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A b s t r a c t  

This paper presents an approximate solution for calculating eigen-frequencies of 

transverse vibration of rectangular plates elastically restrained,against rotation along 

edges. The formulae are not only very simple and easily programmed but also have 

high accuracy. Finally, some numerical results are given and compared with other 

results obtained. 
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I. I n t r o d u c t i o n  

In the fields of aeronautical, civil and naval engineerings and the like, many structures 

may be simplified to rectangular plates elastically restrained against rotation along edges. 

Thus it is of great importance to study the dynamic characteristics of such plates. For recent 

years, some study results about the eigen-frequencies of rectangular plates with elastical 

restraints along edges have been reported but these studies mainly focused attention on the 

approximate estimatic~n of fundamental frequency [~-s], the calculating for high order eigen- 

(requencies is very limited. Laura E4- 5] took the polynomial functions as the displacement 

function approximately to estimate the fundamental frequency of rectangular plates with 

elastical restraints along edges. Warburton I6~ took the superposition of simply supported beam 

functions and clamped supported beam functions approximately to calculate the low order 
eigen-frequencies of such plates by using Rayleigh-Ritz method. Mukhopadhyay Ev~ used the 

semi-analysis method ES~ to solve the high order eigen-frequencies of such plates, the results 
have good accuracy. 

Ritz method is a valuable method which is widely used approximately to calculate the 

eigen-frequencies of structures. Its accuracy completely depends on the selection of basis 

functions. Considering the structural features of rectangular plates with elastical restraints 

along edges, this paper selects the superposition of beam functions and polynomial functions 
as the basis functions. Ritz method is utilized to calculate eigen-frequencies of such plates. The 

formulae are simple and easily programmed. The numerical results show good accuracy 
compared with the others obtained. 

II. M a t h e m a t i c  Mode l  

Known from the vibration theory of plate in rectangular coordinates, the differential 
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equation of transverse vibration of plate is 

4 Ph a~'~ _ (2.1) V w + - ~  --EF- = o 

where w is the transverse displacement of plate, p and h are the density of material 

and the thickness of plate respectively, D Eh~ = - 1 2 ( 1 - # z ) -  is the flexural rigidity oi" plate, E 

and # are Young's modulus and Poisson ratio of material respectively. 

For the rectangular plate with elastical restraints along edges shown in Fig. I, the 
boundary conditions of its transverse vibration are 

Fig. I 

v 

b - T - ~ ' E ~ ,  
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The rectangular plate elastically restrained 
against rotation along edges 

Dfa% + a% ] ) a= = - ~ ,  t ~  u -EE-I' x = ~  va=O~ ax 

aw 13fo%a +# 0% I ~=o, -0~ -=~ '  t ~ -  -y~-j, x=o 
(2.2) 

am n.f a~w a~w I w=o, -~--=-4~,oLo ~, +u - ~ j ,  u=b 

a~ z~ [a=~ +u a'wl =o, ~ = ~ "  t-Ej- ax ~ J, v=o 

where qS~(i= l, 2, 3, 4) are the rotational flexural coefficients of four edges of plate 

respectively. If q~(i= 1, 2, 3, 4) are taken to the limit value ( 0 o.r oc), then the simply 
supported edges and clamped supported edges are gained respectively. 

Let tv----z(x,g)sin(pt+q~), the potential energy and kinetic energy of elastical plate 
shown in Fig. 1 can be written as follows 

• r ~z z z 

+ ~  ~jo ax, ~ [,.o,:U- }o-T~-~- ] ,.odv 

+ OV "~ av ~ - o  ~ .  

Tm,x=+PhP~Ilz=dxdv 

(2.3) 

where p is the eigen-frequency of transverse vibration of plate, _-(x, V) is the transverse 
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displacement of plate. 
Form Hamiltonian principle, there is the following variation 

3(U,.o=-T=,,,)=O (2.4) 
The approximate solution of z(x, g) is assumed to be 

q 

z (x ,v )  = ~ y-~A,,,,,X,,,(x)Y.(v) (2.5) 
~ . 1  ftffil  

where X~,(x) are called as eigen-functions of plate in x.direction and Y.(9)  are called as 

eigen-functions of plate in V direction, Am° are unknown coefficients. Substituting gq. (2.5) into 

Eq. (2.4) gets 

--2 m.~. A,~,=0 \ j = l , 2 , . . . , r !  
m . = l  = 

where 

t2 PhaSb 2 
= T P  

I f [  . I  dzX= , -.~ d~Y, C~'l ~ =a ~ (v~X,~Y.) (v~x, Y,) - (1 -u¢~, d---3W-~..,~, dv~ 

dX,~ d Y .  dx~ dYj'~'] + X ,  d~Y. do'X~ "y~ 2 ' 
dy z dx z - dx dy dx - - ~ ] J  dxdy 

+-~,~ ~x )1..~ ~+ ~,,~- ~ ~ e  ~,,,,.o 

~,  ~ -~ -v - -w ,T ,X x } 

rn (r~ = @  ~ t X , . Y . X ~ Y  jdxd9 m l  

(2.7) 

Taking account of the structural characteristics of rectangular plates elastically restrained 

against rotation along edges, one can assume that 

~'°~ I (2.8) 

. ( = )  y .  (v)=sm--g--9  + Y2~D.J9 ~ 
k- I I  

where C,~ and D,k are unknown coefficients. 

Let J(=(x) and Y , (y )  satisfy the corresponding boundary conditions of plate with 

elastical restraints, one has 
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d~ X "~ ] dX,,, = - ¢ , D (  1 -U~) ' (x=a)  
X .  ( x ) = 0 ,  dx ctx" 

dX,,, d~x,~ X,, (x)=0,  -----ff~---¢~D(1-/~) ~ (x---0)~ 

dY.. d~Y. (2.9) 
Y. (y~=0, --dff-- -¢'sD(1-t~ld~y.dy ~ (y=b) ~ 

- - ~  (y=0)) Y. (y)=o, - - ¢ , D ( 1 - #  2) y 
Substituting Eqs. (2.8) into Eqs. (2.9), one can gain the unique solution of Cm~ and D.,. 

Moreover, because the integration of multiplication of beam functions with polynomial 
functions can be in the analytical formation, C (~) and -(~J) m,,., can be calculated 
accurately without numerical integration. 

III. Numerical  Examples 

Now considering a square plate with three edges simply supported and one edge elastically 
restrained against rotation shown in Fig. 2. 

Fig. 2 

x 

a 

The square plate with three edges simply supported and 
one edge elastically restrained against rotation 

Y If let $ = x  and r/---~- 
a 

Y 

a _ _  

O 

In Eqs. (2.9), let ¢~=¢, 

, Eqs. (2.8) can be written as 

X,~ (~) = sin m~r~+ ~ C ~  ~'-03 / 
Y. ( ~ ) = s i n  nzrl+y']D.,,r?' 

b - 0  

¢0 
O t ~  

a 

dX,, 
x.(~)= 0, dE 

d~X,,, 
x , . ( ~ )  = o, -7- .U- .=  o 

d~-y. Y. (,~)=o, d-7-u-=o (u=o, a) 

and b~=¢8=¢,=oo  ,onehas 

~, d2X,,, 
~=-a(l-u ) d---3T~- (x=a) 

(x=o) 

Substituting Eqs. (3.1) into Eqs. (3.2), one has 

(3.l) 

(~.2) 
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( - -  1 )mm~: / 
C . 0 = C . , - ~  0, C , ~ 1 = - C . s - - -  2 ( 3 a ( 1 _ / ~ z ) + 1 )  

} 
D . , = 0  ( k = 0 , 1 , 2 , 3 )  

3) 

One can easily get 

Io x '  ( ~ ) X Y ( ~ ) d ~ - ~ + c S ( i - J ) - - ~ t ~ ' ~ Y z ' T ' - - ' f ~ - " ' J ' T  lOS 

~ ' X ; t ( ~ ) X ~ ( ~ ) d ~ - - - + i ' J ~ - n 4 ( 5 ( i - j ) - 6 ~ r ( i (  - 1 ) ' C t , + j ( - - 1  )-'C,,)--]--12C,,C, 

4 1 1 .2 , . . . . . .  6 / ( - 1 ) ' C y l J t . ( - 1 ) : C ¢ l ) _ _ ~ C ,  lCy -- (3 4) 
_ l, o X f ( ~ ) X A ~ ) d ~ = - - ~ '  # ° t ' -Y: ' t ' -d '~ ,  i 

z 1 f 1 . .  ~ . loy: (,> )., 

where 3 ( i - - j ) = { ~  (i#(i=j)j) . Substituting above equations into Eqs. (2.7), one can get --,,.C('Y) 

and --(*Y),,,=., then eigen-frequencies can be obtained from Eq. (2.6) 

The first ten order frequencies are given in Table 1 by using this paper's method and some 

corresponding data resulted from other methods are also listed in the table for comparison. 
f r, ha( Xt/a (bD 

Table 1 The f i rs t  ten  o rde r  e igen-f requencies  ~ = [ ~ p ' |  and a . . . .  of  square  
\ w / G 

plate wi th  th ree  edges simply suppor ted  and one edge elast ical ly res t ra ined  

aga ins t  r o t a t i on  ( p =  0.3, q=  r =  5) 

a As a~ I ~4 ~s L As 

I 23.647 58.647 86.145 100.284 133.835 140.851 
0.0 [23.646] [58.646] [86.134] [100.270] 

23.393 57.815 85.353 100.089 133.092 139.196 
0.01 (23.600) (57.210) (85.899) (99.765) 

55.543 83.366 I 131.392 135.345 

t130.432 

A2 

51.678 
[51.674] 

51.459 
(51.300) 

0.05 22.636 50.879 99.626 

0.1 22.037 50.486 53 .960  82.118 99.351 

0.5 20 .600 49.719 I 50.843 79 .917  98.890 

20.222 50.156 79 .469  98.799 
1.0 (20.188) (50.145) (79.433) (97.476) 

5.0 19.846 49.521 79.065 

49.435 79.011 

49.357 78.962 

10.0 19.793 

100.0 19.745 

19.740 
1000.0 (19.460) 

191739 
oo [19.739] 

49.549 
(49.320) 

49.391 

49.370 

49.350 

4 9 . 3 4 8  
(49.210) 

49.348 
[49.3487 I 

Note: The data in [ ] are 

49.349 78.957 
(49.348) (79.877) 

I 49.348 78.957 
(49.348) [78.957] 

quoted from [9] and 

~6 

113.230 

111.531 

107.323 

104.757 

100.460 

99.629 

98.718 98.892 

98.707 98.794 

98.697 98.706 

98.696 98.697 
(97.214) 

98.096 98.696 
}[98.696] , 

128.911 

128.624 

128.372 

I 12,8.338 

128.308 

12,8.305 

128.305 
) 

those in ( ) from [~]. 

133.149 

129.675' 

129.026 

1,18.455 

128.381 

/28.312 

128.306 

128.305 

.!.9 ~.1o 

168.990 t87.544 

168.810 184.684 

168.419 178.261 

168.211 174.800 

167.901 1169.680 

167.845 t68.773 

167.796 167.988 

167~790 167.886 

167.784 167.794 

167.783 i167.784 

, . ] ~  
167.783 167.783 
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IV. Conclus ion  

In this paper, the superposition of simply supported beam functions and polynomial 

functions is selected as the basis functions of transverse vibration of rectangular plates with 

elastical restraints. The simply supported beam functions are used as the main solution of basis 

functions, since the simply supported beam functions don't satisfy all the boundary conditions, 

thus the polynomial functions are added as the modified solution of basis functions in order to 

make basis functions satisfy all boundary conditions. It should be noted that the main solution 

of basis functions is not only limited to simply supported beam functions, arbitrary beam 

functions may also be selected as main solution but in order to enhance the accuracy, the 

beam functions which satisfy boundary conditions as more as possible should be selected as 

the main solution of basis functions. This paper selects the simply supported beam functions as 

main solution of basis functions, not only the calculating is very simple but also the amount of 

work is little, if other beam functions are selected as the main solution of basis functions then 

the amount of work will increase. In addition, this method can also be used to calculate eigen- 

frequencies of plate with arbitrary elasticat supports on edges. 
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