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Abstract
This paper presents an approximate solution for calculating eigen-frequencies of
transverse vibration of rectangular piates elastically restrained*against rotation along
edges. The formulae are not only very simple and easily programmed but also have
high accuracy. Finally, some numerical results are given and compared with other

results obrained.
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I. Introduction

In the fields of aeronautical, civil and naval engineerings and the like, many structures
may be simplified to rectangular plates elastically restrained against rotation along edges.
Thus it 1s of great importance to study the dynamic characteristics of such plates. For recent
vears, some study results about the eigen-frequencies of rectangular plates with elastical
restraints along edges have been reported but these studies mainly focused attention on the
approximate estimation of fundamental frequency!' 73J, the calculating for high order eigen-
frequencies is very limited. Laural* ¥ took the polynomial functions as the displacement
function approximately to estimate the fundamental frequency of rectangular plates with
elastical restraints along edges. Warburton!®’ took the superposition of simply supported beam
functions and clamped supported beam functions approximately to calculate the low order
eigen-frequencies of such plates by using Rayleigh-Ritz method. Mukhopadhyay!” used the
semi-analysis method'®’ to solve the high order eigen-frequencies of such plates, the results
have good accuracy.

Ritz method is a valuable method which is widely used approximately to calculate the
eigen-frequencies of structures. Its accuracy completely depends on the selection of basis
functions. Considering the structural features of rectangular plates with elastical restraints
along edges, this paper selects the superposition of beam functions and polynomial functions
as the basis functions. Ritz method is utilized to calculate eigen-frequencies of such plates. The
formulae are simple and easily programmed. The numerical results show good accuracy
compared with the others obtained.

II. Mathematic Model

Known from the vibration theory of plate in rectangular coordinates, the differential
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equation of transverse vibration of plate is

Pk 3w
2.1
Viut—p =0 (2.1)
where w is the transverse displacement of plate, p and % are the density of material
3 .
and the thickness of plate respectively, D=T.2..(‘EI‘.{‘..[?_>_ is the flexural rigidity of plate, E

and p are Young's modulus and Poisson ratio of material respectively.
For the rectangular plate with elastical restraints along edges shown in Fig. 1, the
boundary conditions of its transverse vibration are
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Fig.1 The rectangular plate elastically restrained
against rotation along edges
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where ¢¢(i= 1, 2, 3, 4) are the rotational flexural coefficients of four edges of plate
respectively. If ¢¢(i= 1, 2, 3, 4) are taken to the limit value ( 0 or oc), then the simply
supported edges and clamped supported edges are gained respectively .

Let w=2z(x,y)sin(pt+g@), the potential energy and kinetic energy of elastical plate
shown in Fig. 1 can be written as follows
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where p is the eigen-frequency of transverse vibration of plate, =(x, y) is the transverse
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displacement of plate.
Form Hamiltonian principle, there is the following variation

5(Umlx"'Tmlx)=0 (2.4)
The approximate solution of z(x, ) is assumed to be

2(y0) =32 3 A X (1) Va(0) (2.5)

mul n=l

where X, (x) are called as eigen-functions of plate in x direction and ¥ ,(y) are called as

eigen-functions of plate in y direction, A.. are unknown coefficients. Substituting Eq. (2.5) into
Eq. (2.4) gets
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(2.7)
Taking account of the structural characteristics of rectangular plates elastically restrained
against rotation along edges, one can assume that

3
X (%)= sin(_’glx)+ 3 Comsx?
k=0

(2.8)

Va (y)__sm( )+ ZDnsy"

k=0
where C. and D, are unknown coefficients.

Let Xm(x) and Y,(y) satisfy the corresponding boundary conditions of plate with
elastical restraints. one has
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Xa (9)=0, 22 _4.D(1-i) L5 (x=0))
Xa (=0, 2= _gp01-w) LE2 (x=0)
Vo =0, Lre g DO-1 = (0=b) o
Vo =0, LocpD0-) T =0)

Substituting Eqgs. (2.8) into Egs. (2.9)., one can gain the unique solution of Cm and Da.
Moreover, because the integration of multiplication of beam functions with polynomial
functions can be in the analytical formation, C,‘,,‘,,’) and mﬁ,.",;") can be calculated
accurately without numerical integration.

III. Numerical Examples

Now considering a square plate with three edges simply supported and one edge elastically
restrained against rotation shown in Fig. 2.
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Fig. 2 The square plate with three edges simply supported and

a|
Ol-
one edge elastically restrained against rotation

If let §=-§- and 1)=%&, Egs. (2.8) can be written as

X (&)=8inmag+ 3 Cpat®

k=0
s (3.1)
Yo (£)=sin nag+ 3 Dount
k=0
In Egs. (2.9), let ¢p1=¢, a= ¢aD and @s=¢;=¢,= o0 , one has
Xa(e)=0, L2 = —a(-GEe (x=a)
Xa(®)=0, LH2=0  (x=0) > (5.2)
Vaim=o, Lrt=0  (y=0, @) ,

Substituting Egs. (3.1) into Eqgs. (3.2), one has
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o~ Ao (=1)™mn
Cor=Cme=0, Cpy= —Cps= 2(3a(1—p?)+1) (3.3)

Da=0 (k=0,1,2,3)

One can easily get
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where § (i—f) = {(1) %:#" ) . Substituting above equations into Eqgs. (2.7), one can get C{5

and mf,f,{ ), then eigen-frequencies can be obtained from Eq. (2.6) .

The first ten order frequencies are given in Table 1 by using this paper’s method and some
corresponding data resulted from other methods are also listed in the table for comparison.

Table 1 The first ten order eigen-frequencies l=(_e§_'#pz)m and g= iD of square

plate with three edges simply supported and one edge elastically restrained
agains't rotation (=03, g=r=5)

a A Az As Aq As Ag As As Ay Aso

0.0 23.647 51.678 58.647 86.145 | 100,284 | 113.230 | 133.835 | 140.851 [168.990 187.544
-0 1 123.646] | [51.6741 | [58.646] | [86.134] |[100.270]

0.01 | 33-393 | 51.459 | 57.815 85.353 | 100.089 | 111.531 | 133.092 | 139.196 |168.810 |184.684
: (23.600) | (51.300) | (57.210) | (85.899) | (99.765)

0.05 | 22.636 50.879 55.543 83.366 99.626 | 107.323 | 131.392 | 135.345 168.419 [178.261

0.1 | 22.037 50.486 53.960 82.118 | 99.351 | 104.757 130.432 | 133.149 [168.211 {174.800
0.5 | 20.600 49,719 50.843 79.917 98.890 | 100.460 | 128.911 | 125.675 |167.901 |169.680

1.0 20.222 49.549 50.156 79.469 98.799 99.629 | 128.624 | 129.026 [167.845 [168.773
01 (20.188) | (49.320) | (50.145) | (79.433) | (97.476)

5.0 | 19.846 49.391 49.521 79.065 98.718 98.892 | 128.372 | 128.455 |167.796 |167.988
10.0 | 19.793 49.370 49,435 79.011 98.707 08.794 |128.338 |128.381 (167.790 1167.886

100.0 | 19.745 49.350 49.357 78.962 98.697 98.706 | 128.308 | 128.312 [167.784 167.794

1000.0 19.740 49.348 49.349 78.957 98.696 98.697 | 128.305 | 128.306 [167.783 |167.784
V1 (19.460) | (49.210) | (49.348) | (79.877) | (97.214)

o 19.739 49.348 49.348 78.957 1 98.69% 98,696 | 128.305 | 128.305 |167.783 |167.783
[19.739] | [49.348] | (49.348) [78.957]3[98.696]'

Note: The data in [ ] are quoted from [9] and those in () from [7].
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IV. Conclusion

In this paper, the superposition of simply supported beam functions and polynomial
functions is selected as the basis functions of transverse vibration of rectangular plates with
elastical restraints. The simply supported beam functions are used as the main solution of basis
functions, since the simply supported beam functions don’t satisfy all the boundary conditions,
thus the polynomial functions are added as the modified solution of basis functions in order to
make basis functions satisfy all boundary conditions. It should be noted that the main solution
of basis functions is not only limited to simply supported beam functions, arbitrary beam
functions may also be selected as main solution but in order to enhance the accuracy, the
beam functions which satisfy boundary conditions as more as possible should be selected as
the main solution of basis functions. This paper selects the simply supported beam functions as
main solution of basis functions, not only the calculating is very simple but also the amount of
work is little, if other beam functions are selected as the main solution of basis functions then
the amount of work will increase. In addition, this method can also be used to calculate eigen-
frequencies of plate with arbitrary elastical supports on edges.
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