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On the first eigenvalue of the Dirac Operator

on 6-dimensional manifolds

by Thomas Friedrich
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Ralf Grunewald

1 . Introduction

Let M be a compact Riemannian spin manifold with positive scalar

curvature R and let R denote its minimum. Consider the Dirac
o

operator D : (S) --- F r(S) acting on sections of the associated

spinor bundle S. If A- is the first positive or negative eigenvalue

of this operator. then

1 n +
R -l Il.

2 I n- o

Furthermore, if + n- R ° or -2 R is an eigenvalue of
2 n-1 o 2 n-i o

the Dirac operator, then Mn must be an Einstein space (see 2 ])

This situation occurs quite often when n is odd. On S3/r the

lower bound is an eigenvalue of D if and only if S3/r is homo-

geneous, and there are also 5-dimensional non-homogeneous spa-

ces S5 /r of constant curvature such that both values + 1 RO
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are eigenvalues of the Dirac operator (cp. C 9 ]). Moreover, there

is an Einstein metric of positive scalar curvature on the 5-dimen-

sional Stiefel manifold V42 = SO(4)/(2) with the same property

(see 2 ). Similar examples can be given for n = 7 and n = 9.

On the other hand, for n = 4. only on the sphere S4 the lower

bound is an eigenvalue of the Dirac operator (see 3 ]). Moreover.

up to now no even dimensional spaces different from the sphere

and realizing the lower bound as an eigenvalue have been known.

The aim of this paper is to give such examples for n = 6.

Theorem: Let M6 be either the flag manifold F(1,2) or the complex

projective space CP 3 . Then M6 admits a non-Kahler Rie-

mannian Einstein metric of positive scalar curvature such

that + 25/ R are eigenvalues of the corresponding Di-

rac operators.

If F( 1 2) and CP3 are considered as twistor spaces over CP and

S4 . respectively then the considered metric arises from the stan-

dard Khler metric of these spaces by scaling in the direction of

the S2 -fibres (see 4] and also ' 10-] for a more general

approach). In proving the theorem we restrict ourselves to the

case M6 = F(1 ,2); the remaining part can be carried out in the same

way.

2. About the geometry of F(12)

Consider the flag manifold F(1 .2), i.e. the set of pairs (I,v) where

both I and v are linear subspaces of C3 of dimension 1 and 2.

respectively, and I cv. Then the U(3) -action on C3 results in

F(1.2) = (/U x U) x U(1) The Lie algebras of G = U(3) and

H = U(1) x U(1) x U(1) are given by = A M3 (C) : A+ A = 0

h = A e : A is diagonal 

We decompose g = h ( with = V1 G V2 (3 V3 and
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O z O 0 0 z

V1 ; 0 zC V2 0 0 ) z .°

O O -z 2 0

V3 O 0) 1V3 : 0 0 , ze .

0 - 0

Consider the inner product on given by

B(X,Y) = - Tr(XoY), X.Ye 9.

For arbitrary c1 . c2 , c3 R with c. 0 we define a G-invariant

Riemannian structure on F(1.2) = /H by

B = i V i x V iBc1'c2 ' 3 i=1

According to 1 we get different Einstein metrics (up to a homo-

thety) only for c1 = c2 = c3 = 1. The former

turns out to be a non-Kahler biinvariant Einstein metric of scalar

curvature R = 30 whereas the latter (which we shall omit in our

further considerations) is the standard left-invariant Khler Einstein

metric with scalar curvature R = 24.

Therefore, considering c 1 = c2 = c3 = 1 we introduce an ortho-

normal base {el *. e6i of , in the following way: Denote by

D.j = ( cia (jb)C1a b 3 the usual generators of M3(R). consider

E.. = D.. - D.. and S..j = 1 (Dij + D..). 1 - i.j - 3. and set
Ij I JI Ij J j

e 1 = E12' e2 S12' e3 =E 13 e 4 = S13 e5 = E2 3 , e6 = S23

As D. j-kl = 0jk Dil, the following commutator relations hold:

[Eij, Ejk] Eik' CSij, Sjk] = Eki if i j k, and

Eij, Sjk Sik if i j k, i.
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Thus e2i-l, e2i} is a base of Vi , and in addition it holds that

CVi, Vi3 h, C h, Vi ' Vi. We also fix a base of h by setting

Hi = S, i = 1,2.3.
2 ii 

As B is Ad(G)-invariant, it follows from Wang's theorem that the

induced Levi-Civita connection on F(1.2) is uniquely determined by

a linear map A: , -a End (,) satisfying the conditions

X (i) A(xY - (Y) = E x y 

(ii) A(X) is skew-symmetric with respect to B, i.e.

B(A(X)Y,Z) + B(A(X)Z,Y) = 0.

(see C7 3). Here X,YJ] denotes the -component of X,Y:].

From these properties we easily derive the explicite form of A

In fact, for arbitrary vectors X, YZ e£ we obtain

B(A(X)YZ) = B(A(Y)X,Z) + B([X,Y ] , Z)

= - B(A(Y)Z,X) + B(EX,Y , Z).

because the decomposition g = h ) is orthogonal with respect to

B. As B is Ad(G)-invariant, we also have

B(A(4Y Z) = - B(A(X)Z,Y) = - B(A(Z)X,Y) - B (CXZ]. Y)

= B(A(Z)Y,X) + B(E X,Y ], Z) .

As /(YZ, A(Z)y 6e , we conclude A(Y)Z = - A(Z)Y, and with

respect to (i) it yields A (Y)Z = 2 Y, Z , YZ e X . After iden-

tifying T. with the standard Euclidean vector space IR6 by means of
the base {el ... e 6 of !... the image of A: IR6

- End (R 6 )

is actually contained in so (6), the Lie algebra of S0(6) spanned

by i Eij M6(R); 1 - i -j 6 . and we have

61 ~~~~~~~~1A(e) = 2 (E + E) A(e) = (E + E

e2)5 E36) /(e 5 )= (E13 E24

A(e 3 ) = 2 (E2 6 - E1 5 ) Ae 6 ) = (E14 - E2 3)2 26j 15614 2
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Under the same identification one can also compute the isotropy

representation Ad : H -- SO( ) = SO(6) of G/. For an arbitrary

element

ite

h 

O

0
is

e

0

o

0I te

it is defined by Ad(h)ej =

Ad(h)=

cos(t-s)
sin(t-s)

0

0

0

0

-sin(t-s)

cos(t-s)

0

0

0

0

C H, t,r, s eR,

h-e.h- 1 and given by the matrix
J

0

0

cos(t-r)

sin(t-r)

0

0

It follows that the differential Ad

Ad,(H1 ) = -E12 - E34

Ad,(H2 ) = E 12 - E5 6

Ad,(H3 ) = E3 4 + E5 6 .

0

0

-sin(t- r)

cos(t-r)

0

0

0

0

0

0

cos(s-r)

sin(s-r)

0

0

0

0

-sin(s-r)

cos(s-r

: h -- so(6) is then given by

<2>

3. Proof of the theorem

Lett: Spin(6) > SO(6) be the 2-fold covering

induced map , : spin(6) > so(6) on the Lie

isomorphism.

Lemma: There exists a lifting homomorphism Ad

Ad, hence clAd = Ad holds.

of S0(6). Then the

algebras is an

: H-- Spin(6) of

Proof: We have to show only that Ad*( 'r (H))c *( ( S p i n ( 6 ) ) ) = 0,

or equivalently, that each generator of T1 (H) vanishes

under the superposition with Ad. Knowing 7 1(S(6)) = Z2 ,

the assertion follows immediately from the formula of Ad(h)
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given above and the additional remark, that for

Cos t - sin 
A(t)= t Cos t : CO. 23- S0(2). the matrices

A (t)

0

0

o

o

0

A(t)

0

o
1

and

|A(2t)

l:

O O

1 0

0

describe the same element of t'1 (SO(6)) . [

The map Ad : H -. Spin(6) gives rise to a natural spin-structure

P = G x Ad Spin(6) over G/H. However. this is the only possible

one, since H (F(1 .2); Z2 ) = 0 (see C 8]). Then the spinor bundle

S is a vector bundle over G/H. which is associated to P by the

map : Spin(6) - GL(~a 6); here e means the restriction of

K : Cliff C(R6) End(a 6 ) to Spin(6). The (i-algebra-isomorphism K

can be realized as follows (a general reference is C 5 ): In

Z 6 1 C8 we choose the base obtained from6

: 1 (1 ) u

e= i )

we define K(e )

K(e 3 )

K(e5 )

U l = (i') by setting

Ou ( ) T

92 E 0) . T i

= E E 0 91

= 91 T 0 T

u( 61. 62 3) =

Using the notations

-i and E = (° 1)

K(e2 ) = E ( E (0)92'

K(e) = E 92 ( T.

K(e6) = 920 T ( T

and since Cliffc(R6 ) is generated by the vectors e ..... e6 E IR6 .

the isomorphism K is completely described.

Noting that gl(u 1 ) iul gl(u_1 ) = iu+l.

92 (U 1) Ul

T (l) = -U 1

9 2 (U- 1 ) = -U+ 1

T (u 1) = u 1.

the action of K on the u(...) can easily be computed. The restric-

tion ae, of K splits into two irreducible -dimensional resprentations
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3t= at ) Xt- with at - (e ): A - 1 j 6; here we
j 6 6'

set

/N 6 = Lin u(1,1.1), u(1,-1.-1), u(-1.1,-1), u(-1,-1,1)i,

A 6 = Lin lu(1.1,-1),u (1,-1.1) , u (-11,1). u(-1.-1,-1) .

Using this order

matrices

of the u(...), the C-(e ) are given by the
j

i 0 0 0

O i 0 

0 0 i 0

0 O 0 i

i 0

0 0 1

o 0 -i

0 i 0

. ac(e 2 )= 

at (e 4) = 

1 0 O

0 0 -1 0

0 0 1

0

0

-1 0 0

0 0 0

0 0 1 3>

0 1 0

0
ac (es) = oi

0 -i O

0 0 

0 0 0

i 0 0

0 0 1 0
+ ~ O 0 1

are (e6)=t 1 0 0 0

0 1 0 0

In this way we also described the differential of ae acting on the

Lie algebra spin(6), which we denote by 3a too.

Together with (Ej) = (1 i < j 6) < 4 the

equations 2> determine already the map Ad =q* 1 Ad : h-

- spin(6). Combining this with < 3> we note that every H h

annihilates both vectors u(-1, 1 -1) and u(1,-1, 1). Therefore, for

arbitrary z1 ,z 2 E C and all X h

atAd.(X)(z1u(-1,1,-1) + z2 u(1,-1,1)) = 0 holds, and because

H is connected, we conclude
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a, Ad(h)(z 1u(-1,1,-1) + z2 u(1,-1,1)) =

= z1 (u(-1,1, -1) + z2 u(1 ,-1 , 1)).

Thus, the constant function z u(-1,1.-1) + z2 u(1,-1,1) on G

defines a' section in the spinor bundle S, the sections of

S = G x cAd A 6 being as usual identified with functions Y: G -6

satisfying q (9 h) =.A'd(h 1) (g) for all g e G, he H.

Now we are going to prove the theorem.

Given a section (c of the spinor bundle, the action of the Dirac

operator D on If is given by the formula

6
D Yf 1c(e )(ej( f ) +KA(ej) ), as stated in C6 . On the con-

stant section this expression simplifies to

6 
D = _ X3(ej) a (ej) ; here A = ../\ is given by 1 > and

4 4>. Thus from (3> we obtain

D = 3 (-iz2 u(-1 1 -1) + i Z1u(1,-1,1)),

and by z 1 = 1 z 2 = i and z1 = i, z 2 = 1 eigenspinors of D are

obtained with eigenvalues + 3. Because of R = 30 we finally have

1 6R +_ ]/ = +_.
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