a 
two-dimensional space.) 
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Fig. 6. The domination cone, D(v). 

Then given a game v E  Y, for each game v ' E  [v + D ( v ) ] \  {v}) the set of 

game points 'dominated' by v), at least one coalition has a smaller value than 

it has at the current point v. Thus given an imputation x E I, if the induced 

game point r is in [v + D(v)] \ {v}, then some coalition, S, will object to 
playing the game ~(x) instead of v (because C~s(x)<v(S ) and C~s(x ) = 
x(S) by (12), x is dominated via the coalition S according to Proposition 
2.4.4). 

Thus we can think of the complementary cone of D(v), namely A >, as 

representing the set of directions which are not objectionable to any coalition. 

Given that the game v is being played, no coalition could effectively object 

to instead playing any game, v' ,  in v + A --> (because the value of every coali- 
tion at v' is at least as great as its value at v). 

Then any imputation, x, such that its induced game point ~(x) is not 

dominated by v under D(-)  (i.e., ~b(x) E v  + A>), will be in the core of v. 

Thus we can formally write C(v) = {x ~ I I ~(x) is not dominated by v under 

D(.)} = {x E I I ~(x)@ v + A > } (cf. Proposition 2.4.6). 
The domination structure D( . )  will be referred to as the 'classical' domina- 

tion structure in Y. Similar to the classical structures, domination structures 
can be defined on I and Y for the other solution concepts in the lower left- 
hand section.of Table I, but we shall not stop to do so. One should note that 
the stability conditions imposed by each concepts must be taken into con- 
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sideration when using the underlying domination structure to induce that 
solution concept. 

2.4.3. Concepts (usually} yielding a unique solution point. In this section we 

shall show that the Shapley value and convex nuclei are in fact arbitration 

schemes over the coalitional excess space. Consequently these solution con- 

cepts will induce domination structures similar to those described in Section 

2.3.2. For the nucleolus we obtain a sequence of domination structures which 
yield the nucleolus as a nondominated solution. 

The concept of convex nuclei was first proposed by Charnes and Kortanek 

[ 12b] as a generalization of the nucleolus. Given a game v, consider the func- 
tion, G(x), defined on I by G(x) = ~ s ~ j '  gs (es (x)) where Y '  = J \  {r N} 
and where, for each S E Y ' ,  gs is a strictly convex function 12 of the coalitional 

excess, es(x ) (implying that G(x) is strictly convex). For our discussion we 

will also assume that G is differentiable although more general cases are 

discussed in [12b]. Then imputations which minimize G(x) over I are called 
convex nuclei. 

Let m '  = 2 n - 2. For the discussion concerning the convex nuclei of a 

game v, we fix an ordering on the coalitions in ~P', S~ ..... Sm', and let the 

coalitional excess space Y', be R m' indexed by $1 ..... Sin'. Thus Y' can be 

viewed as the m'-dimensional coalitional space translated so that v is at the 

origin. We then define a mapping, ~, on I into Y' by ff (x) = (esl (x), ..., esm, 
(x)) for all x E l .  For each y = (Ysl . . . . .  YSm, ) E ~(/),  we define the domina- 
tion cone 13 

m t 

(15) DCv)=  {d id  " V ( ~ gsj(Ysj)) >= O}. 
j = l  

Then Nr the set of  nondominated points of ~(D with respect to D(.) ,  

in fact contains a unique point. The convex nuclei with respect to the func- 
tion G are the points in the inverse image of Nr (i.e., ~-1 (Nr Under 

certain linear independence conditions it can be shown that this inverse image 
contains a unique point (for details, see [ 12b]). 

A domination structure on the imputation, I ,  yielding the convex nuclei 
can be similarly constructed using the linear transformation ft. We will not 
include the details here. 

The Shapley value is a unique imputation satisfying three axions given by 
Shapley [31]. The Shapley value for player i,/9i (v), is given by 
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Oi(v)= E ( L S I -  1 ) ! ( n - I S I ) !  
s ~ K  ~ n! [v(S) - v(S\(i})] 

where ISI denotes the number of players in S. Charnes and Keane [10] show 

that the Shapley value may be obtained as a convex nucleus for a particular 

function G(x). Therefore, we can use the domination structure analysis for 

convex nuclei to obtain the Shapley value. 
The l~p-center [34] for p > 1 is a unique imputation which minimizes a 

strictly convex function (associated with the 12p-norm) of the coalitional 

excesses for the proper coalitions of more than one player. Thus s 

induce domination structures (in a coalition excess space of dimension 2 n - 

n -  2) which are similar to those induced by convex nuclei. We shall not 
repeat them here. 

For the nucleolus we first define, for each imputation x, a vector 0 (x) = 

(esl (x) ..... es2n (x)) where esj(X ) is the coalitional excess for Sj and such that 

for each x, the coalitions are ordered so that esk(X ) >= esj(x ) whenever k </'.  

Intuitively, 0 (x) gives the coalitional excesses in decreasing order for all the 
coalitions. The nucleolus, defined in [29], is the imputat ionx N such that 

0(x N) is minimal under the lexicographic ordering on 0 ( / ) =  (O(x) lx ~13. 
For each 0 (x) E 0 (/) and each ] = 1 ..... 2 n we define the constant domina- 

n 
tion cone Di(O(x)) = {d E R  2 I d i =< 0, dk = 0 if k g:/'}. Let N1 be the set 

of all nondominated solutions of 0 (/) with respect to the domination struc- 

ture D1 ( ' ) .  Inductively, define Nk+ x to be the set of all nondominated solu- 

tions of N k with respect to the domination structure Dk+ 1 ( ' )  (restricting the 

domination structure to Ark). The final set of nondominated points, N2n , 
thus will be sequentially derived. Note that N2n contains the unique lexico- 

graphically minimal element of 0(/). The nucleolus is the unique inverse 
image of N2n (i.e. 0-1 (N2n))" (The uniqueness was proven in [29].) 

This concludes the discussion of solution concepts for single criterion 
games. Multicriteria games will be discussed in the next section. 

3. M U L T I C R I T E R I A N - P E R S O N  G A M E S  

Frequently in situations involving (partial) conflict among n-persons (or 

groups), the 'players' will use several criteria to assess the results of their 
decisions. In Order to more accurately reflect and understand such situations, 

n-person games can be naturally extended to multicriteria n-person games. 
Using our discussion of solution concepts and their domination structures 
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for single criterion n-person games as a basis, in this section we examine 

various solution approaches for multicriteria n-person games in both normal 
form and characteristic function form. 

To illustrate the concept of multicriteria games we consider some situa- 

tions where multicriteria game models naturally arise. The members of most 

deliberative decision-making bodies, such as committees or legislatures, 

frequently consider several noncomensurable aspects of the consequences of 

their decisions. For example, a faculty committee, when evaluating candidates 

for a position will probably consider each candidate's potential contribution 

to research, teaching and the University as criteria. In such situations one may 

wonder whether the committee members can agree on the relative importance 

of each of the criteria or whether each committee member will weigh the 
criteria in an independent manner. 

An interesting type of multicriteria games arises when the payoffs for 

some single criterion game depend on a future uncertain event. For example, 

construction companies may bid for a government project for which funding 

and awarding of the contract depend on the outcome of the next election. 

Then the payoff under each possible outcome of the election can be viewed 

as one criterion of a multicriteria game. We will consider a natural linear 
parametrization of the criteria which, in this type of game, can be viewed as 

a probability distribution over the possible outcomes of the future uncertain 
event. 

We finally note that multicriteria game models may be useful in under- 

standing and resolving conflict/cooperation situations which have recently 

received extensive media coverage. For example, the decision to build a 

nuclear power plant or a new highway will often generate concern among 

conflicting groups involving criteria such as cost, convenience and environ- 

mental impact. Also, complicated and interrelated global problems involving 

food, energy, natural resources, population growth and economic growth 
clearly generate many multicriteria situations where choices leading to 
cooperation or conflict face the nations of the world. 

We first describe multicriteria n-person games in normal form and then 
briefly sketch several possible solution approaches. 

3.1. Multicriteria N-Person Games in Normal Form 

For multicriteria n-person games in normal form we assume that each player 
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has a vector-valued payoff function defined on a joint payoff space W. In the 
most general formulation, player i has a set of criteria indexed by 1 ..... s and 
his payoff function, pi, is defined on W into R Qi. Each of the other players 
may share some, none or all of player i's criteria. 

The payoff space for player i, denoted by pi, is given by pi = pi(140" In 
our notation pi has dimension s The full payoff space, denoted by pF, is 

Ni=l s given by the space of dimension n 

pF = p ( ~ ] ) =  (]91 ..... p,)(~l) = {[(pl (w)), (p2 (w)), ..., 

(p" (w))] I w ~ w). 

EXAMPLE 3.1.1. In this example the notation for the players' pure strategy 
sets is the same as in Example 2.3.1. For each choice of pure strategies in 
[I~=1 Qi, the matrix (14) gives a six-dimensional payoff vector where the first 
two coordinates represent the payoff to player 1, the next two coordinates 
represent the payoff to player 2 and the last two coordinates represent player 
3's payoff. 

Entries in the matrix may be interpreted as payoffs which depend on the 
outcome of a future event. More specifically, the values in columns labeled 
A may be regarded as the payoff if party A wins forthcoming election and the 
values in columns B may be viewed as the payoff when party B is victorious. 
Note that in this example, each player has the same two criteria. The full pay- 
off space has dimension six and is given byP F = {~=1 wip i [ W E W} where 
p l ..... p8 represent the eight six-dimensional payoff vectors in the matrix 
(14). 

TI ~2 

[  A8 A8 :AS AB Ah 7 
a131 [(5,1), (1,2), (2,4)] [(1,1), (1,2), (2,4)]/ 
a132 [(3,2), (1,1), (4,4)] [(1,1), (1,2), (3,6)] / 
a231 [(2,0), (3,3), (5,5)] [(2,3), (2,1), (5,5)] / 
a23~ [(5,2), (4,1), (1,3)] [(1,0), (0,0), (5,4)]J 

In the next section we discuss the application of the solution concepts in 
Section 2.3 to the full payoff space. Next we consider solution possibilities 
when each player, i, limits his attention to his own payoff space, pi. Finally 
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we discuss solutions when each player reduces his multicriteria payoff to a 
single criterion. 

3.1.1. Solution concepts in the full payoff space. The players may agree to 
apply a solution concept (such as those discussed in Sections 2.3.1 and 2.3.2) 
to the full payoff space, pF. In doing so, each player implicitly respects and 

considers all of the criteria for all of the other players in the solution process. 
This approach is equivalent to viewing pF as the payoff space for a single 

criterion normal form game with ~n= 1 ~i players (where s is the number of 
criteria for player i). In other words, the payoff for each criterion is inter- 
preted as the payoff of a single player. 

EXAMPLE 3.1.2. To locate the compromise solution with parameter q (see 

Section 2.3.2) for the full payoff space of the multicriteria game of Example 
3.1.1, we need to use the utopia point p* = [(5,3), (4,3), (5,6)]. Then for 
1 =< q < o% we would minimize 

Rq(p) = [ ( 5 - p l )  q + ( 3 - p 2 )  q + ( 4 - p a )  q + ( 3 - p 4 )  q + 

( 5 - - p s )  q + (6--p6)q] 1/q 

over pF (as in Section 2.3.2 we assume that for all p E pF, p >= pO 14). 
Also, pF can be viewed as the criteria space for a single-decision maker 

(possibly an outside arbiter for the game) problem with n ~i=1 ~i criteria. 
Hence, any solution concept used for single player multicriteria decision 
problems (see [40]) could be applied to pF. 

In general, the players may agree to use a particular domination structure 
in pF (such as those discussed in Section 2.3.1 which generate Pareto optimal 
solutions and satisficing solutions or more general structures as illustrated in 

Section 2.3.3) and select the final payoff from among the nondominated 
solutions with respect to that domination structure. As in Section 2.3.3 a 
domination structure used by agreement among the players in this way gives 
an implicit measurement of the power held by the players. 

3.1.2. Solution concepts using each player's payoff space. In contrast to the 
solution approaches discussed in the preceding section, suppose that each 
player i determines a domination structure, Di( ') ,  in his own payoff space, 
pi. Then let Wo be the set of decisions such that for each w E Wo, pi(w) is 
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nondominated with respect to Di(" ) for all i = 1 ..... n. Any decision in I4/o 

permits every player to 'claim victory' (i.e. achieve a nondominated payoff) 

and would be an acceptable solution for the game. 

Clearly lVo may be empty and, at the same time, there may exist payoffs, 

p, such that p > p 0  (see note 14) so that the players still have an incentive 

to cooperate. In this case, suppose that the nondominated set, N i, in each 

player's payoff space is convex. (For example, if pi is convex, domination 

structures for some satisficing solution concepts will yield such nondominated 

sets.) Then we can treat the set N i as a 'utopia set' for each player and obtain 

the payoffs which minimize the sum of the distances to each player's utopia 
set. We shall not elaborate the details here. 

Other alternative approaches which could be used when 14/o is empty are 
discussed in Section 3.1.1 and 3.1.3. 

3.1.3. The reduction o f  each player's payoff  to a single criterion. Suppose 

that each player i defines a real-valued (possibly nonlinear) 'utility' function 

ui on his payoff space, pi. Then, by using the function u i opi as player i's 

payoff function, the multicriteria normal form game is reduced to a single 

criterion normal form game and the solution concepts of Section 2.3 can 
be applied. 

In general, it is very difficult to determine such a utility function. However 
each player may be able to specify a vector X i (a probability vector of dimen- 

sion I~i) of weights for his criteria. In the case where the criteria represent pay- 

offs for different outcomes of a future event, such a weight vector can be 
naturally seen as the player's estimate of the probability distribution for the 

outcomes of the future event. In this case player i's payoff function is E k =1 

Xki Pki (which is the expected payoff for the probability distribution X i) and 

the multicriteria game is reduced to a single criterion game, allowing the solu- 

tion concepts of Section 2.3 to be applied. 

It would be unusual for a player to be able to specify an exact weight 

vector. More realistically, each player might specify a set of weight vectors, 

say the vectors in a cone Ai. Then each choice of n weight vectors is X/ .... , Xn 

where )t i ~ A i for i = 1, ..., n yields a single criterion normal form game. 
When a solution concept from Section 2.3 is applied to the set of games 
generated in this way, a set of solution points would be determined. 

The case where all of the players have the same criteria, 1 .... , ~, provides 

possibilities for a simpler reduction. The players might agree to simultaneously 
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use the same ~-dimensional weight vector ~ or a set of such weight vectors given 
by A. Then for each weight vector )~ E A, a single criterion game is derived 
by using ~ =1 )~kP~c as player i's payoff. Again, by applying each solution 

concept to the set of such induced single criterion games, a set of solution 

points is derived. 

EXAMPLE 3.1.3. For )~EL = ()~ = 0q ,  )~2) 1 ) ~ 0  and Xl +)~2 = 1) we 
can set )~2 = 1 - )q and obtain the following parametrized normal form of 
the payoff matrix (14): 

'Y1 3'2 

0/1~1 F (1 + 4 ; k l , 2 - - ~ l , 4 - - 2 ) q )  ( 1 , 2 - ~ 1 , 4 - 2 2 ~ 1 ) ~  

al/32 l (2+;kx,  1,4) ( 1 , 2 - 2 ~ 1 , 6 - 3 X 1 ) [  
0/2~ 1 (2)kl, 3, 5) (3 -- ~1, 1 "~ ~kl, 5) / 
c~2/~2 (2 + 3;kl, 1 + 3 ) q , 3  - 2)q)  (~1,0, 4 + ) q )  _J 

3.2. Multicriteria N-Person Games in Characteristic Function Form 

A multicriteria n-person game in characteristic function form consists of the 
player set, N, and a vector-valued characteristic function, v = (vl .... , v~). 
Each coordinate function, v k, k = 1 .... , ~2 is a characteristic function in the 

sense of Section 2.4.1 and may or may not have been derived from an under- 

lying normal form game. By separately (0,1)-normalizing each coordinate 
function vk, k = 1 ..... s we obtain the multicriteria characteristic function 

v ' =  (v~ ..... v~). To illustrate the concept of a multicriteria characteristic 

function, we give the following 

EXAMPLE 3.2.1. We use the normal form game of Example 3.1.1 to induce 
a multicriteria characteristic function. Using the payoffs for the first criterion 
we induce (as discussed in Section 2.4.1) a single criterion characteristic func- 
tion, vl. Using the interpretation given in Example 3.1.1, we can view vl as 
giving the value for each coalition, should party A win the election. Similarly 
we use the payoff for the second criterion to induce a single criterion charac- 
teristic function, v2, which gives coalitional values in the event party B in the 
winner. Thus we derive the multicriteria characteristic function v = (vl, v2) 
given by: 
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v(1) = (1,1), v(2) = (1,1), v(3) = (2,4) v(12) = (4,3), v(23) = 

(5,20/3), v(13) = (7,6) and v(123) = (10,9). 

Then by (0,1)-normalizing each criterion separately, we obtain: 

v ' (1)  = v ' (2)  = v ' (3)  = (0,0), v ' (12)  = (1/3, 1/3), v ' (23)  = 
(1/3, 5/9), v ' ( t 3 )  = (1/3, 1/3) and v ' (123)  = (1,1), 

For most of  the remainder of Section 3.2 we will assume, as is the case in 
this example, that all of  the players have the same set of criteria. When this 

assumption holds for a normal form multicriteria game, as in Example 3.1.1, 

we see that a multicriteria characteristic function form game can naturally 
be induced. In Section 3.2.4, however, we relax this assumption and treat 
more general cases. 

With every multicriteria characteristic function v = (va .... , vQ) and its 
associated (0,1)-normalized form, v' = (v~ ..... v~), we can naturally associate 
the following single criterion characteristic functions: 

(i) ~ - d e f i n e d b y ~ ( S ) =  max vk(S) forall  SE. .~ .  
i<k<~ 

(ii) the (0,i) normalization of~, denoted (~)' 

(iii) (v') defined by (v ')(S) = max v~: (S) for all S �9  p 
1 <k<~ 

(iv) vdefinedby__v(S)= min vk(S) forallSE~d/~ 
l<k<~ 

(v) the (0,1) normalization of_v, denoted (v)' 

(vi) (v ' )  defined by (v")(S) = min v~, (S) for all S EJ/~" 
l<k<~ 

In general, ( i f ) '  :~ (v') and (_v)' =~ (v_'). The games (i)-(vi)  above will be useful 
reference points for our later discussion of solution approaches. 

3.2.1. Parametrization of  multieriteria characteristic functions. To reduce the 
multicriteria characteristic function to a single criterion characteristic func- 
tion, the players might be able to cooperatively determine a real-valued 'utility' 
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function defined on v ( r  (cf. Section 3.1.3). However, such an approach 
would be very difficult. 

It is much more likely that the players might agree on a probability weight 
vector, )`, or a set of  such weight vectors 16, f2 C L = {XC R Q I X=> 0 and 
Z~ = 1 = 1 }, which would then be used to parametrize the characteristic func- 
tion and thus obtain a single criterion characteristic function. We will discuss 
two different methods for parametrizing a characteristic function v = (vx ..... 

v~). One method is a direct parametrization of  the characteristic function and 

the other is through a parametrization of  the underlying normal form game 
(see Section 3.1.3). In the following sections we will discuss solution ap- 

proaches involving these derived parametrized games. 
Given 2, E L, we can define the parametrized game v~ (the superscript c 

denotes a parametrization directly on the characteristic function) by v~, (S) = 

X �9 v (S)  = ~,~ =1 Xk vk (S) for all S ~ ~.~ We will denote the (0,1)-normaliza- 

tion of  v~ by (v~,)'. On the other hand, we might first (0,1)-normalize v to 
t r obtain v' = (v' ..... v~) and then parametrize as above to obtain (v )x .  Clearly, 

(v')~ is in (0,1)-normalized form. 

EXAMPLE 3.2.2. Using the game in Example 3.2.1 we illustrate parametriza- 
tion directly on the characteristic function form. In this case L = {)` ER 2 I 

)` _~ 0 and )`1 + ),2 = 1 }. Setting X2 = 1 - )q we obtain 

v ~ ( 1 )  = 1 v~,(2)  = 1 

v~(12) = 3 + )`x v~,(23) = 20/3 - (5/3))`1 
v~(13) = 6 + )`x v~(123) = 9 + Xl 

v~(3) = 4 -  2Xt 

By (0,1)-normalizing v~, we obtain 

5+) `1  
(v~) ' (12) = 1/3 ( v ~ ) ' ( 2 3 ) -  9(-l~X-~) 

1 + 3 ) ` 1  
(v~) ' (13)  = 3 ( 1  "Jff)kl) 

On the other hand, parametrizing the (O,1)-normalized form, v', in Example 
3.2.1 yields the following game: 

(v~,)e (12) = 1/3 (v~)e(23) = 5/9 - 2/9)`1 
(V~,)e(13) = 1/3. 
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C P t C In this example, we can see that in general, (vx) 4: (vx) . For instance, 
t 6 '  

letting )to = (1/2, 1/2) yields (v~,o)'(23) = 11/27 and (v)Xo (23) = 4/9. 
In the parametrization approach through the underlying normal form, we 

first use a given weight vector )t to parametrize the underlying normal form 

(as in Section 3.1.3) and then induce a single criterion characteristic function 
(as in Section 2.4.1). Specifically, given ) tEL,  we parametrize player i's 

normal form payoff functionp i to obtain the real-valued function ~k=l Xkpik 
as his payoff. We denote the characteristic function derived from this 
parametrized normal form by vN(the superscript N denotes a parametrization 
through the underlying normal form). 17 

The fact that for each S E ~ ( v x  N (S) is defined as the maximin of an ag- 
gregated parametrized payoff function where the maximum and minimum are 

taken over (assumed) compact sets of mixed strategies allows us to show that 
v N is a continuous function of )t. 

With each multicriteria characteristic function form game v = (vl ..... v~) 
derived from a normal form game, using the parametrization process just 

described, we define the single criterion characteristic function v* by v* (S) = 
maximumx~L v N (S) for each coalition S E~ ~ . l s  

In Example 3.2.4 we illustrate that it is possible to have v*(S)> g(S) fo r  
some S E .~ .  Consistent with earlier notation, we will denote the (0,1)- 
normalization of v* by (v*)'. 

N ' . f  n For each )t E L  we could also (0,1)-normalize VNXX to obain (v x)  , 1 ~i=1 

vN(i) < vN(N). (See note 10.) Then we similarly define v** by v**(S) = 

maximumx~L (vN) ' (S). (V** is in (0,1)-normal form.) It is evident that (v*)' 
may not equal v**. The relationships between these games and between v and 
(vN) ' are currently under investigation. 

EXAMPLE 3.2.3. We now parametrize the game in Example 3.2.1 using the 

parametrized underlying normal form in Example 3.1.3. Table II gives the 
values for v N as )tl = 1 - )t2 varies over various subintervals of [0,1]. The 

particular parameter value )t0 = ( 2 3 - x / ~ 7 ) / 3 2  ~ 0.145 is an irrational 
'change point' for v~x(13 ). We note that in general, on each of possibly many 
different regions of L, vN(s) will be represented by a rational function in 
several variables. In Figure 7 we sketch the graphs of vN(12), V~(23) and 
vN(13). We observe that for all )t, the value for coalition {1,2} is non- 
decreasing and smaller than the values for the other two player coalitions. 
Coalition {1,3} has a maximum value when )t: = 1 while the value for coali- 
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TABLE II 

Parametrized characteristic function 

Intervals 
for 
hi 

I0, Xo] [Xo, 1/21 I1/2, 3/41 I3/4, 11 

z~ (1) 1 1 1 1 

VN(2) l+X 1 l+X~ 2-Xl 2-X 1 

V~Ch (3) 4 - 2X 1 4 - 2h I 4 - 2 h 1 4 - 2X~ 

V~X (12) -2X~ +21X 1 +12 -2X~ +21Xl +12 4 4 
4+3hl 4+3h~ 

v~h (23) 3h~ -26hl +40 3X~ -26h 1 +40 3X~ -26h~ +40 3X~ +6h~ +16 
6 - 2 ~  6 -2h  1 6 -2h  1 3+2h~ 

V~V(13) 7X~ -33Xl +36 -5h~ -16h~ +28 -5h~ -16X~ +28 -5h~ -16~.~ +28 
6 -4h  I 5 -4h  1 5 -4h  I 5 - 4h  1 

v~r~ (123) 9 9 8+2h~ 8+2hl 

tion {2,3} is a maximum at ?`1 = O. The function v~x for coalition {2,3} is 

decreasing over the interval [0, 3/4] and increasing over [3/4, 1 ] while coali- 

tion {1,3} has a decreasing value over [0, ?`o] and an increasing value over 

[Xo, 1]. 

EXAMPLE 3.2.4. Suppose a two criteria normal form game yields the 

following two person zero-sum game matrices for a particular coalition S: 

:1 :1 
ThenA x = ?`IA 1 + ( 1 - X l ) A  2 = 

[81 -3? `1  5 + 37`1] 

?'1 8-77`1] 

Solving for v N (S), we obtain 
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v2 

v),N ( 2 3 ) / / ~ ~ ' " " - - , - . -  

~ J 

vLN(13)/ 

jjj " _/ 
v2(12) 

X I 

�9 . . vN 
Fig. 7. Graphsofthecoordinatefunctionsoftheparametrizedcharacterlstlcfunctlon, ~.. 

[ 2 4 X ~ - 7 8 X l  + 5 9  if  Xl E [ 0 , 3 / 1 0 ]  
10 - 12Xl ' 

vN( S)= 5 + 3 X l  , if  Xl E [ 3 / 1 0 , 1 / 2 1  

8 - - 3 X l  , if  Xl E [ 1 / 2 , 1 ]  

We see that vl (S) = 5 and v2 (S) = 59/10 implying that  ~-(S) = 59/10. But 

v*(S) = 13/2 (the maximum occurs when Xl = 1/2). This illustrates that  we 

may have v* (S) > F(S) .  

3.2.2. The use of solution concepts (usually) yieMing a set or sets of many 
solution points. Section 2.4.2 was devoted primarily to an analysis of  the core 

concept. Similarly in this section we focus primarily on an extension of  the 

core concept to multicriteria games which we call the multicriteria core. 

Other solution concepts in the lower left-hand section of  Table I can be 

extended to multicriteria games but  we shall not  elaborate here. 

Suppose that  each criteria v/c, of  a multicri teria (0,1)-normalized charac- 
t 

teristic function form game, v' = ( v~ . . . . .  vQ), represents the coalition values 

for a different outcome of  some future uncertain event�9 Given any outcome 

of  this future event no coalit ion will object to an imputat ion in the core of  
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every characteristic function. Consequently, we define the multicriteria core 

of the game v', denoted MC(v ' ) ,  to be the intersection of the cores of the 

coordinate functions, i.e., MC(v ' )  ~ ' = ~c=1 C(vk). In the next Proposition, 

we see that (v ' )  has a close relationship to the multicriteria core. 

$ 

I 

MC(v) 

/ 

Gn 
~Si 

Fig. 8. C(v' 1 ) 4: O, C(v'2) r O, M C ( v )  # O, 

[ (v'--) vr 

/ 

G n 
; S i 

Fig. 9. C(v' 1) ~s ~, C(v'~) ~ O, MC(v ' )  = ~, 
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PROPOSITION 3.2.5. For a (O,1)-normalized characteristic function form 
p ? t 

game v' = (vl ,  ..., v~), MC(v ) = C((v')).  
Proof. We see that x EMC(v ' )  = ng=l  C(v~c) if and only i f x (N)  = 1 and 

x(S)  = vk(S) for k = 1 s and for all S E~ . :  This is equivalent to x (N)  

1 and x(S)  >= maximuma <k<~v~(S)  = (v ')(S)  for all S E JY~which is equiva- 

lent to x E C((v')). 
Q.E.D. 

S i 

\ 

v I 

(v'l 

v2'> si 

Gn 

Fig. 10. C(v'l) 4= c~, C(v'2) = (~, MC(v') = ep. 

In Figures 8, 9 and 10 for the case of  two criteria we illustrate three possible 

locations of  the game points v; ,  v; in Y with respect to G n. As in Figure 4 

we have represented Y as a two-dimensional space. In case MC(v')  = ~b (as 

in Figures 9 and 10), another solution approach would be required. 

EXAMPLE 3.2.6. We give the multicriteria core for v '  in Example 3.2.1. 

M C ( v ' ) =  ( x E R  3 Ix  =>0, Y~]-=-I xi = 1 ,x l  + x 2  __> 1/3, x2 + x a  __>5/9 and 
x I + x 3 => 1/3 }. In this case MC(v' ) 4: (p. 

Proposition 3.2.5 provides a way to define a domination structure on I for 

a (0,1)-normalized game v '  = (v; ..... v~) which yields the multicriteria core. 
Using the notation of  the domination structure (13), and given a coalition 
S E ~r176 define the following cone for each x E l :  
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A , if x ( S ) <  max {v~(S)} 
= l~k=<~ 

Ds(x) = t {0}, otherwise 

Then similar to Proposition 2.4.7, we obtain MC(v') = n~n= 1 N(Dsi). 
We now illustrate that the multicriteria core naturally induces general 

domination structures in the coalition space Y. Given the (0,1)-normalized 
multicriteria game v ' =  (v~, v~) we treat v~ as a reference game point and 
enlarge the cone D(v~) = (Y\ A >) U (0} (see Figure 6) to form the cone 
D(v~;v~) as follows: To D(v[) we add rays induced by imputations which 
are objectionable to any coalition at the other criteria (game point), v~. 
More specifically, given an imputation x, if x (S) < v; (S) for some coalition 
S, then we adjoin the ray (a(O(x)-v'l) l a=>0} to D(v') (0 is defined in 
Section 2.4.2). See Figure 11. 

As is clear from Figure 11, MC(v')= {x ~I[ (~(x) is not dominated by 
vl under D(v~; v ; ) =  ( x E I I  r +D(v~ ; v;)C}. (D(v~ ; v;) c is the 
complementary cone of D(v[ ; v~)). Clearly, if we reduced the multicriteria 
game to the single criterion game v~ and used the classical domination struc- 
ture, we would lose some crucial information from the game point v~. 

Fig. 11. The domination structure D(v'I; v'2). 
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Consequently, to avoid this loss of information we must use the more general 

cone D(v'I ; v; ). 
In general, given a (0,1)-normalized multicriteria game v' = (v'l .... , v~), for 

each k = 1, ..., s we define the following cone: 

. . . .  

D(Vg; Vl, = " ' ,  V k - - 1  ~ ~ k + l  ~ ..-7 73 

( Y \  A >) U {0} tO {cx(q~(x) - v~) [ ~ > O,x E I  such that x(S) 
<vi (S  ) forsome S E ~ f ' a n d s o m e  ] = 1  ..... ~,l=#k}. 

As above this domination cone can be used to generate MC(v'). Similarly for 
f each weight vector X we can define the domination structure D((vN)'; vl ..... 

v~) which generates MC(v') using (VXN) ' as a reference point. 
Referring to Example 3.1.1, if all of the players agree on a probability 

distribution, X, over the outcomes of the future election, it would be 
reasonable to apply the core and other solution concepts to (v~x)'. By the 
continuity of v~x and of the (0,1)-normalization process, one can show that if 
C((vN) ') 4= ~, then C((vN) ') is a continuously varying set function of X. That 

is, for each Xo EL  and each ~ >  0, there is a neighborhood about X0, N(Xo), 
such that if X~N(X0), then C((vN) ') C_ [C((vNo) ') +Ne(0) ] .  (Ne(0) 

denotes the open ball about 0 with radius E.) In fact, this continuity property 
holds over the parameter space for v N (not necessarily (0,1)-normalized) and 
for v C. 

Instead of agreeing on a unique distribution it is more likely that the 
players would agree on an interval estimate of the probabilities for each out- 

come of the election. Thus the players might agree to use a set, ~2, of probabil- 
ity weight vectors. Then each imputation in nx~a C((v{) ') has the property 
that no coalition will object no matter which X E g2 is the actual distribution 
for the future event. We might also use C3x~ a C((v') f )  or nx~ a C((vc) ') 
depending on the particular application. On the other hand, the players might 

N ! �9 �9 want to consider imputations in Ux~ a C((vx ) ) whmh gives all nondommated 
imputations under each possible probability distribution in the estimate set ~2. 

Further, the core and other solution concepts could be applied to the as- 
sociated single criterion games (g)' ,  (v*)' or v**. These games indicate the 
best that a coalition can do under particular circumstances. Thus the coali- 
tions may agree to use one of these game points in determining the final 
solution. 

An additional solution approach can be obtained by using the full payoff 
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space of the underlying normal form game. Assuming that each player has the 

same ~ criteria, we can view the normal form game as a single criterion game 
with s players. In other words, each criterion for each player is associated 

with a different player in a game with an enlarged player set. Then the 
characteristic function for the game with n's players could be derived. A 

reasonable solution would be the relaxed core (see Section 2.4.2) where the 

only permitted coalitions are those which do not split up each player's criteria 
set in the original game. This approach implicitly assumes that for each 

imputation each player in the original game receives the sum of the coordinates 
associated with criteria under his control. Other solution concepts could be 
applied to this characteristic function derived from the full playoff space. Of 

course, consideration must be given to the interpretation and rationale for 
such solutions. 

3.2.3. The use of solution concepts (usually) yielding a unique solution point. 
Arbitration schemes such as the Shapley value, nucleolus and convex nuclei 
can be applied to all of the single criterion game points associated with a 
multicriteria game v = (vi ..... v~). For example, as in the preceding section, 

(~-)', (v*)' or v** would be reasonable game points that the players might 
agree to use. 

If the players can agree on a set of probability weight vectors, ~,  (this 
includes the possibility d~at the players might agree on a unique vector 2,) 

then each arbitration scheme generates the set of solution points for the 
games parametrized by all X E ~2. In view of the continuity of v N and vx c and 

continuity properties of the arbitration schemes, one can show that the 
Shapley value, nucleolus and convex neclei are continuous functions of the 
parameter h. 

As in the immediately preceding section we can consider the characteristic 
function induced by the full payoff space of the underlying normal form. 
Then arbitration schemes can be applied to this single criterion characteristic 
function. Again, the assumption is that at the final solution point, each player 
receives the sum of the coordinates associated with criteria under his control. 

We can also define some appealing new arbitration schemes, using the 

parametrization process. For example, if C((v')) = r or C(v**)= ~b, the 
players may treat (v"--) or v** as a kind of 'utopia' game point. Both (v') and 
v** represent the best value a coalition can have under certain conditions. 
Therefore the players may agree to use the imputation x whose game point 
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image, ~(x), (see Section 2.4.2) best approximates (v ' )  or v** in the sense of 

some distance measure, such as an s norm. 
A second arbitration scheme using the parametrization process involves 

using the parametrized games (v~x)' and (v ' )  c to approximate v** and (~-) 

respectively. In other words, the players would agree to use the parameter Xo 

for wich the distance d((v~x ) ' ,  v**) or the distance d((v ' )x  c, ( 7 ) )  is minimal. 

Then after Xo had been located, solution concepts from Section 2.4 could be 

applied to (v~x ~ ) '  or (v')xco. 

3.2.4. The case where the players may have different criteria. In this section 

we discuss several formulations and resolution approaches for characteristic 

function form games where the players may have different criteria. For the 

first approach we consider a (0,1)-normalized multicriteria game v' = (v'l ..... 

v~) where each proper coalition of more than one player, Sj, j = 1 .... , m, 
determines an index set C i C_ {1 .... , s containing the indices of the criteria 

which are of concern to Sj as a coalition. In this case we would expect that 

each coalition, Sj, will object to potential distribution laws only on the basis 

of criteria indexed by Cj. 
A natural solution approach would then be to use a relaxed multicriteria 

core, namely C~n=l NkECI NI(v~), the imputations which are nondominated 

under the classical domination structure for any coalition Sj with respect to 

any criterion indexed in CI. (We use N/(v~:) to denote the imputations which 

are nondominated via coalition Sj on criteria v;c.) 

In Figure 12, which is an expansion of Figure 5, there is a set of 'levels' 

(copies o f / )  for each coalition. Given coalition Sj, there is one level for each 

criterion indexed in Cj. As in Figure 5 we project all of the levels onto a single 

copy of I and take the intersection to obtain the relaxed multicriteria core. 

Secondly, given a normal form multicriteria game where not all of the 

players necessarily have the same criteria, we consider methods for inducing 

a characteristic function form game. Each coalition will have as its criteria 

set the criteria which are of concern to at least one of the members of the 

coalition. Intuitively, an individual player would not join a coalition unless 
the coalition pays some attention to all of that player's criteria. For each 
criterion for a given coalition, we could compute the maximin value by 
ignoring all of the other criteria. Clearly a coalition could not necessarily 
obtain the maximin values thus derived on all of its criteria simultaneously, 
but these values could serve as a basis for bargaining or arbitration. If  a given 
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Fig. 12. 'Levels'  o f  domina t ion  structures yielding a relaxed multicri teria core. 

coalition is not concerned about a particular criterion, we would assign that 

coalition a value of  zero on that criterion. In this way we construct a charac- 

teristic function where each coalition has a value for every criterion in the 

game. We then take the (0,1)-normalization and procede to use appropriate 
solution approaches as described in Sections 3.2.2 and 3.2.3. A similar but less 

intuitively appealing approach is to assume that each coalition considers only 

those criteria which concern all o f  its members. In this case we would assume 
that there is at least one criterion common to all players. 

Alternatively we could induce a characteristic function from the full payoff  
space by viewing that space as the payof f  space for a single criterion game 
with an enlarged player set (for a given player i, there is one 'fictitious' player 
controlling each of  player i's criteria). As in Section 3.2.2 we would place 
restrictions on the coalitions that are permitted to form. No group of  fictitious 
players associated with the criteria set o f  one player in the original game 
could be split among more than one coalition in the fictitious game. 
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4. CONCLUSIONS 

The underlying dominat ion structures of  well-known solution concepts for 

cooperative n-person games and various solution approaches for multicriteria 

games have been discussed. It is hoped that  this discussion will enhance the 

understanding of  solution concepts in various game situations which in turn 

would provide help in applying the concepts. 

A variety of  problems remain to be resolved. For  instance, one such 

problem is to extend domination structures and the multicriteria concept to 

various categories of  games which are not  discussed in this paper such as 

games in part i t ion function form [35], games without  side payments.  [3, 32], 

constrained games [14, 33] and differential games [5, 20]. S o m e  remaining 

issues in the parametrizat ion of  multicri teria games are the following: (i) How 

should the parametrized game points and other associated single criterion 

games be interpreted? (ii) In the game situation how should a particular 

parametrized game point  or set of  such game points be used to determine a 

final decision? These questions are currently under investigation. We shall 

report  any significant results. 
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NOTES 

1 We will use the symbol u to denote both the criteria function and a point in the 
criteria space U. The intended interpretation will be clear from the context. 
2 One can relax the assumption that D(u) is a convex cone and instead assume only 
that D(u) is a convex set. For instance, see [2]. 
3 In Table I we have not attempted to list every proposed solution concept; however, 
many of the well-known concepts in each category have been included. 
4 Consistent with the convention in note 1, we will use the symbol p to denote both the 
payoff function and a point in the payoff space P. Again the intended interpretation 
should be clear from the context. 
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s There is another type of  satisficing model which is equivalent to imposing lower 
bound constraints on the decision space. For details see [40]. 
6 Since the Nash arbitration solution and compromise solutions with parameter 1 ~ q 
< ~0 (which are discussed later) are Pareto optimal we can relax the convexity assump- 
tion on P and require only that P be A---~-convex. This means that P + A "~ is convex 
(See [391). 
7 These functions use the ~p and ~o norms as a distance measure. Since we use the 
letter p for a point  in the payoff  space, to avoid confusion we have used q to index the 
regret functions. 
s For  a general cone A C R n, the polar cone of  A, denoted A*, is given by A* = {h E 
R n I h . d ~ O f o r a l l d E A ) .  
9 Throughout this paper we will use the notat ion v(12) to represent the functional 
value of  v at the coalition {1,2} and we will use similar notat ion for other coalitions. 
10 A rare exception to this may occur in Section 3.2 where a derived parametrized game 

n v h may satisfy ~i=~ vh(i) = vh(N). In this case v h cannot be (0,1)-normalized and we 
would use the unique imputation as the solution for v h. 
n v is a simple game if  and only if v(s) = 0 or 1 for all S ~//~.. Player i is a veto player 
for the simple game v if and only if i ~ S implies v(S) = O. 
12 We assume strict convexity here to simplify the domination structure. As Charnes 
and Kortanek [12b] point  out, strict convexity may be relaxed to convexity if uniqueness 
may be waived. Similar domination structures are induced in the case where g s  is a 
convex function for all S ~ ,~ '. 
13 I f  we relax the strict convexity on G, the domination cone will satisfy {d I d . ~  
(~3~ ~ '  gS(YS)) > 0} C D(y) C C_ {d J d .. ~ (~S~ C'  gS(YS)) 2 0}. 
14 Here the vector p0 represents  minimally acceptable payoff  levels. Assuming that full 
cooperation will not  occur unless each player obtains at least this established minimal 
level on each criterion, we restrict our at tent ion to the payoffs satisfying p => p0. 
is To permit  a realistic comparison among the payoffs, the weight vectors may have to 
satisfy certain conditions, for instance, equal length. 
16 This is equivalent to using all of  the weight vectors in the cone generated by s2. For 
different vectors along the same ray the maximin method  applied to the underlying 
normal form will yield parametrized characteristic function values having a different 
scale. However, such different characteristic functions induce equal (0,1)-normalized 
games. The situation is similar when the parametrization is performed directly on the 
multicriteria characteristic function. 
17 A more complicated normal form parametrization process could be used where 
each player i determines a set o f  weight vectors, ~2 i, used to parametrize his normal 
form payoff.  Then for each choice o f  weight vectors (h ~ . . . . .  k n) ~ 1I n ~/ ,  a normal form 
parametrization and the induced characteristic function form game v}~,~ xn~ could 
be obtained. For  simplicity we have confined our discussion to the case ~h~re"th'e ~layers 
agree to apply the weight vectors h in a set 12 simultaneously to their normal form pay- 
offs. 
~8 Clearly v* is not  as interesting if we replace v~Vk by v~, since in that case we would 
have v* = v. 
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