
MORRIS  H. D E G R O O T  

C H A N G E S  I N  U T I L I T Y  AS  I N F O R M A T I O N *  

1. I N T R O D U C T I O N  

The central topic of  this paper is the measurement of  the amount of  infor- 

mation about some parameter 0 that is present in a set of  data or an obser- 

vation X = x. The parameter 0 can be any quantity such that a decision 

maker (DM) is uncertain about its value. We follow a Bayesian approach and 

assume that the DM can represent his uncertainty at any stage of  the learning 

process in terms of  a subjective probability distribution over the parameter 

space I2 of  all possible values of  0. This distribution, in turn, will be repre- 

sented by a generalized probability density function (gpdf) ~ with respect to 

some fixed o-finite measure X on ~2. 

Furthermore, we assume that the observation X is a random variable or 

random vector taking values in some sample space X. Uncertainty about X 

is represented, as in the usual statistical models, in terms of  a family of  con- 

ditional distributions indexed by the parameter 0. Again, these conditional 

distributions are represented by their gpdf's { f (e  10), 0 E ~2} with respect to 

some fixed o-finite measure v on X. 

We shall let I (X  = x) denote the (amount of) information about 0 in the 

observation X = x. When it is understood that the particular random variable 

X was observed, we shall write simply l(x). Before X has been observed, 

I(X) is a random variable with a well-defined predictive distribution and 

mean E[I(X)]. Thus, E[I(X)] is the expected information to be gained from 

observing X. In this paper, we shall review various methods that have been 

proposed for defining I(x) and E[I(X)]. 
Some authors have distinguished between measures of  information that 

are based on both the DM's probability distribution for 0 and his utility 

function, and measures that are based only on the DM's probability distri- 
bution [see, e.g., Good (1951, 1969), and Goel (1983)]. In this paper, we 
shall try to demonstrate that this distinction is not as sharp as it may at first 
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seem. In Section 2, the basic definition of expected information and its 

properties are introduced. In Section 3, the observed or actual information 
in an observation is discussed, a graphical interpretation is presented, and the 

additivity of expected information is established. In Section 4, the distri- 

bution of information is studied and this distribution is discussed in an 

example in which one experiment is sufficient for another. Finally, in Section 

5 the concept of retrospective information is defined, its role in sequential 

experimentation is described, and the expectations of retrospective infor- 
mation at various stages of the sequential process are determined. 

2. EXPECTED INFORMATION 

We shall begin with a basic definition of the expected information E[I(X)]. 
Contrary to intuition, it seems to be more natural to develop this definition 

rather than the definition of the more basic concept I(x) itself. 

Consider a decision problem involving 0 in which a DM must choose a 

decision d from some given set D. For each 0 E ~2 and d ED,  let U(O,d) 
denote the utility of the DM if he chooses decision d when the value of the 

parameter is 0. For any gpdf ~(0), define 

U(O, d) ~(0) dX(0) = v(~) sup 
clED 

= sup E o [U(0,d)].  (2.1) 
d ~ D  

Throughout this paper we shall assume that all required integrals and expec- 

tations exist. 

It follows from (2.1) that V(~) can be regarded as the utility to the DM of 

his having the distribution ~. Now let ~o denote the prior gpdf of 0 and let 
~o(e Ix) denote the posterior gpdf given X = x. Then we can determine 

V[~o( �9 Ix)] for each x E X. The expected information Eli(X)] is defined as 
follows: 

E[I(X)] = [Ex{V[~o(*IX)]}I V(~o). (2.2) 

In words,E[I(X)] is the expected gain in utility from X. It can be shown that 

Eli(X)] >10. 
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A basic property of the function V is that it is convex; i.e., for any two 

distributions ga and ~z of 0 and 0 < a < 1, the distribution a~x -t-(1 --a)~2 
of 0 will have the property that 

V[r '1-(1 L-a)~2] ~aW(~l)-b (1 -a)V(~2). (2.3) 

Some examples of such convex functions V are 

VI(~) = -Vary(0) ,  for a real-valued parameter 0; (2.4) 

V2(~) = :a  ~(0) log ~(0) dX(0); (2.5) 

V3(~) = max ~(Oi), for ~2 = {0x,02 . . . .  }. (2.6) 
i 

Each of the functions I:1, I:2, and V3 arises from a specific type of decision 
problem. To obtain V1, suppose that a real-valued parameter 0 must be esti- 

mated with squared-error loss. Since loss is simply negative utility, this 
assumption is that U(O, d ) = -  ( 0 - - d )  2. Then it is well-known that the 

Bayes decision with respect to any distribution ~ is d = E~(O). It follows from 

(2.1) that V(~) = VI(~), as defined by (2.4). 
To obtain V2, consider a decision problem in which the DM must specify 

a gpdf ~ with respect to the measure X, and U(O, q~) = log ~(0). Then the 
Bayes decision will be the gpdf q~ such that the expectation 

~(0) log ~0 )  d)t(0) (2.7) 

is maximized. It is well-known that this maximization occurs for ~b = ~. 

Hence, V(~)= V2(~), as defined by (2.5). This particular example has been 
discussed by Bernardo (1979) and earlier by Good (1969). 

To obtain V3, suppose that the DM must choose one of the finite or count- 
able possible values of O, and that 

110 if d = 0  U(O, d) = (2.8) 
i fdr  

Then the Bayes decision is to choose a value of 0 with the highest probability, 
i.e., a mode of ~, and it follows that V(~) = V3(~), as defined by (2.6). 

It follows from (2.2) and this discussion that expected information can be 
defined directly in terms of a convex utility function V on the space of 



290 M O R R I S  H .  D E G R O O T  

distributions of O, and that it is not necessary to begin with the specification 

of a decision problem with a decision space D and utility function U(O, d,). 
On the other hand, every suitably regular convex V arises from some decision 

problem. However, we shall not pursue this topic further here. It is discussed 

for finite ~ in DeGroot (1962). 

3. O B S E R V E D  I N F O R M A T I O N  

In a sense, we have put the cart before the horse by defining the expected 
information in X before we have defined the observed or actual information 

in a realization X = x. One natural approach to defining the observed infor- 

mation I(x) is simply to consider the observed change in utility. 

I(x) = V[~o(O[x)] -- V(~o). (3.1) 

It follows immediately that the expected information E[I(X)] will then be as 

we have defined it in (2.2). However, the information I(x), as defined by 

(3.1), might well be negative. It is quite possible, and common to our 

experience, for the posterior distribution to leave the DM with more uncer- 

tainty and smaller expected utility than he had under his prior distribution. 

How should the DM react to such an observation? Should he regret that he 

obtained it? Should he throw it away and act as though he had not seen it? 

Does it in fact contain negative information? The answer to these last three 

questions is "No". The information in any set of data is always nonnegative. 

An observation that spreads out the DM's posterior distribution is just as 

informative as one that makes his posterior distribution more concentrated. 

It tells him that his prior distribution may have been inappropriate or mis- 

leading in that it was probably concentrated around an incorrect value of 0. 

The correct definition of I(x)  proceeds as follows. 
For any distribution ~ and any decision d in a given decision problem, let 

U(~,d) = E~IU(O,d)] =J 'a  U(O,d)~(O)dX(O). (3.2) 

Also, let do denote the Bayes decision with respect to the prior distribution 

Go ; i.e., 

U(,%, do) = sup U(,~o, d) = V(,~o). (3.3) 
d ~ D  
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For simplicity, we assume the existence and uniqueness of do. Then 

I(x) = V[~o(Olx)] -- U[~o(*lx),do]. (3.4) 

In words, I(x) is the expected difference, calculated with respect to the 
posterior distribution, between the utility from the Bayes decision and the 
utility from the decision do that would have been chosen if the observation x 

had not been available. If the decision do does not exist or is not unique then 
Eq. (3.4) must be modified by means of some convention, but we shall not 
consider such modifications in the paper. 

It follows from the definition (3.4) that I(x)>~ 0 for every value of x. 
Furthermore, since 

E{U[~o(*]X),d]} = U(~o,d) f o r d E D .  (3.5) 

where the expectation is taken with respect to the prior predictive distri- 
bution of X, it follows that E[I(X)] will satisfy Eq. (2.2). Raiffa and Schlaifer 

(1961, Chapter 4), call I(x), as defined by (3.4), the conditional value of 
sample information and call E[I(X)] the expected value of sample infor- 
mation. 

There is a helpful geometric interpretation of I(x). Suppose that we want 
to define the information I(~o -~ ~1) in going from one distribution ~0 to 

another ~1, based on a given convex utility function V(~). For simplicity, 
assume for the moment that ~2 contains just a finite number of possible 

values of 0, so each distribution ~ on f2 can be regarded as a point in a finite- 
dimensional Euclidean space. Let L(~[ ~o) be the supporting hyperplane to 
the function V(~) at the point ~ = Go, which we assume to exist and be 
unique. Then 

I(~o --> ~1) = V ( ~ I ) - - L ( ~ I  I ~o) ~> 0. (3.6) 

This expression is illustrated graphically in Figure 1 for a problem in which ~2 

contains just two points 01 and 02, so each distribution on YZ can be repre- 
sented by the single number ~ = Pr (0 = 01). 

Note that the definition of I($0 --> ~1) is given in (3.6) directly in terms 
of the function V without any reference to an underlying decision problem 
or utility function U. In effect, the choice of a function V as a reference 
curve for measuring information, as illustrated in Figure 1, is tantamount 
to the choice of a utility function U in some decision problem. Thus, as 



292 MORRIS H. DEGROOT 

I I i ( ~ o  ~ ~1 ) 
I 1 

I I I I 
I t 1 1 > 
o ~o ~1 1 

Fig. i .  T h e  i n f o r m a t i o n  I(~ o ~ ~a)" 

stated in Section 1, the distinction made by some authors between measures 

of information that are based on both the DM's distribution ~ and his utility 

function U, and measures that are based only on ~ is not clear cut. Measures 

that are ostensibly based only on ~ require the choice of a function V or some 

other type of distance function that reflects how far, in terms of information 

g a i n e d ,  ~1 is from ~o. 
Thus, the function V serves as the basis of a kind of "distance" measure 

in the space of distributions ~. It is necessary to use quotation marks around 

the term "distance" because, in general, there are distributions ~o, ~1, and 

~2 such that I(~o --> ~1) 4=I(~1 --> ~o) and such that I(~0 --> ~1) + I(~1 --> ~2) < 
I(~o--> ~2). In other words, this function is not symmetric and does not 
satisfy the triangle inequality. 

In general, we shall replace the definition of I(x) given in (3.4) by the 
more general definition 

I(~o --> ~ )  = V(~I) - -  U(~I, do). (3.7) 

where do is the Bayes decision with respect to the distribution ~o. We now 
reconsider the examples V i (i = 1, 2, 3) given by (2.4)-(2.6) and the corres- 
ponding utility functions. 

PROPOSITION 1. If V(~) = VI(~), as given by (2.4), then 

I1(~o --" ~1) = (ts~ - ~o)  2. (3 .8 )  
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where/a i is the mean of the distribution ti (i = 0, 1). 
Proof In this problem, 

11(to -+ tx) = - VarG(0) - f ( t l ,  #o) 
and 

U(~I,/~o) = --E~I [(0 --/1o) 2] = -- [VarG(0 ) + (]21 --/ /0)2] . 

The result (3.8) now follows. �9 

It should be noted that I1 (~0 "+ t l )  = 11 (~1 "+ tO)" 

PROPOSITION 2. If V(~) = V2(t), as given by (2.5), then 

~l(0) d;k(0). --  t , ( 0 ) l o g  

Proof  

(3.9) 

The result (3.9) follows immediately from (3.7) and the relations 

V2(tl) = f a  ~1(0)log ~a(0) dX(0), 

U(~I,  do) = f_  ~1(0) log Go(0) dX(0). �9 qz 

The function I2 is called the expected weight of evidence in favor of t l  
against to (Good, 1950) or the Kullback-Leibler information for discrimin- 
ating between t l  and to [see, e.g., Kullback (1968), Chap. 1, or Goel and 
DeGroot (1979)]. An important feature of 12 is that it is invariant under any 
one-to-one differentiable transformation of the parameter 0. This property 
is not shared by the measure I1. 

PROPOSITION 3. If V(t) = Vs(t), as given by (2.6), then 

I3(to -+ t l )  = tl(01) -- tx(0~ (3.10) 

where 0 i is the mode of the distribution ~i (i -- 0, 1). 
Proof. The result (3.10) follows immediately from (3.7) and the relations 

v3(~1) = ~1(01), 

U( t l ,do)  = Pr (0 = 0 ~ It1) = t1(0~ �9 
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For future use, we record here the value of I2(~o -+ ~1) for normal dis- 
tributions of 0. 

PROPOSITION 4. Suppose that ~i is a normal distribution with mean Pi and 
variance o7 (i = 0, 1). Then 

"21 f 17~10200~0021 (/'ll "~-- ~0)20201 I2(~o -> ~1) = / l o g  + - -  1 + J . (3.11) 

Proof. In this example, 

~1(0) = log o-9~ + 1 1 
~ o, 2o---~o (O--g~ --20--}1 (0--"l)2" 

Since 
EG[(O --/1o) 2] = oI + (/~1 --/~o) 2, 

E~x[(O--~1) 2] = o 2. 
and 

lo ~,(0)l 
/'2(~0 "--)" ~ 1 ) =  E~I g ~ J '  

the result (3.11) follows. �9 

We conclude this section with a basic result regarding the additivity of 
expected information. 

THEOREM 1. Let ~o denote the prior distribution of 0, let X and Y be any 
observations, and let ~1 (o) = ~o (o IX) and ~2 (o) = ~o (~ Y). Then 

E[I(~o L.> ~2)] = E[I(,~o -+ ~a)] + E[I(~ --> ~2)], (3.12) 

where each of the expectations is taken with respect to the prior predictive 
distribution of X and Y. 

Proof. By (3.7), 

I(~a -+ ~z)  = V [ ~ o (  ~ IX,  Y) ]  - -  U [ ~ o ( O  IX,  Y) ,  d~(X)], 

where d~(X) is the Bayes decision with respect to ~o(o IX). Furthermore, 

E{U[~o(* IX, Y),d~(X)] IX} = U[~o(* IS),da(X)] = 

= V[~o(* IX)]. 
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E[I(~I -+ ~2)] = E{V[~o(" IX, Y)I} --E{V[~o(O IX)l}. 
(3.13) 

Next, by (3.7), 

I(~o --> ~1) = V[~o( ~ IX)] - U[~o(O IX), do]. (3.14) 

where do is the Bayes decision with respect to Go. Furthermore, it follows 

from (3.5), that 

E {U[~o ( .  t X), ao]} -- V(~o). (3.15) 

Hence, from (3.13)-(3.15), we obtain the relation 

E[I(~o -+ ~1)1 + E[I(~I -+ ~2)1 = E{V[~o( �9 IX, Y)] }-- 

-- V(~o). (3.16) 

But also, by (3.7), 

E[I(}o -+ ~2)] = E{V[}o( ~ IX, Y)]} - 

--E{U[~o(O IX, Y), d0]}. (3.17) 

It now follows from (3.5) that the right-hand side of (3.17) is the same as 

that of (3.16). �9 

It has been stated in the literature [see, e.g., Lindley (1956)] that the 
relation (3.12) characterizes the information measure I2 as given by (3.9). 
In fact, however, as Theorem 1 states, (3.12) holds for all information 
measures. 

4. THE DISTRIBUTION 

Essentially all previous work on the subject of statistical information has 
been restricted to the study of expected information. The reason for this is 
basically that the maximization of expected utility is equivalent to the 
maximization of expected information. However, there are at least two cir- 
cumstances under which the DM is interested in the entire distribution of 
information: (i) He sometimes finds that he has obtained much more or 
much less information than he expected. (ii) He may have a choice among 
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different experiments to be performed at varying costs, where the overall 

utility of each experiment is not simply a linear function of the utility of 

the decision problem and the cost of experimentation, as is usually assumed 
in statistical decision theory. In case (i), the DM must study the distribution 

of information in order to evaluate how unusual his data are and decide 

whether his model is reasonable. In case (ii), he must study the distribution 

in order to choose an appropriate experiment. 

We shall now present an example based on normal distributions in which 

the calculation of the distribution of I1(~0 -+ ~1) and of I2(~o -+ ~1), as 

defined by (3.8) and (3.9), is essentially the same. Suppose that the prior 

distribution ~o of 0 is normal with mean /20 and precision to, where the 

precision of a normal distribution is the reciprocal of its variance. Suppose 

also that an observation X is to be obtained such that the conditional dis- 

tribution of X given 0 is normal with mean 0 and known precision r. In this 

example, X might be the sample mean of a random sample of n observations. 

Then it is well known [see, e.g., DeGroot (1970), Section 9.5] that the 

posterior distribution ~1 of 0 given X is normal with mean 

r0/2o + r X  
/21 - (4.1) 

To + r  

and precision 

rl  = ro + r. (4.2) 

It now follows from (3.8) that 

I1(~0 ~ ~1) = (/'11 - - /20)  2 (4.3) 

and from (3.11) that 

I2(~0 -+ ~1) = al + a211(~o ~ ~l),  (4.4) 

where ax and a2 are constants depending on r0 and r, but not depending on 
either/20 or the observation X. Thus, studying the distribution of either 11 or 

12 reduces to studying the distribution of (gl --/20) 2 �9 
It follows from the conditions of this example that the prior predictive 

distribution of X is normal with mean/2o and variance (to + r)/ror.  Hence, 

from (4.1), the prior predictive distribution of/21 --/2o is found to be normal 
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with mean 0 and variance r~ [roO'o + r)]. Finally, therefore, the distribution 
of the random variable 

to(to + r) 
(bh -- Uo) 2 (4.5) 

r 

is the ;(2 distribution with one degree of freedom. 

In particular, as might have been anticipated the distribution Ofll (Go -+ t l )  

and of lz ( to  -+ t l )  does not depend on/ao. Also, 

r 
E [ I i ( t o  --, t l ) ]  - ( 4 . 6 )  

to(to + r) 

An unusually small value or large value of I1 reflects a value of X that was 
unusually close to or far from go. 

It is also instructive to study the conditional distribution ofla for a given 

value of 0. It follows from (4.1) that the conditional distribution of/l~ - / l o  

given 0 is normal with mean r(O - lao)/(ro + r) and variance r/(ro + r) 2. Thus, 

the conditional distribution of Ix (to ~ t l )  given 0 will be a suitably scaled 

noncentral ?(2 distribution, with 

?- 

E[~r~(~~ t ' )10]  (to + r )  2 [1 +r(O--go)2]. (4.7) 

Thus, the DM expects to obtain the most information when 0 is far from/lo. 
We shall conclude this section with some comments regarding the relation- 

ship between sufficient experiments in the sense of Blackwell (1951, 1953) 

and the distribution of information. It is known that if some observation or 
experiment X is sufficient for another observation or experiment Y, then 

E[I(X)] >~ E[I(Y)], (4.8) 

as defined by (2.2), for every convex function V and every prior distribution 
to [see, e.g., De Groot (1962)]. 

It might be anticipated from this result that if X is sufficient for Y, then 
the random variable I(X) must be stochastically larger than the random 

variable I (Y)  for every convex function V and prior distribution to. However, 
that conclusion is not correct. We now present a simple example in which 
I(X) is not stochastically larger than I(Y)  for any strictly convex V or any 

to- 
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Suppose that ~2 contains just two possible values 01 and 02. Suppose that 

the conditional distribution of  X given 0 = 01 is uniform on the interval 

0 ~<x ~< 3, and given 0 = 02 it is uniform on the interval 1 ~<x ~< 4. Then an 

observed value X = x in the interval 1 ~< x <~ 3 yields no information about 

0, since the posterior distribution of  0 will be the same as the prior dis- 

tribution. On the other hand, an observed value x < 1 or x > 3 yields maxi- 

mum information, because the posterior distribution will assign probability 

1, to either 0 = 01 or 0 = 02. Thus, 

Pr [I(X) = 0] = 2/3 (4.9) 

for every function V and every prior distribution to. 

Now define the random variable Y as follows: 

Y = (4.10) 
if X >  2, 

Since Y is simply a function of  X, it follows that X is sufficient for Y. How- 

ever, for any prior distribution to that does not assign probability 1 to either 

0 = 01 or 0 = 02, the posterior distribution of 0 will be different from to 

for both of  the possible observed values Y = 0 and Y = 1. Hence, if V is 

strictly convex, it can be seen from Figure 1 that I ( Y )  will be positive for 

both Y = 0 and Y = 1. Thus, 

Pr [ I ( Y ) > 0 ]  = 1. (4.11) 

It follows from (4.10) and (4.11) that I ( X )  is not stochastically larger than 

I ( Y ) .  

5. R E T R O S P E C T I V E  I N F O R M A T I O N  

With just a single observation X or a single change in the distribution of  0 

from ~o to ~1, it is not possible to determine whether an unusual value of  
I ( to  ~ t l )  is due to an "inappropriate" prior distribution, i.e., an unlikely 

value of  0, or an "inappropriate" likelihood function, i.e., an incorrect model 

of  the sampling process. In this section we shall extend the notion of  infor- 

mation to new concepts that are relevant in problems of  sequential analysis. 

Consider a prior distribution to of  0 and a finite sequence of  observations 

X1, X2, �9 �9 �9 Xn leading successively to the sequence of  posterior distributions 
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~1 . . . .  , ~,,. Thus, ~j is the posterior distribution of  0 given X1 . . . . .  Xj  ( j  = 

1 , . . . ,  n). For a given decision problem, let dj denote the Bayes decision 
with respect to ~j ( j  = 0, 1 . . . .  , n). As before, we assume that dj exists 
and is unique. 

Now, for i < j < ~ k ,  we define the information in changing from ~i to 
~j, evaluated from the perspective of ~k, to be 

l(~f ~ ~j I~k) = f (~k ,  dj) -- U(~k, di). (5.1) 

We refer to the information defined by (5.1) at retrospective information 

because it represents information that we seem to have obtained at an earlier 

stage of  the sequential process as evaluated with respect to a posterior dis- 

tribution that we have reached at a later stage of  the process. It is possible 
that I ( ~ i ~  ~jl ~ k ) < 0 .  Roughly speaking, a negative value of this retro- 
spective information will be obtained if, viewed from our current posterior 

distribution, the change from ~i to ~j moved us away from the values of 0 

that we now regard to be the most likely. 

Retrospective information is an extension of the concept of information 
defined by (3.7) since 

1(~i  ~ ~j) = I(~f  ~ ~j I ~ )  ( 5 . 2 )  

in our present notation. The following additivity property of retrospective 
information follows immediately from (5.1): 

n - 1  

I(~f-~ ~i+1 I~n) -~- I(~0 ~ ~n). (5.3) 
i=O 

The sequential pattern of  information that is obtained from a sequential 
sample can be analyzed in a variety of  ways. For example, each of  the follow- 
ing sequences can be studied: 

I (~ i  ~ ~ i .1 ) ,  i = 0 ,  1 . . . .  , n - -  1 ; ( 5 . 4 )  

I(~i-~i.tl~n), i =  0 , 1  . . . .  , n - - l ;  ( 5 . 5 )  

I(~o ~ ~1 [~]), / = 1, 2 . . . .  , n. (5.6) 

The analysis of  these sequences and their relevance to decision making will be 
discussed in a future paper. 
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We shall now present the exact form of retrospective information for the 

functions V~ (i = 1,2,  3) given by (2.4)-(2.6) .  

PROPOSITION 5. If  V(~) = VI(~), as given by (2.4), then 

I i ( ~ i  ~ ~ j l  ~ k )  = (Uk - -  Ui)  2 - -  (.~k - -  Uj)  2, (5.7) 

where Ui, gj,  and Uk are the means of the distributions ~i, ~j, and ~k. 
Proof. In this example, d r = Ur for r = i,j, k, and as shown in the proof  of 

Proposition 1, 

U(~s, dr) = --  Var~s(0) -- (Us -- Ur) 2. 

The result (5 .7)now follows from (5.1). �9 

PROPOSITION 6. If V(~) = V2(~e), as given by (2.5), then 

~j(O) dX(O). (5.8) I2(~i ~ ~jl~k) = Ja  ~k(0) log 

Proof. As shown in the proof  of  Proposition 2, 

U(es, d . )  = f a  eXO) log e~(O) dX(O). 

The result (5.7) again follows from (5.1). �9 

PROPOSITION 7. If  V(~) = V3(~), as given by (2.6), then 

Ia(~i -+ ~j [~k) = ~k( Oj)- ~k(0~), (5.9) 

where 0 r is the mode of  ~r (r = i,]). 
Proof. The proof  again follows directly from the relations presented in 

the proof  of  Proposition 3. �9 

We conclude the paper with the calculation of three different types of  
expectations of  retrospective information. For r = 1 , . . . ,  n, we shall use 

the notation Er to denote a conditional expectation that is calculated given 
the observations X1, �9 �9 Xr. 

THEOREM 2. For i < j  ~ k ~< n, 
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Ek [I(~i -~ ~j [ ~n)] = I(~f -~ ~j[ ~k). (5.10) 

Proof. The expectation on the left-hand side of  (5.10) is Ek [U(~n, d~) -- 
U(~n, d~)]. At stage k, both  d i and dj are fixed. Also, 

Ek[U(~n,d)] = U(~k,d) f o r d E D .  (5.11) 

It follows that the left-hand side of  (5.10) is 

u(~k, dj) - u(~k, d~), 

which by definition is I(~i -+ ~j I ~k)- �9 

In words, Theorem 2 states that if we ask at a given stage k how we expect 

to evaluate, at some future stage n, a past change in information from ~i to 

~j, the answer is that we expect to evaluate that change exactly as we presently 

evaluate it at stage k. The answer does not depend on n. 

THEOREM 3. For i ~<j ~< k < n, 

Ei[I(~i-* ~k I f , ) ]  = Ej[V(~k)] -- U(~j, di). (5.12) 

P r o o f  The expectation on the left-hand side of  (5.12) is Ej[U(~n, d k ) -  
U(~, ,  dl) ]. At stage j, the decision di is fixed and 

Ej [U(~,,, di)l = U(~j, dl). (5.13) 
Also, 

Ej [U(~n, dk)] = EjEk [U(~n, dk)] = Ej [U(~k, d~)] = 

= Ej [V(~k)]. (5.14) 

Eqn. (5.12) now follows from (5.13) and (5.14). = 

Theorem 3 has an interpretation in words that is not unlike that given for 

Theorem 2. Again it can be seen that the expectation in (5.12) does not 

deper~d on n. 

THEOREM 4. For i ~<] < k < n, 

Ei[I(~j-+ ~ I~n)] = Ei[I(~j -+ ~k)]. (5.15) 

P r o o f  The expectation on the left-hand side of  (5.15) is 
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Ei[U(~, , ,  dk)  - -  U(~n, dj)]  = EiE k [U(~jn, d~) - -  U(~n, dj)] 

= Ei [ V(~k) --  U(~k, dj)] 

= Ei [ l (~j  - '  '~k)]. 

In words, Theorem 4 states that  if  we ask at the beginning of  the process 

how we expect to view a future change from ~j to ~k from the perspective 

of  the final stage n of  the process, the answer is that we expect our final 

retrospective evaluation to be precisely the same as our prior expectat ion 

of  that information.  Again, the result does not depend on n. 

Finally, there is a simple alternate expression for the result in Theorem 4. 

COROLLARY 1. For  i ~<] < k < n, 

Ei[I(~j -+ ~k I~n)] = E i [ V ( ~ ) - -  V(~j)]. (5.16) 

Proof. It was shown in the proof  of  Theorem 4 that the expection on the 

left-hand side of  (5 .16) is  equal to E i [ V ( ~ k ) -  U(~k, dj)]. But 

Ei [U(~k, d./)] = EiE j [U(,~t,, df)] = E i [V(~jj) I. " 

NOTE 

Presented at the Second International Conference on Foundations of Utility and Risk 
Theory, Venice, June 5-9,  1984. This research was supported in part by the National 
Science Foundation under grants SES-8207295 and DMS-8320618. I am indebted to 
John Bacon-Shone of the University of Hong Kong and Richard Barlow of the Univer- 
sity of California, Berkeley, with whom the concept of retrospective information intro- 
duced in this paper was jointly developed. 
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