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Abstract 

A series of cellular transition probability models that predict the spatial dynamics of gypsy moth (Lymantria 
dispar L.) defoliation were developed. The models consisted of four classes: Simple Markov chains, Rook's 
and Queen's move neighborhood models, and distance weighted neighborhood models. Historical maps of 
gypsy moth defoliation across Massachusetts from 1961 to 1991 were digitized into a binary raster matrix 
and used to estimate transition probabilities. Results indicated that the distance weighted neighborhood 
model performed better then the other neighborhood modcls and the simple Markov chain. Incorporation 
of interpolated counts of overwintering egg mass counts taken throughout the state and incorporation of 
historical defoliation frequencies increased the performance of the transition models. 

Introduction 

Gypsy moth, Lymantria dispar L., is one of the 
most destructive exotic organisms in North Ameri- 
ca. Since it was introduced to the northeastern U.S. 
in 1869, it has expanded its range over 1,000,000 
km 2 (Liebhold et al. 1992), and it is likely that gyp- 
sy moth populations will ultimately invade most of 
North America. In many areas, epidemics are com- 
mon and resultant defoliation can cause substantial 
ecological and economic effects. 

As with other pests, an ability to predict the oc- 
currence of gypsy moth outbreaks is critical to the 
management of these populations. Unfortunately, 
gypsy moth populations tend to be erratic through 
space and time and outbreaks are consequently very 
difficult to forecast. Previously developed models 
for predicting gypsy moth outbreaks have largely 
been based on the relationship between pre-season 

* Corresponding author. 

egg mass density and defoliation within individual 
stands (Gansner et al. 1985; Williams et al. 1991; 
Liebhold et al. 1993). These models often do not 
perform reliably (Liebhold et al. 1993). 

Previously developed models for predicting gyp- 
sy moth outbreaks have largely ignored the spatial 
component of outbreak dynamics even though at 
least some research has indicated that spatial pro- 
cesses may be important to gypsy moth dynamics. 
Campbell (1973, 1976) found that outbreaks were 
more persistent between years when insect densities 
ranged widely among subpopulations in the region 
and conversely that when numerical variability was 
minimal among subpopulations, outbreaks were 
likely to decline. Liebhold and Elkinton (1989) 
showed that the existence of nearby areas of defoli- 
ation increased the probability of an outbreak de- 
veloping in an area and that defoliation begins at 
various locations and then spreads outward in all 
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directions. Valentine and Houston (1979) and 
Campbell (1976) hypothesized that this spread of 
outbreaks is caused by immigration of larvae from 
epicenters or foci. However Liebhold and McManus 
(1991) concluded that the apparent spread of out- 
breaks could not be caused by larval migration but 
was instead an artifact of the distribution of sus- 
ceptible forest types. 

Transition models, especially Markov chains, 
have been used with some success to model the dy- 
namics of various ecological systems (Isaacson and 
Madsen 1976; Pielou 1962, 1977; Usher 1981; 
Badger et al. 1987). For example, Kemp (1987) used 
a two-state Markov chain to model the probability 
of rangeland grasshopper outbreaks in Montana. 
Most of these applications have not incorporated 
information about conditions in spatially adjacent 
areas into transition probabilities. Lippe et al. 
(1985) used Markov models to quantify ecological 
succession and concluded that transition proba- 
bilities are affected by conditions in adjacent areas 
and suggested an extension or modification of the 
Markov model to incorporate spatial influence. 
Turner (1987, 1988) developed spatially explicit 
transition models to simulate land use change in the 
Georgia piedmont that incorporated these types of 
modifications. Under her models, land use status in 
the four or eight nearest cells influenced transition 
probabilities. 

Most of the previously developed, spatially-ex- 
plicit transition models can be considered types of 
'cellular automata' models (Preston and Duff 
1984). In this paper, we provide a brief description 
of cellular automata and how we used this ap- 
proach to build spatially explicit transition models 
to predict gypsy moth outbreaks. We present vari- 
ous models that differ in the way that spatial in- 
fluence is simulated and we evaluate the usefulness 
of incorporating counts of overwintering egg mass 
populations. The performance of the various 
models are compared and discussed. 

Cellular Automata 

Wolfram (1984) broadly defined cellular automata 
(CA) as 'systems of cells interacting in a simple way 

but displaying complex overall behavior.' Phipps 
(1992) refined this broad definition by describing 
three characteristics common to all CA: 1) the 
models act on a 1-, 2-, or 3-dimensional matrix of 
cells; 2) at any point in time, a given cell may exist 
in any one of k possible discrete states; 3) at every 
time step, the state of each cell is updated according 
to a transition rule that takes into account the state 
of neighboring cells. CA were first conceived over 
40 years ago (yon Neumann 1966) but were never 
extensively explored because computer power was 
limiting (Preston and Duff 1984). Recently, there 
have been several applications of CA for modeling 
a variety of physical processes but there are still 
relatively few ecological applications. 

In any CA, each cell can take on k possible values 
(states) and is updated in discrete time steps accord- 
ing to a rule f that depends on the value at sites in 
some neighborhood around it. The value, V, of a 
variable at position x and time step t + 1 is described 
in a one-dimensional cellular automata with a rule 
that depends only on values of nearest neighbors 
(Vichniac et al. 1986): 

Vx, t + 1 = f ( Vx,t, Vx_ l,t, Vx + l,t) (1) 

There are several possible lattices and neighborhood 
structures for two-dimensional cellular automata 
(Birman and Trebin 1985; Packard and Wolfram 
1985; Langton 1990; Wootters and Langton 1990). 
For square cellular matrices, adjacency can be 
described according to Rook's move and Queen's 
move definitions (Cliff and Ord 1973). In a Rook's 
move neighborhood the cellular automata uses: 

Vx,y,t + 1 = f ( Vx,y,t, Vx-l,y,t ,  Vx + 1,y,t, Vx,y-l,t ,  
Vx,y + 1,t) (2) 

and a Queen's move definition uses: 

Vx,y,t+ 1 = f (Vx,y,t, Vx-l,y,t, Vx + 1,y,t, Vx,y-l,t, 
Vx,y+l,t, Vx+l,y+l,t, Vx-l,y+l,t, 
Vx + 1,y-l,t, Vx-l,y-l,t) (3) 

where x , y  represent the coordinates of a cell. 
Many CA adopt one of many neighborhood 

summation rules, in which the value at a site de- 
pends only on the sum of the values in the neighbor- 
hood (Ripley 1981; Packard and Wolfram 1985). 



For example in the Rook's  move neighborhood 
definition a summation rule would be: 

Vx,y,t+ 1 = f (Vx,y,t+ Vx-l,y,t+ Vx+ 1,y,t, Vx,y-l,t+ 
Vx,y+ 1,t) (4) 

These types of  rules obviously assume that neigh- 
borhood effects are not influenced by direction. 
Many attempts to use CA for modeling biological 
growth processes, such as 'the game of life' have 
utilized Conway's transition rules (Gardner 1971). 
This summation rule consists of  3 transition paths 
under 0 - 1  state space and Rook's-move neighbor 
definition and mimics the essential spatio-dynamic 
features of life processes; colonies invade unoc- 
cupied spaces and they die as a result of  crowding. 

These types of  CA have been extensively used to 
model physical processes and to a lesser extent they 
have been used to model biological processes. Con- 
siderable attention has been focused on the chaotic 
and other nonlinear behavior of these models when 
they are allowed to run through thousands of itera- 
tions (Langton 1990; Wolfram 1983, 1984). 

The models we present here differ from most 
previously developed CA in several ways. First, our 
study focuses on the use of  these models for predic- 
tion across a single time step, rather than focusing 
on complex behaviors over thousands of iterations. 
Secondly, most previous CA models have used 
rules that incorporate the state of a cell at time t + 1 
as a function (rule) only of  its own state and the 
states of  immediate neighbors at time t. In our 
study we expanded the neighborhood definition be- 
yond adjacent cells. Finally, while most CA have 
been deterministic, in that the dynamics of the state 
at any given cell is uniquely determined by the tran- 
sition function, in our model we applied a stochas- 
tic transition function. 

Data description 

A geographic information system (GIS), IDRISI 
(Eastman 1987), was employed to assemble and col- 
late gypsy moth data. IDRISI is a raster-based (grid 
cell) GIS for capturing, storing, analyzing and dis- 
playing geographical data. The study area was de- 
fined using a base-map of  Massachusetts county 
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boundaries that was generated from latitude and 

longitude coordinates projected using the azimuthal 
equal-distant projection (Snyder 1987). This pro- 
jection conserves true distance linearly from a 
designated point (Boston, Massachusetts). A 2 x 2 
km grid cell size was selected as standard for all 
map layers in the GIS. Each map layer comprised 
198 by 93 cells. The grid size was selected because 
it represented the minimum dependable spatial 
resolution of  the available defoliation maps. 

The Massachusetts Department of Environmen- 
tal Management monitored gypsy moth defoliation 
annually from 1961-91 in all parts of  the state 
using maps sketched during a series of low level 
reconnaissance flights in late July when defoliation 
is at its peak. Thirty percent (30%) defoliation is 
considered the lower threshold for detection from 
the air. In situations where there is doubt as to the 
cause of  the defoliation, ground checks for the 
presence of gypsy moth life stages are made. Initi- 
ally the aerial sketch maps were overlaid on stan- 
dard U.S. Geological Survey (1:24,000) topogra- 
phical maps. Subsequently a composite mosaic map 
was generated for the entire state at 1:760,000 scale. 
Mapping processes may vary from region to region 
and year to year in these sketch maps, possibly 
resulting in systematic and non-systematic data 
errors (Talerico 1981; Chrisman 1987). The likely 
presence of these errors dictated the coarse spatial 
resolution of the digital representation these maps 
used in this study (2 x 2 km rasters). 

To create a uniform set of  geographically-ref- 
erenced defoliation data, the composite defolia- 
tion maps for the period 1960 to 1991 were first 
transferred to mylar stable-base sheets. At least 
four geo-reference points, on clearly recognizable 
intersections of  county boundaries, were accurately 
located. The prepared maps were then scanned 
using a digital scanner set at 150 dots per inch reso- 
lution. Binary TIFF files from the scanner were 
converted to IDRISI map layers. The transforma- 
tion of each map layer to a common base map reso- 
lution and projection was achieved through a 
'rubber-sheeting' procedure. In transforming maps 
of various scales and projections, IDRISI re- 
samples each scanned defoliation image to match 
the location of  the four geo-reference points on the 
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Fig. 1. Distribution of eggs mass sampling points in Massachu- 
setts. 

base map (Eastman 1987). Because defoliation data 
were coded as either 0 or 1, depending on whether 
it exceeded the threshold for visual detection (30%), 
the variable is an ' indicator'  or binary variable. 

From 1985- 90 the Massachusetts Department of 
Environmental Management counted overwinter- 
ing gypsy moth egg masses at a network of  150 plots 
irregularly distributed through out the state (Fig. 1). 
Plots were located in forest stands that were consid- 
ered susceptible to gypsy moth defoliation. At each 
plot, burlap bands were placed around the stem of 
the 20 closest oaks over 6" DBH. In the late sum- 
mer, plots were visited and all egg masses under 
burlap bands were counted. Plot counts were calcu- 
lated as mean numbers of  egg masses per tree. 

Model descriptions 

Simple M a r k o v  chain mode l  (Model  I) 

In this model, the state of neighboring cells is not 
incorporated in the transition function and the 
model can be described by 

Vi,t+ 1 = f(Vi ,  t)" (5) 

We used a two-state transition function (Parzen 
1962) to quantify the transition of  cells from 0 (un- 
defoliated) to 1 (defoliated) and from 1 to I. There 
are four possible transitions which can occur for 
each cell from one year to the next (i.e., 0 ~ 0, 0 =  1, 
l = 0 and 1 = 1). If V t is the state (0 or 1) of  defolia- 
tion at the tth point in time, then we can let 

Pij = Pr~  Vt-l  = i) i,j E {0,1 } (6) 

be the probability that the state of  the process (0 or 
1) at the tth year is j ,  given that it was in state i in 
year t - 1 .  Pij is known as the one-step transition 
probability because the transition spans a single 
time step (Bhat 1972). Numerous studies have 
reported that gypsy moth population densities are 
highly correlated between successive generations 
(Campbell 1976; Liebhold and Elkinton 1989). 
These observations of temporal autocorrelation in 
gypsy moth population levels suggest that a simple 
Markov chain model may be useful for modeling 
outbreak dynamics (Kemp 1987). 

The one-step transition probabilities for each cell 
can be estimated by determining the proportion of 
times that the system moved from one state to an- 
other (e.g., 0 ~ 0 ,  0 = 1 ,  1 =0  and 1=1)  (i.e. P[j= 
Ni j /Ni) .  In this study, we used the transition fre- 
quencies over all ceils, in all years to estimate transi- 
tion probabilities. These estimates can then be 
represented by P~0, P~I, P~'0 and P~I" We estimated 
P~I as 7509/170666 = 0.044 and P~I as 4145/ 
11450 = 0.362. The highest transition probability 
was P~0, (=  1-P~I = 0.956) indicating that nonde- 
foliated cells generally remain in that state (Lieb- 
hold and Elkinton 1989). The Pt0 was greater than 
P~I indicating that defoliation terminates at a 
faster rate than it persists. 

R o o k ' s  move  ne ighborhood mode l  (Model  II) 

Liebhold and Elkinton (1989) and Hohn et al. 
(1993) documented the autocorrelation of gypsy 
moth defoliation in space and time; defoliation 
state in one cell is correlated with the state in the 
same cell and in neighboring cells in the previous 
year. Therefore Mode l  I was modified to take into 
account the state of  immediate neighbors under a 
Rook's  move definition of  adjacency (Cliff and 
Ord 1973). This is the simplest case of a two-dimen- 
sional cellular automata (equation 2). 

The sum of the V t of each neighboring cell was 
calculated and used to estimate transition probabil- 
ities as in Mode l  I (Table 1) 

Pij(k) = P r o b ( V t = J  ] Vt_ 1 = i  & Lt_ 1 =k)  
i,j ~ {0,1}; k E {0,1,2,3,41 (7) 
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Table 1. Estimated transition probabilities for Rook's move 
neighborhood model (Model I/). Numbers in parentheses are the 
number of observations that were used to estimate probabilities. 

Probabilities 

Number of defoliated 0 ~ 1 1 ~ 1 
neighbors 

0 0.032 (144587) 0.249 (743) 
1 0.275 (5632) 0.350 (998) 
2 0.366 (1666) 0.386 (1439) 
3 0.370 (319) 0.403 (1706) 
4 0.343 (105) 0.360 (5673) 
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Fig. 2. Transition probabilities under the Rook's move neigh- 
borhood model. Solid line: P~I; dotted line: PLY0- 

Table 2. Estimated transition probabilities for Queen's move 
neighborhood model (Model II1). Numbers in parentheses are 
the number of observations that were used to estimate pro- 
babilities. 

Number of defoliated 
neighbors 

Probabilities 

0~1 1~ I  

0 0.027 (136828) 0.228 (464) 
1 0.202 (6321) 0.31t (634) 
2 0.300 (2798) 0.367 (482) 
3 0.352 (1518) 0.405 (563) 
4 0.367 (780) 0.401 (749) 
5 0.406 (303) 0.414 (831) 
6 0.294 (109) 0.417 (736) 
7 0.395 (76) 0.348 (1330) 
8 0.300 (67) 0.354 (4510) 

slightly (G test with Williams' correction [Sokal 
and Rohlf 1981]: G = 10.48; Prob. > G = 0.001) 
(Fig. 2). These results confirm the results of Lieb- 
hold and Elkinton (1989) that the presence of near- 
by defoliation apparently increased the probability 
of a cell becoming defoliated. Liebhold and 
McManus (1991) concluded that this apparent 
'spread' of defoliation was caused by populations 
simultaneously increasing across regions where sus- 
ceptible forest types were spatially dependent in 
their distribution, rather than insects physically 
spreading en masse through a region. The increase 
in P~'0 reflects the phenomenon in which there is a 
regional collapse of populations once outbreaks are 
widely present (Campbell 1976; Liebhold and 
Elkinton 1989; Liebhold and McManus 1991). 
These collapses are typically associated with epi- 
zootics of a nuclear polyhedrosis virus (Elkinton 
and Liebhold 1990). 

Queen's move  neighborhood model  (Model  111) 

This model is identical to the Model II described 
above except the Queen's move (Cliff and Ord 
1973) adjacency definition was used. The model in- 
corporated the state of the 8 immediate neighbors 
in the transition function: 

Pij(k) = Prob(Vt=J [ Vt_ 1 = i & Lt_ 1 =k) 
i j ~  [0 ,1};k~ [0,1,2,3,4,5,6,7,8} (8) 

in which Lt_ 1 = Vx,y,t_ 1 + Vx_l,y,t_l + Vx+l,y,t_l 

+ Vx,y_l,t_ I + Vx,y+l,t_ 1 + Vx+l,y+l, t_ 1 + 
Vx_l,y+l,t_ 1 + Vx+l,y_l,t_ 1 + Vx_l,y_l,t_ 1 is the 
number of defoliated neighbors. 

Transition probabilities were estimated as in 
Model II (Table 2). The relationship between tran- 
sition probabilities and numbers of neighboring 
cells defoliated was similar to that of Model II 
(Fig. 3). 

i n  w h i c h  L t_  1 = Vx,y,t_ 1 + Vx_l,y,t_l + Vx+l,y,t_l 
Vx,y_l,t_ 1 + Vx,y+ l,t_ 1 is the number of defoliated 
neighbors. As the numbers of defoliated neighbors 
increased PJ1 increased and P~0 decreased, except 
when all 4 neighbors were defoliated, P~'0 increased 

Weighted mean neighborhood model  (Model  IV)  

Previous analyses of the autocorrelation of gypsy 
moth defoliation through space and time indicated 
that autocorrelations tend to exist beyond the 2 km 



182 

0 . 6 ;  

0,7 

0.6 
"~ 0.5 �9 

o. 0 .4 -  
o = 
~ 0 . 3 .  

0.2-  

0.1 

0 

" ' ' - A . .  . .& . . . . . .  �9 
" ' ' ' i t -  . . . .  �9 . . . . . .  �9 . . . . . . .  �9 . . . . . .  � 9  

1 2 3 4 5 6 7 8 

Number of defoliated neighbors 

Fig. 3. Transition probabilities under the Queen's move neigh- 
borhood model. Solid line: P~I; dotted line: P%. 

Table 3. Estimated transition probabilities for weighted average 
neighborhood model (Model IV). Numbers in parentheses are 
the number of observations that were used to estimate proba- 
bilities. 

Weighted average of 
neighborhood 

Probabilities 

0~1  1~1 

0 0.009 (130172) 0.159 (88) 
0.00-0.05 0.063 (20682) 0.147 (307) 
0.05-0.10 0.153 (7009) 0.214 (373) 
0.10-0.20 0.261 (6267) 0.349 (786) 
0.20-0.40 0.354 (4670) 0.400 (1550) 
0.40-0.60 0.353 (1393) 0.438 (1626) 
0.60-1.00 0.324 (463) 0.358 (6720) 
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Fig. 4. Transition probabilities under the weighted average 
model. Solid line: P~I; dotted line: P%. 

cell distance, used in this study, but the correlation 
decreased with distance (Liebhold and Elkinton 
1989; Hohn  et al. 1993). To account for this de- 
clining autocorrelation, we used an inverse distance 
weighted mean of  defoliation in the neighborhood 

to adjust the transition function. The transition 
probabilities were thus defined: 

Pij(k) = e rob (V  t =j]  Vt_ 1 = i &. Lt_ 1 = k) 
i j  E [0,1];  k ~ {0-1} (9) 

x+3  v+3  

]C Va ,b , t_ l /D  a,b,x,y 
a=x-3  b = y - 3  and 

where Lt_  1 = x+3  v+3 

~ 1/Da,b,x,y 
a=x-3  b = y - 3  

Da,a,x,y represents the distance from point a,b to 
point x,y.  The weighted mean is a continuous num- 
ber between 0 and 1 but we discretized it into 7 
classes (Table 3); it has a maximum value when all 
of the cells in the neighborhood are defoliated, and 
a minimum value when no defoliation exists in the 
neighborhood. 

Estimated transition probabilities for this model 
are given in Table 3. The effects of  neighborhood 
defoliation on transition probabilities (Fig. 4) were 
similar to those seen in the rooks and queen's move 
neighborhood models (Figs. 2 & 3). 

Weighted mean in susceptible areas model  
(Model  V) 

Liebhold and Elkinton (1989) noted that across a 
region, such as the state of Massachusetts, there 
was considerable variation in defoliation frequency 
over 30 yr; many locations were never defoliated. 
This variation is largely explained by the spatial 
variation in climate and forest composition (Lieb- 
hold et al. 1994a; Gansner et al. 1993). Presumably 
this variation in the habitat can affect the transition 
probabilities in the models described above. 

We attempted to adjust Model I V  by estimating 
transition probabilitiesa for only those cells that 
had any defoliation from 1961-91. Obviously P ~  
will always be zero when the 30 yr defoliation fre- 
quency is zero. Also, at any cell where the 30 yr 
defoliation frequency is zero, PlY0 cannot be esti- 
mated (but it would never be used in simulations). 
Estimated transition probabilities are shown in 
Table 4. The elimination of locations where the 
defoliation frequency was zero caused P~l to be 
higher than when all cells were used (Table 3). 



Table 4. Estimated transition probabilities for weighted average 
neighborhood model after excluding unsuitable ceils (those that 
were never defoliated from 1961-1991) (Model V). Numbers in 
parentheses are the number of observations that were used to es- 
timate probabilities. 

Weighted average of 
neighborhood 

Probabilities 

0=1 1~1 

0.00-0.05 0.021 (104897) 0.171 (327) 
0,05-0.10 0.158 (5627) 0.205 (322) 
0.10-0.20 0.295 (5002) 0.389 (599) 
0.20-0.30 0.384 (2515) 0.439 (624) 
0,30-0.40 0.396 (1389) 0.417 (634) 
0.40-0.50 0.415 (773) 0.488 (680) 
0.50-0.60 0.430 (1108) 0.462 (1407) 
0.60-0.70 0.316 (247) 0.421 (729) 
0.70-1.00 0.338 (311) 0.347 (5751) 

Weighted mean with frequencies model (Model VI) 

We modified model I V t o  incorporate geographical 

variation in forest susceptibility beyond the simple 

elimination of  immune cells as done in model V. In- 

stead, we calculated separate transition probabili- 

ties for three categories of  cells grouped according 

to their defoliation frequency, f ,  from 1961 - 1991: 

f = 0; 0 < f _< 2 ; f  > 2. Estimated transition prob- 
abilities are shown in Table 5. For cells where f = 

0, P~1 = 0. The transition probability, P~I, was 
generally greater for cells w h e r e f  > 2 than for cells 

where 0 < f _< 2. 

Weighted mean with egg mass counts model 
(Model VII) 

As previously mentioned, egg mass counts are at 

least loosely correlated with defoliation at the stand 

level, and a distinct correlation exists at the land- 

scape level (Liebhold et al. 1994b). Liebhold et al. 
1994b showed that the spatial correlation between 
defoliation and egg mass counts is greatest when 

egg mass counts are transformed to an indicator 
variable (binary: 1,0) such that the transformed 

variable is zero if there are less than 1 egg mass per 
tree and 1 if there are 1 or more egg masses per tree. 
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We incorporated Ex,y, the transformed egg mass 
count, in model IV: 

Pij(k) = Prob(Vt =Jl Vt_l = i & Lt_ 1 = k & Et) 
id E {0,11; k E {0-1} (10) 

in which Lt_ 1 is the same as in equation (9) and E t 
is the estimated egg mass count. 

Because egg mass counts were only taken in a 

small fraction of  the cells being simulated, it was 

necessary to interpolate these egg mass counts. Egg 

mass counts were interpolated using ordinary 

Kriging (Isaaks and Srivistava 1989). The exact 
procedures, including variogram models, are de- 

scribed in Liebhold et al. (1991). Estimated transi- 

tion probabilities are shown in Table 6. When egg 

mass counts were high (above 1 per tree), both P~I 

and PT1 were generally greater than when egg mass 

counts were low. The only exception to this trend 
was that when neighborhood defoliation was high 

(weighted mean -- 0.4 to 1.0) PTi was actually low- 

er when egg mass density was high than when egg 

mass counts were low. This probably reflects a ten- 

dency of  regional populations to collapse when they 

are at high population levels and outbreaks are ex- 

tensive. 

The kitchen sink model (Model VIII) 

As the name implies, this model incorporated all of 

the adjustements described above. It essentially was 

model VII modified by restricting the transition 

probability estimation to only cells where defolia- 

tion occurred from 1961-91 as in model V. We did 

not have adequate numbers of  observations to in- 

corporate the more detailed variation in 30 yr 

defoliation frequencies as was done in model VI. 
Again, we assumed that P~1 will always be zero 

when the 30 yr defoliation frequency is zero. Esti- 

mated transition probabilities are given in Table 7. 

Simulation results 

Data from 1961-90 were used to initialize each 

of models I -  VI and simulations were run for one 

time step. This represented a total of  30 x 6 = 180 
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Table 5. Estimated transition probabilities for weighted average neighborhood model adjusted for 1961-1991 defoliation frequency, 
f (Model VI). Those cells that were never defoliated from 1961-1991 were excluded. Numbers in parentheses are the number of observa- 
tions that were used to estimate probabilities. 

Weighted average of 
neighborhood 

Probabilities 

0 < f _ < 2  f > 2  

0=1 1=1 0=1 1=1 

0.0-0.1 0.0151 (75540) 0.0805 (149) 0.0598 (37885) 0.2205 (508) 
0.1-0.2 0.2650 (3208) 0.3439 (157) 0.3558 (2015) 0.3645 (513) 
0.2-0.3 0.3827 (1581) 0.4167 (204) 0.4479 (940) 0.4309 (434) 
0.3-0.4 0.4122 (922) 0.3730 (185) 0.5000 (504) 0.4325 (474) 
0.4-0.5 0.4083 (529) 0.3224 (214) 0.5072 (278) 0.5391 (499) 
0.5-0.6 0.3923 (339) 0.2956 (203) 0.5323 (186) 0.5026 (577) 
0.6-0.8 0.4428 (271) 0.2921 (558) 0.3929 (112) 0.5213 (1105) 
0.8-1.0 0.3310 (142) 0.1804 (2822) 0.5116 (43) 0.4627 (2736) 

Table 6. Transition probabilities under the method of weighted mean with eggmass data (Model VII). Numbers in parentheses are the 
number of observations that were used to estimate probabilities. 

Weighted average of 
neighborhood 

Probabilities 

< 1 egg mass/tree _> 1 egg mass/tree 

0=1 1=1 0=1 1~1 

0.00-0.10 0.011 (29219) 0.112 (34) 0.022 (3065) 0.121 (33) 
0.10-0.40 0.103 (1745) 0.165 (399) 0.136 (154) 0.280 (25) 
0.40-1.00 0.214 (393) 0.315 (1046) 0.393 (28) 0.235 (85) 

Table 7. Transition probabilities under the method of weighted mean with eggmass data and excluding the unsuitable cells (Model VIII). 
Numbers in parentheses are the number of observations that were used to estimate probabilities. 

Probabilities 

< 1 egg mass/tree >__ 1 egg mass/tree 

Weighted average of 0=  1 1 = 1 0= 1 1 = 1 
neighborhood 

0.00-0.10 0.006 (10100) 0.067 (90) 0.044 (12802) 0.163 (80) 
0.10-0.40 0.039 (502) 0.132 (244) 0.167 (827) 0.245 (67) 
0.40-1.00 0.129 (651) 0.177 (1401) 0.325 (126) 0.419 (210) 

simulations. Egg mass data were only available 
from 1985-1990 and therefore models VII and 
VIII were only initialized from 6 years. These 
models were thus used in 6 • 2 = 12 simulations. 
Maps of predicted defoliation probabilities from 

selected models are shown in Fig. 5. 
Even model / ,  which did not incorporate any spa- 

tial influence, yielded maps of  simulated defolia- 
tion probabilities that resembled the spatial distri- 
bution of  actual defoliation (Fig. 5). The spatial 
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Fig. 5. Maps of observed defoliation and predicted defoliation probabilities from selected transition models from 1986-1991. 
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distribution of defoliation predicted by model I 
mimicked the patterns of defoliation in the previ- 
ous year. Thus, the similarity of predicted patterns 
with observed defoliation patterns in the same year 
is a result of the temporal dependence or persistence 
of defoliation (Hohn et aL 1993). Incorporation of 
additional information (neighborhood defoliation 
state, defoliation frequency, and egg mass counts) 
increased the visual similarity of the spatial patterns 
of observed and predicted defoliation (Fig. 5). 

The sequences of mean probabilities generated 
by each model are presented in Figs. 6 and 7. All 
models shared a similar deficiency: predicted prob- 
abilities were too high when defoliation was low 
and probabilities were too low when populations 
were high. This is probably a result of estimating 
transition probabilities from all data, pooled across 

years. The graphs also illustrate that for most 
models, predicted probabilities troughed or peaked 
1 yr after troughs and peaks in the real data. This 
behavior is also probably due to the fact that a 
single set of transition probabilities were derived 
from all years. Previous research indicates that 
regional trends in gypsy moth dynamics may be 
strongly synchronous and affected by regional 
weather patterns, specific for that year (Miller et aL 

1989; Liebhold and McManus 1991). Thus, by 
averaging transitions over all years we may have 
failed to capture the among year variation in popu- 
lation trends. Preseason egg mass counts were in- 
corporated into models VI I  and VII I  in an attempt 
to incorporate the current trend in population lev- 
els. Though egg mass data were available for only 
6 years, simulated defoliation levels appeared to 
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Table 8. Mean errors and mean squared error of  the defoliation 

probabilities f rom the seven different models compared with ob- 

served defoliation frequencies. 
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Fig. 6. Graphs of  yearly average defoliation and average pre- 

dicted defoliation probabilities f rom 1961-1991. 

track observed defoliation more closely (Fig. 7). 
The mean error and mean squared error were 

used here to compare the performance of  the differ- 
ent models. The mean error was simply the differ- 

ence between the expected probabili ty of  defolia- 

tion, P*, and the observed defoliation status, Vx,y,t , 
averaged over all points and years. The mean 
squared error was calculated in the same manner,  
except errors were squared before averaging. Errors 
were computed for all models f rom the 1986-1991 
period and errors were computed f rom 1961-1991 
data for all models except models VII and VIII 
since egg mass data were not available during the 
entire period. 

Errors computed f rom 1961-1991 simulations 
indicated that the precision of predictions generally 

1961-1991 1986-1991 

Model Mean Mean squared Mean Mean squared 

error error error error 

80 90 I 0.0009 0.0563 - 0.0283 0.0287 
Year II 0.0051 0.0549 - 0.0226 0.0294 

III 0.0070 0.0534 -0 .0202  0.0383 

IV 0.0029 0.0478 - 0.0236 0.0272 

V -0 .0107  0.0549 -0 .0368  0.0343 

VI -0 .0010  0.0451 -0 .0303  0.0301 

VII 0.0018 0.0245 
VIII 0.0019 0.0249 

increased as additional information was included 
(Table 8). Model I used only the defoliation status 

in the previous year and it yielded the largest mean 
squared error. Progressively more information 
about  the defoliation status at neighboring loca- 
tions was added in models H, Ill, and IV  and mean 
squared errors progressively decreased. Addition of 
information on total (30 yr) defoliation frequency 
at the cell in model Vand V/did not yield consistent 
results. While the mean squared error of  model VI 
was less than that of  model IV, the mean squared 
error of  model Vwas actually greater. There was no 
consistent pattern in the mean errors among the 



different models. The lowest mean error was ob- 
tained using model I, indicating that this model was 
the most accurate, even though it was the least pre- 
cise. 

Errors computed from 1986-1991 simulations 
indicated that the incorporation of egg mass data 
increased the precision and accuracy of predictions 
(Table 8); both the mean error and mean squared 
error of models VIIand VIIIwere lower than in any 
other model during the 1986-1991 period. The 
mean errors of models I -  Vwere all negative during 
this period indicating that these models, which did 
not incorporate information about overwintering 
densities, tended to over-predict defoliation proba- 
bilities (Fig. 6). Model VIII's errors were slightly 
larger than that of model VII, indicating that incor- 
porating the 30 yr defoliation frequency did not im- 
prove accuracy during the 1986-1991 period. 
Model VIII used only two defoliation frequency 
classes because insufficient observations were avail- 
able to parameterize a more complex model. We 
suspect that if sufficient data were available to 
parameterize a more complex defoliation frequency 
effect, such as was used in model V1, a model that 
incorporated both egg mass data and defoliation 
frequency would perform better than any of the 
other models. 

Conclusions 

Generally, models that incorporated the most in- 
formation (e.g., defoliation status of neighbors, 
egg mass densities, etc.) performed better than the 
other models tested. Models VI, VII and VIII per- 
formed the best (in terms of accuracy and precision) 
but there was still considerable error in their predic- 
tions. One component of this error was probably 
the error in estimating egg mass densities at un- 
sampled locations (Liebhold et al. 1991). Though 
kriging minimizes the estimation error, that error 
can be considerable when sample points are widely 
spaced as in this study (Isaaks and Srivistava 1989). 
Spatial scale is probably another factor contribut- 
ing to error in predictions. Within the 2 x 2 km 
raster cells used in this study there was likely con- 
siderable heterogeneity in actual defoliation, egg 

187 

mass density, and forest composition. Our mea- 
sures of both defoliation and egg mass density were 
essentially averaged within these cells and consider- 
able error may have been introduced during this 
process. It would be valuable to test the CA metho- 
dologies developed here using data collected at a 
smaller spatial scale. Since most gypsy moth man- 
agement decisions are made at the stand level (ca. 
10-100 ha), higher resolution models would be 
more useful for management purposes. 

In this study, models were parameterized and 
tested using the same data. For this reason, these 
models probably cannot be reliably applied during 
other time intervals and in other geographical loca- 
tions without more extensive testing. Nevertheless, 
tests of these models indicated that these types of 
CA can be useful for predicting the spatial dynam- 
ics of gypsy moth outbreaks. 

The CA transition probability models developed 
here behaved very similarly to a previously devel- 
oped 3-dimensional kriging model (Hohn et aL 
1993; Liebhold et al. 1994c). The three-dimensional 
kriging model was based upon the statistical de- 
pendence of defoliation through space and time. 
Kriging incorporates this dependence through a 
series of semivariogram models that are then used 
to optimally form weighted averages based upon 
expected covariances among samples. The models 
II, I I Iand  IV, while less complex than the 3-dimen- 
sional kriging model of Hohn et al. (1993), essen- 
tially simulated the same dependence of defoliation 
through space and time and this is probably why the 
two modeling techniques behaved so similarly. 
Liebhold et al. (1994c) provide a detailed compari- 
son of these models with the 3-dimensional kriging 
model. 
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