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Abstract Connectionist AI systems are large networks of extremely simple 
numerical processors, massively interconnected and running in parallel. 
There has been great progress in the connectionist approach, and while it 
is still unclear whether the approach will succeed, it is also unclear 
exactly what the implications for cognitive science would be if it did 
succeed. In this paper I present a view of the connectionist approach that 
implies that the level of analysis at which uniform formal principles of 
cognition can be found is the subsymbolic level, intermediate between the 
neural and symbolic levels. Notions such as logical inference, sequential 
firing of production rules, spreading activation between conceptual units, 
mental categories, and frames or schemata turn out to provide approxi- 
mate descriptions of the coarse-grained behaviour of connectionist sys- 
tems. The implication is that symbol-level structures provide only 
approximate accounts of cognition, useful for description but not neces- 
sarily for constructing detailed formal models. 

In the past few years a new approach to artificial intelligence (AI), called con- 
nectionist modelling, has been gaining increasing attention in research and 
development  laboratories. Connectionist  systems are large networks of extremely 
simple processors, massively interconnected and running in parallel. Each proces- 
sor has a numerical  activation value which it communicates  to other processors 
along connections of varying strengths. The activation value for each processor 
constantly changes in response to the activity of the processors to which it is 
connected. The values of some of the processors form the input to the system, and 
the values of other processors form the output. The connections between the 
processors determine how input is transformed to output. In connectionist  systems, 
knowledge is encoded not in symbolic structures but rather in the pattern of 
numerical  strengths of the connections between processors. 

The goal of connectionist  research is to model both lower-level perceptual  
processes and such higher-level processes as object recognition, problem solving, 
planning and language understanding. There exist connectionist  models of the 
following cognitive phenomena:  
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Speech perception, 
Visual recognition of figures in the "Origami world", 
Development of specialized feature detectors, 
Amnesia, 
Language parsing and generation, 
Aphasia, 
Discovering binary encodings, 
Dynamic programming of massively parallel networks, 
Acquisition of English past tense morphophonology from examples, 
Tic-tac-toe play, 
Inference about rooms, 
Qualitative problem solving in simple electric circuits. 

One crucial question is whether the computational power of connectionist 
systems is sufficient for the construction of truly intelligent systems. Explorations 
addressing this question form the bulk of the contributions to the connectionist 
literature: many can be found in the proceedings of the International Joint Confer- 
ence on AI and the annual meetings of the American Association for AI and the 
Cognitive Science Society over the past several years. The connectionist systems 
referred to in the previous paragraph can be found in the collections in Hinton and 
Anderson (1981); Cognitive Science (1985); Rumelhart, McClelland and the PDP 
Research Group (1986); McClelland, Rumelhart and the PDP Research Group 
(1986); and the bibliography by Feldman et al. (1985). In the present paper I will not 
address the issue of computational power, except to point out that connectionist 
research has been strongly encouraged by successful formal models of the details of 
human cognitive performance, and strongly motivated by the conviction that the 
pursuit of the principles of neural computation will eventually lead to architectures 
of great computational power. 

In addition to the question of whether the connectionist approach to AI can work, 
there is the question: What exactly would it mean if the approach did work? There 
are fundamental questions about the connectionist approach that are not yet clearly 
understood despite their importance. What is the relation between connectionist 
systems and the brain? How does the connectionist approach to modelling higher- 
level cognitive processes relate to the symbolic approach that has traditionally 
defined AI and cognitive science? Can connectionist models contribute to our 
understanding of the nature of the symbol processing that characterizes the mind, 
and its relation to the neural processing that characterizes the brain? These are the 
questions I address in this paper. In the process of addressing these questions it will 
become clear that the answers are important not only in their own right, but also as 
contributions to the determination of whether the connectionist approach has 
sufficient power. 
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Levels of analysis: neural  a n d  m e n t a l  structures 

It is best to begin with the question, how do accounts of intelligence relate to neural 
and mental structures? What are the roles of the neural and the symbolic levels of 
analysis? We first consider the answers from the traditional symbolic approach to 
AI, and then from a connectionist alternative. 

The symbolic paradigm 

We start with the mental structures of 'folk psychology': goals, beliefs, concepts, 
and so forth (see Fig. 1). In the symbolic approach, these mentalist concepts are 
formalized in terms of a 'language of thought,' as Fodor (1975) says; this language is 
supposed to provide a literal formalization of folk psychology. The rules for 
operating on this language are essentially Boole's (1854/1961) 'laws of thought. '  
These symbolic structures are supported by a physical symbol system - -  a physical 
computing device for manipulating symbols - -  which in turn is supported by lower 
implementation levels in a computing device. The idea is that eventually, if we 
were to get low enough down in the human physical symbol system, we would see 
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something similar to neurons. In other words, from this account we have to figure 
out how to relate neural structures to the low implementation levels of a physical 
symbol system, and then we should understand the relation between neural 
structures and mental structures. If it were the case that increasingly lower levels of 
computers looked more and more like neural systems, this would be a promising 
approach; unfortunately, insights into the design and implementation of physical 
symbol systems have so far shed virtually no light on how the brain works. 

To understand more clearly the connectionist alternative, it is helpful to articu- 
late a number of the properties of the symbolic approach. Allen Newell (1980) 
formulated this paradigm best in his physical symbol system hypothesis: "The 
necessary and sufficient condition for a physical system to exhibit general intelli- 
gent action is that it be a physical symbol system" (p. 170). "General intelligent 
action" means rational bebaviour (p. 171); "rationality" means that when an agent 
has a certain goal and the knowledge that a certain action will lead to that goal then 
the agent selects that action (Newell, 1982). (And physical symbol systems are 
physically realized universal computers.) 

What all this means in the practice of symbolic AI is that goals, beliefs, knowl- 
edge, and so on are all formalized as symbolic structures, for example, Lisp lists, 
which are built of symbols, Lisp atoms, which are each capable of being seman- 
tically interpreted in terms of the ordinary concepts we use to conceptualize the 
domain. Thus, in a medical expert system, we expect to find structures like (IF FEVER 
THEN (HYPOTHESIZE INFECTION)). These symbolic structures are operated on by sym- 
bol manipulation procedures composed of primitive operations like concatenating 
lists, and extracting elements from lists. According to the symbolic paradigm, it is 
in terms of such operations that we are to understand cognitive processes. 

It is important to note that in the symbolic paradigm, levels of cognition are made 
analogous to levels of computer systems. The symbolic level that implements 
knowledge structures is alleged to be exact and complete. That means that lower 
levels are unnecessary for accurately describing cognition in terms of the seman- 
tically interpretable elements. This relegates the neural question to simply: how 
does the nervous system happen to implement physically a physical symbol 
system? The answer to this question does not matter as far as symbol-level AI 
systems are concerned. 

There are a number of inadequacies of this paradigm, which Hofstadter (1985) 
has called "the Boolean dream". These inadequacies can be perceived from a 
number of perspectives, which can only be charicatured here: 

From the perspective of neuroscience, the problem with the symbolic paradigm 
is quite simply that it has provided precious little insight into the computational 
organization of the brain. 

From the perspective of modelling human performance, symbolic models, like 
Newell and Simon's General Problem Solver (1972), are successful on a coarse 
level, but the fine structure of cognition seems to be more naturally described by 
non-symbolic models. In word recognition, for example, it is natural to think about 
activation levels of perceptual units. 
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In AI, the trouble with the "Boolean dream" is that symbolic rules and the logic 
used to manipulate them tend to produce rigid and brittle systems. 

The subsymbolic paradigm 

An alternative to the symbolic paradigm is what I call the subsymbolic paradigm 
(see Fig. 2). In this paradigm, there is an intermediate level of structure between the 
neural and symbolic levels. This new subsymbolic level is supposed to be closer to 
each of the neural and symbolic levels than they are to each other. When cognition 
is described at the subsymbolic level, the description is that of a connectianist 
system. 

The subsymbolic level is an attempt to formalize, at some level of abstraction, the 
kind of processing which occurs in the nervous system. Many of the details of 
neural structure and function are absent from the subsymbolic level, and the level 
of description is higher than the neural level. The precise relationship between the 
neural and subsymbolic levels is still an open research question; but it seems clear 
that connectionist  systems are much closer to neural systems than are symbolic 
systems. 

The relation between the subsymbolic and symbolic descriptions of cognition is 
illustrated in Fig. 2. If we adopt a higher level of description of what is happening 
in these subsymbolic systems (and that involves, to a significant degree, approxi- 
mation) then we obtain descriptions that are approximately like symbolic accounts, 
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like traditional AI constructs. While the subsymbolic paradigm is content to give 
approximate accounts of goals and beliefs, it is not prepared to compromise on 
actual performance. Behind the accounts of folk psychology and symbolic AI there 
are real data on human intelligent performance, and the claim is that subsymbolic 
systems can provide accurate accounts of this data. 

Note that the subsymbolic paradigm gives an essentially different role to the 
neural part of the story: neural structures provide the basis (in some suitably 
abstract sense) of the formalism that gives the precise description of intelligence, 
while mental structures enter only into approximate descriptions. 

The remainder of the paper elaborates on the nature of the subsymbolic level, and 
on the higher level descriptions of subsymbolic systems that approximate symbolic 
accounts. I want to indicate how formalizing cognition by abstracting from neural 
structures - -  rather than with symbolic formalizations of mental structures - -  
provides new and exciting views of knowledge, memory, concepts, and learning. 

Figure 2 illustrates an important part of the subsymbolic paradigm: that levels of 
cognition should not be thought of by analogy to levels of computer systems, all 
stacked underneath the 'mental' part of the diagram. Just as Newtonian concepts 
provide approximately valid descriptions of physical phenomena that are more 
accurately described by quantum concepts, so the symbolic concepts of folk 
psychology provide approximately valid descriptions of cognitive phenomena that 
are more accurately described by subsymbolic concepts. Mental structures are like 
higher-level descriptions of a physical system, rather than higher-level descriptions 
of a computer system. 

Semantic interpretation 

Perhaps the most fundamental contrast between the paradigms pertains to semantic 
interpretation of the formal models. In the symbolic approach, symbols (atoms) are 
used to denote the semantically interpretable entities (concepts). These same 
symbols are the objects governed by symbol manipulations in the rules that define 
the system. The entities which are capable of being semantically interpreted are 
also the entities governed by the formal laws that define the system. In the 
subsymbolic paradigm, this is no longer true. The semantically interpreted entities 
are patterns of activation over a large number of units in the system, whereas the 
entities manipulated by formal rules are the individual activations of cells in the 
network. The rules take the form of activation passing rules, of essentially different 
character from symbol manipulation rules. 

This describes the particular kind of connectionist system where patterns of 
activity represent concepts, instead of the activation of individual elements in the 
network. (In the latter case, we would have a collapsing here of just the same kind 
that we have the symbolic paradigm.) Therefore, the subsymbolic paradigm 
involves connectionist systems using so-called distributed representations, as 
opposed to local representations. (The books by Rumelhart, McClelland and the 
PDP Research Group consider distributed connectionist systems; local connection- 
ist systems are considered in Feldman & Ballard, 1982, and Feldman et al., 1985.) 
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Thus in the subsymbolic paradigm, the formal system description is at a lower 
level than the level of semantic interpretation: the level of denotation is higher than 
the level of manipulation. There is a fundamental two-layer structure to the 
subsymbolic paradigm, unlike the symbolic approach. The higher semantic level is 
not necessarily capable of being formalized precisely, and the lower level is not 
'merely implementation' of a complete higher level formalism. Both levels are 
essential: the lower level is essential for defining what the system is (in terms of 
activation passing) and the higher level is essential for understanding what the 
system means (in terms of the problem domain). 

The subsymbol ic  level  

I shall now characterize the subsymbolic level in more detail. Cognition looks quite 
different at this level than from the symbolic level. In the last part of the paper, we 
consider higher level descriptions of connectionist systems, where we can see some 
of the characteristics of the symbolic level emerging, 

The subsymbolic formalism 

At the fundamental level in subsymbolic systems we have a collection of dynamic 
variables. There are two kinds of variables: an activation level for each of the units 
and a connection strength for each of the links. Typically both kinds of variables are 
continuous. The rules that define these systems are activation passing rules and 
connection strength modification rules. These are differential equatians (although 
they are simulated with finite difference equations). Typically the differential 
equations are not stochastic, but stochastic versions will enter briefly later. 

The computational role of these two kinds of equations is this. The activation 
passing rules are in fact inference rules: not logical inference rules, but statistical 
inference rules. The connection strength modification rules are memory storage and 
learning procedures. These points will be expanded shortly. 

Because the fundamental system is a dynamic system with continuously evolv- 
ing variables, the subsymbolic paradigm constitutes a radical departure from the 
symbolic paradigm. The claim, in effect, is that cognition should be thought of as 
taking place in dynamical systems and not in digital computers. This is a natural 
outcome of the neurally-inspired rather than mentally-inspired formalism. 

The relation between the subsymbolic formalism and psychological processing 
is, in part, determined by the time constants that enter into the differential 
equations governing activation and connection strength modification. The time 
required for significant change in activation levels is in the order of 100 ms; the 
time it takes for a connection strength to change appreciably is much longer, say, in 
the order of 1 min. Thus, for times less than about 100 ms, we have a single 
equilibration or 'settling' of the network; all the knowledge embedded in the 
connections is used in parallel. On this time scale, we have parallel computation. 
When we go beyond this, to cognitive processes that go on for several seconds, such 
as problem solving and extended reasoning, then we are concerned with multiple 



102 P. Smolensky 

settlings of the network, and serial computation.  This is the part of cognition for 
which serial symbolic descriptions, e.g. Newell and Simon's  General Problem 
Solver, provide a fairly good description of the coarse structure. The claim of the 
subsymbolic paradigm is that the symbolic description of such processing is an 
approximate  description of the global behavionr of much parallel computation.  
Finally, if we consider still longer t ime scales, in the order of 1 min, then we have 
adaptation of the network to the situation in which it finds itself. 

To summarize  the contrasts between the symbolic and subsymbolic approaches,  
viewed at the fundamental  level. In the subsymbolic paradigm we have fun- 
damental  laws that are differential equations, not symbol manipulat ion procedures. 
The systems described are dynamical  systems, not von Neumann  machines.  The 
mathematical  category in which these formalisms live is the continuous category, 
not the discrete category, so a different kind of mathematics comes into play. The 
differences are dramatically illustrated in the way memory  is modelled in the two 
formalisms. In the von Neumann machine,  memory  storage is a primitive operation 
(you give location and contents, and storage just happens); memory  retrieval is also 
a primitive operation. In subsymbolic systems these processes are quite involved: 
they are not primitive operations at all. When a memory  is retrieved, it is a content- 
addressed memory:  part of a previously instantiated activation pattern is put into 
one part of the network by another part of the network, and the connections fill out 
the rest of that previously present pattern. This is a much more involved process 
than a simple 'memory  fetch.' Memories are stored in subsymbolic systems by 
adjusting connection strengths so that the retrieval process will actually work: this 
is no simple matter. 

Subsymbolic inference and the statistical connection 

At the fundamental  level of subsymbolic formalism, we have moved from thinking 
about cognition in terms of discrete processes to thinking in terms of continuous 
processes. This means that different mathematical  concepts apply. One manifes- 
tation of this, in computat ional  terms, is the claim that inference should not be 
construed in the logical sense but rather in the statistical sense - -  at least at the 
fundamental  level of the system. (Later we will see that at higher levels, certain 
subsymbolic systems do perform logical inference.) 

I have encapsulated this idea in what  can be called the Statistical Connection: the 
strength of the connection between two units is a measure of the statistical relation 

between their activity. 
The origins of this principle can be easily seen. The relationship between 

statistics and connections was represented in neuroscience by Hebb's  (1949) 
principle: a synapse between two neurons is strengthened when both are active 
simultaneously.  In psychology, this relation appeared in the notion of 'strength of 
association' between concepts, an important  precursor to connectionist  ideas 
(although since this involved statistical associations between concepts, it was not, 
itself, a subsymbolic notion). From the point of view of physics, the Statistical 
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Connection is basically a tautology, since if two units are strongly connected, then 
when one is active the other is likely to be too. 

From a computational point of view, the Statistical Connection has rather pro- 
found implications vis-d-vis AI and symbolic computation. Activation passing is 
now to be thought of as statistical inference. Each connection represents a soft 
constraint; the knowledge contained in the system is the set of all such constraints. 
If two units have an inhibitory connection, then the network has the knowledge 
that when one is active the other ought not be; but that is a soft constraint that can 
easily be overridden by countermanding excitatory connections to that same unit (if 
those excitatory connections come from units that are sufficiently active). The 
important point is that soft constraints, any one of which can be overriden by the 
others, have no implications singly; they only have implications collectively. That 
is why the natural process for using this kind of knowledge is relaxation, in which 
the network uses all the connections at once, and tries to settle into a state that 
balances all the constraints against each other. This is to be contrasted with hard 
constraints, like rules of the form 'if A, then B', which can be used individually, one 
at a time, to serially make inferences. The claim is that using soft constraints avoids 
the brittleness that hard constraints tend to produce in AI. (It is interesting to note 
that advocates of logic in AI have for some time now been trying to evade the 
brittleness of hard constraints by developing logics, such as non-monotonic logics, 
where all of the rules are essentially used together to make differences, and not 
separately; see for example, Artificial Intelligence, 1980.) 

To summarize: in the symbolic paradigm, constraints are typically hard, infer- 
ence is logical, and processing can therefore be serial. (One can try to perform 
logical inference in parallel, but the most natural approach is serial inference.) In 
the subsymbolic paradigm, constraints are soft, inference is statistical, and there- 
fore it is most natural to use parallel implementations of inference. 

Higher level descriptions 

Having characterized the subsymbolic paradigm at the fundamental, subsymbolic 
level, I should now like to turn to higher level descriptions of these connectionist 
systems. As was stated earlier, in the subsymbolic paradigm, serial, symbolic 
descriptions of cognitive processing are approximate descriptions of the higher 
level properties of connectionist  computation. I will only sketch this part of the 
story briefly, pointing to published work for further details. The main point is that 
interesting relations do exist between the higher-level properties of connectionist 
systems and mental structures, as they have been formalized symbolically. The 
view of mental structures that emerges is strikingly different from that of the 
symbolic paradigm. 

The Best Fit Principle 

That crucial principle of the subsymbolic level, the Statistical Connection, can be 
reformulated at a higher level, in what I call the Best Fit Principle: given an input, a 
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connectionist system outputs a set of inferences that, as a whole, give a best fit to 
the input, in a statistical sense defined by the statistical knowledge stored in the 
system's connections. 

In this vague form, this principle is generally true for connectionist systems. But 
it is exactly true in a precise sense, at least in an idealized limit, for a certain class of 
systems in what can be called harmony theory (Smolensky, 1983, 1984a and b, 
1986a, b and c; Riley & Smolensky, 1984). 

To render the Best Fit Principle precise, it is necessary to provide precise 
definitions of 'inferences', 'best fit' and 'statistical knowledge stored in the system's 
connections. '  This is done in harmony theory, where the central object is the 
'harmony function'  H which measures, for any possible set of inferences, the degree 
of fit to the input with respect to the soft constraints stored in the connection 
strengths. The set of inferences with the largest value of H, i.e. highest harmony, is 
the best set of inferences, with respect to a well-defined statistical problem. 

Harmony theory basically offers three things: it gives a mathematically precise 
characterization of a very general statistical inference problem that covers a great 
number of connectionist computations. It informs us how that problem can be solved 
using a connectionist network with a certain set of connections. And it gives a pro- 
cedure by which the network can learn the correct connections with experience. 

The units in harmony networks are stochastic units, that is, the differential 
equations defining the system are stochastic. There is a system parameter called the 
computational temperature that governs the degree of randomness in the units '  
behaviour: it falls to zero as the computation proceeds. (The process is simulated 
annealing, as in the Boltzmann machine: Hinton & Sejnowski, 1983. See 
Rumelhart, McClelland & the PDP Research Group, 1986, p. 148, and Smolensky, 
1986a, for the relations between harmony theory and the Boltzmann machine.) 

Productions, sequential processing, and logical inference 

A simple harmony model of expert intuition in qualitative physics was described in 
Riley and Smolensky (1984) and Smolensky (1986a and c). The model answers 
questions such as "what happens to the voltages in this circuit if I increase this 
resistor?" Higher level descriptions of this subsymbolic problem-solving system 
illustrate several interesting points. 

It is possible to identify macro-decisions during the system's solution of a 
problem; each of these is the result of many individual micro-decisions by the units 
of the system, and each amounts to a large-scale commitment to a portion of the 
solution. These macro-decisions are approximately like the firing of production 
rules. In fact, these 'productions'  'fire' at different times, in essentially the same 
order as in a symbolic forward-chaining inference system. One can measure the 
total amount of order in the system, and see that there is a qualitative change in the 
system when the first micro-decisions are made: the system changes from a 
disordered phase to an ordered one. 

It is a corollary of the way this network embodies the problem domain con- 
straints, and the general theorems of harmony theory, that the system, when given a 
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well-posed problem, and infinite relaxation time, will always give the correct 
answer. So under this idealization, the competence of the system is described by 
hard constraints: Ohm's Law and Kirchoff's Law. It is as though it had those laws 
written down inside it. However, as in all subsymbolic systems, the performance of 
the system is achieved by satisfying a large set of soft constraints. What this means 
is that if we go outside the ideal conditions under which hard constraints seem to 
be obeyed, the illusion that the system has hard constraints inside is quickly dis- 
pelled. The system can violate Ohm's Law if it must, but if it doesn't have to violate 
the law, it won't. Thus, outside the idealized domain of well-posed problems and 
infinite processing time, the system gives sensible performance. It is not brittle in 
the way that symbolic inference systems are. If the system is given an ill-posed 
problem, it satisfies as many constraints as possible. If it is given inconsistent 
information, it does not fall flat, and deduce anything. If it is given insufficient 
information, it does not remain inactive and deduce nothing. Given finite pro- 
cessing time, the performance degrades gracefully as well, so that the com- 
petence/performance distinction can be made in a sensible way. 

Returning to the theme of physics analogies rather than computer analogies, this 
'quantum' system appears to be 'Newtonian' under the proper conditions. A system 
that has, at the micro-level, soft constraints, satisfied in parallel, appears at the 
macro-level, under the right circumstances, to have hard constraints, satisfied 
serially. But this is not actually true, and if one goes outside the 'Newtonian' 
domain, one sees that it has actually been a 'quantum' system all along. 

The dynamics of activation patterns 

In the subsymbolic paradigm, semantic interpretation occurs at the higher level of 
patterns of activity, not at the lower level of individual nodes. Thus an important 
question about the higher level runs: how do the semantically interpretable entities 
combine? 

In the symbolic paradigm, the semantically interpretable entities are symbols, 
which combine by some form of concatenation. In the subsymbolic paradigm, the 
semantically interpretable entities are activation patterns, and these combine by 
superposition: activation patterns superimpose upon each other, in the same way 
that wave-like structures always do in physical systems. This difference is another 
manifestation of moving the formalization from the discrete to the continuous 
(indeed the linear) category. 

Using the mathematics of the superposition operation, it is possible to describe 
connectionist systems at the higher, semantic level. If the connectionist system is 
purely linear (so that the activity of each unit is precisely a weighted sum of the 
activities of the units giving it input/, it can easily be proved that the higher level 
description obeys formal laws of just the same sort as the lower level: the subsym- 
bolic and symbolic levels are isomorphic. Linear connection/st systems are, 
however, of limited computational power, and most interesting connectionist 
systems are nonlinear. However, nearly all are quasi-linear, that is, each unit 
combines its inputs linearly even though the effects of this combination on the 
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unit 's  activity are nonlinear. Further, the problem-specific knowledge in such 
systems is in the combination weights, i.e. the linear part of the dynamical  
equations, and in learning systems it is generally only these linear weights that 
adapt. For these reasons, even though the higher level is not isomorphic to the 
lower level in nonlinear systems, there are senses in which the higher level 
approximately obeys formal laws similar to the lower level. (For details, see 

Smolensky, 1986b.) 
The conclusion here is rather different from the preceding section, where we saw 

how there are senses in which higher level characterizations of certain subsymbolic 
systems approximate productions,  serial processing, and logical inference. What 
we see now is that there are also senses in which the laws approximately  describing 
cognition at the semantic level are activation-passing laws like those at the 
subsymbolic level, but operating between 'units '  with individual semantics. These 
semantic level descriptions of mental  processing (which include local connection- 
ist models) have been of considerable value in cognitive psychology (McClelland & 
Rumelhart, 1981; Rumelhart  & McClelland, 1982; Dell, 1985). We can see now how 
these 'spreading activation'  accounts of mental  processing relate to subsymbolic 

accounts. 

Schemata 

One of the most  important  symbolic concepts is that of the schema (Rumelhart, 
1980). This concept  goes back at least to Kant (1787/1963) as a description of mental  
concepts and mental  categories. Schemata appear  in many AI systems in the forms 
of frames, scripts, or similar structures: they are prepackaged bundles of infor- 
mation that support  inference in stereotyped situations. 

I will very briefly summarize  the work on schemata in connectionist  systems 
reported in Rumelhart,  Smolensky, McClelland and Hinton (1986) (see also Feld- 
man, 1981, Smolensky, 1986a and c). This work dealt with schemata for rooms. 
Subjects were asked to describe some imagined rooms using a set of 40 features, 
such as has-ceiling, has-window, contains-toilet, and so on. Statistics were com- 
puted from this data and these were used to construct a network containing one 
node for each feature, and containing connections computed from the statistical 
data by using a particular form of the Statistical Connection. 

This resulting network can carry out inference of the kind that can be performed 
by symbolic systems with schemata for various types of rooms. The network is told 
that some room contains a ceiling and an oven; the question is, what else is likely to 
be in the room? The system settles down into a final state, and the inferences 
contained in that final state are that the room contains a coffee cup but no fireplace, 
a coffee pot but no computer.  

The inference process in this system is s imply one of greedily maximizing 
harmony.  To describe the inference of this system on a higher level, we can 
examine the global states of the system in terms of their harmony values. How 
internally consistent are the various states in the space? It is a 40-dimensional state 
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space, but various two-dimensional subspaces can be selected and the harmony 
values can be graphically displayed. The harmony landscape has various peaks. By 
looking at the features of the state corresponding to one of the peaks, we find that it 
corresponds to a prototypical bathroom; others correspond to a prototypical office, 
and so on for all the kinds of rooms subjects were asked to describe. There are no 
units in this system for bathrooms or offices; there are just lower-level descriptors. 
The prototypical bathroom is a pattern of activation, and the system's recognition of 
its prototypicality is reflected in the harmony peak for that pattern. It is a con- 
sistent, 'harmonious'  combination of features: better than neighbouring points, 
such as for example one representing a bathroom without a bathtub, which has dis- 
tinctly lower harmony. 

During inference, this system climbs directly uphill  on the harmony landscape. 
When the system state is in the vicinity of the harmony peak representing the 
prototypical bathroom, the inferences it makes are governed by the shape of 
the harmony landscape. This shape is like a 'schema' that governs inferences about 
bathrooms. (In fact, harmony theory was created to give a connectionist formaliz- 
ation of the notion of schema; see Smolensky, 1986a and c.) By looking closely at 
the harmony landscape we can see that the terrain around the 'bathroom' peak has 
many of the properties of a bathroom schema: variables and constants, default 
values, schemata embedded inside schemata, and even cross-variable depen- 
dencies. The system behaves as though it had schemata for bathrooms, offices, etc., 
even though they are not 'really there' at the fundamental level: these schemata are 
strictly properties of a higher-level description. They are informal, approximate 
descriptions - -  one might even say they are merely metaphorical descriptions - -  of 
an inference process too subtle to admit such high-level descriptions with great 
precision. Even though these schemata may not be the sort of object on which to 
base a formal model, nonetheless they are useful descriptions - -  which may in the 
end be all that can really be said about schemata anyway. 

C o n c l u s i o n  

The view of symbolic structures that emerges from seeing them as entities of high- 
level descriptions of dynamical systems is quite different from the view which 
emerges from the symbolic paradigm. 'Rules' are not symbolic formulae, but the co- 
operative result of many smaller soft constraints. Macro-inference is not a process 
of firing a symbolic production but rather of a qualitative state change in a 
dynamical system, such as a phase transition. Schemata are not large symbolic data 
structures but rather the potentially quite intricate shapes of harmony maxima. 
Similarly, categories turn out to be attractors in dynamical systems: states that 'suck 
in' to a common place many nearby states, like peaks of harmony functions. 
Categorization is not the execution of a symbolic algorithm but the continuous 
evolution of the dynamical system, the evolution that drives states into the 
attractors, to maximal harmony. Learning is not the construction and editing of 
formulae, but the gradual adjustment of connection strengths with experience, with 
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the  effect of s l o w l y  shi f t ing h a r m o n y  l andscapes ,  a d a p t i n g  o ld  and  c rea t ing  n e w  

concep ts ,  categories ,  schemata .  
The  he te rogenous  a s so r tmen t  of h igh- leve l  men ta l  s t ruc tures  tha t  have  been  

e m b r a c e d  in th is  p a p e r  suggests  that  the  s y m b o l i c  level  lacks  formal  uni ty .  This  is 

just  w h a t  one expec t s  of a p p r o x i m a t e  h igher - l eve l  desc r ip t ions ,  which ,  c ap tu r ing  

d i f ferent  aspec ts  of g lobal  p roper t i e s ,  can  have  qui te  di f ferent  characters .  The  u n i t y  

w h i c h  u n d e r l i e s  cogn i t ion  is to be found  not  at the  s y m b o l i c  level ,  bu t  ra ther  at the  

s u b s y m b o l i c  level ,  w h e r e  a few p r inc ip l e s  in  a s ingle  formal  f r a m e w o r k  lead  to a 

r ich  var ie ty  of g lobal  behav iours .  

If connec t i on i s t  m o d e l s  are i n t e rp re t ed  w i t h i n  wha t  I have  def ined  as the  

s u b s y m b o l i c  pa rad igm,  we  can  beg in  to see h o w  men ta l  s t ruc tures  can  emerge  f rom 

neura l  s t ruc tures .  By see ing  men ta l  en t i t ies  as h igher  level  s t ruc tures  i m p l e m e n t e d  

in  connec t i on i s t  sys tems ,  w e  ob ta in  a new,  more  c o m p l e x  and  subt le  v i ew of wha t  

these  men ta l  s t ruc tures  r ea l ly  are. Pe rhaps  s u b s y m b o l i c  sys tems  can  ach ieve  a t ru ly  

r ich men ta l  life. 
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