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Abstract. A review of papers investigating tsunami wave run-up on a beach is given and the control 
parameters of the problem are revealed. There are two such parameters in the case of ideal fluid: the 
bottom sloping angle and the breaking parameter.  A stage-by-stage approach for finding run-up 
characteristics is formulated: the linear calculation of shoreline oscillations and the subsequent non- 
linear transformation of the solution according to the Riemann method. Solution of the nonone- 
dimensional problems of wave run-up on a beach in the linear formulation is obtained. 
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Notation 

u horizontal particle velocity 
~o vertical particle velocity 
p fluid density 
P pressure 
t time 
~7 surface displacement 
g gravity acceleration 
x distance from a shoreline 
z vertical axis 
a sloping angle to ocean surface; for small angle a = tga; 
t" dimensionless time 
~7 dimensionless velocity 
r7 dimensionless displacement 
2 dimensionless distance 

Restoration o f  Characteristics from Coastal Records 

~o frequency of incident wave 
R maximum displacement at shoreline 
• (g,  h) wave function 
T tsunami period 
Br breaking parameter  
Br ,  critical breaking parameter 
/4o amplitude of a wave 
Ao wave length 
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distance from the shoreline 
basin depth at the distance L from the shoreline 
dimensionless amplitude spectra 
dimensionless phase spectra 
parameter 
reflected wave 
incident wave 
zero-index Bessel function 
length of the shelf 
characteristics 
Riemann invariants 

1. Introduction 

When taking tsunami countermeasures much attention is paid to tsunami hazard 
maps specifying the most probable flooding zones. These flooding zones are calcu- 
lated differently in different schemes: either using empirical formulae or the linear 
theory formulae. The validation and application of these formulae has, for a long 
time, been an open problem. Meanwhile, Carrier and Greenspan (1958) proposed 
an adequate method for solving the run-up problems within the framework of the 
nonlinear shallow-water theory. The complexity and implicitness of the transfor- 
mations used by Carrier (1958) prevented the wide use of this method (some 
solutions can be found in papers by Carrier (1958) and Spielfogel (1976). Besides, 
in 1968, Le Mehaute, Koh and Hwang said in their review (Le Mehaute et al. 

(1968)) that the basic contribution in Carrier and Greenspan's paper is, rather 
than the run-up calculation, the demonstration that, in the nonlinear long-wave 
approximation, there are elevation waves propagating without breaking on a 
permanent sloping beach. In 1961, Keller, and in 1983 Mei, noted that solving the 
linear and nonlinear problems in the case of a monochomatic wave leads to the 
same result. The later analytical attempts to solve approximately the long-wave 
run-up problem were connected with the Langrangian formulation of the nonlinear 
shallow-water theory (Shuto, 1972; Goto and Shuto, 1978; Goto, 1979, 1984). 
During the last decade, there has been progress in solving the 'Eulerian' problems 
of wave run-up, not only in one dimension but also in two dimensions (the latter 
had never been considered before). As a result, control parameters of the problem 
have been found, new algorithms for the moving shoreline dynamics investigation 
have been formulated, the influence of the shape of the tsunami wave approaching 
a beach on the run-up characteristics elucidated, and the water elevation height 
on a beach in bays of various geometries calculated, (Pelinovsky, 1982; Mazova, 
1984, 1985, 1988). These results are summarized in the present paper. 

2. Basic Approximations 

Let us consider first the classical formulation of the wave run-up problem within 
the ideal fluid model: 
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Ow Ow Ow 1 0 P  
- - + u - - + w - - +  - g, (1) 
Ot Ox Oz p Oz 

Ou Ow 
- - + - - = 0 ,  
Ox Oz 

with the boundary condition on the bot tom (z = -h (x ) ) :  

dh 
w + u -  = 0 (2) 

dx 

and on the free surface (z = r/) 

Or/ Or/, 
w = - -  q- u - -  P : Patm- (3) 

at OX 

Here  u is the horizontal and w is the vertical component  of flow velocity, p is the 

fluid density, P is the pressure (Patm is constant atmospheric pressure), g is the 
gravity acceleration, z is the vertical axis, and h(x)  is the basin depth counted 
from the unperturbed surface. Let  the slope be a plane one: h = - a x .  Introducing 
characteristic physical parameters of the tsunami wave such as the height R and 
the frequency o) (in the case of pulse perturbation,  the tsunami duration is w- l ) ,  we 
reduce the initial equations by disdimensionalization of arguments and functions: 

r/  OLL/ W GX r / : - ,  a =  
ooR' ~oR' R '  R 

Z 

Z = R '  P = Patm q- Pg(r/ -- Z) "+- po)2R2p 

(4) 

to (tildes are omitted): 

_ _  Ou Ou 1 Or~ Ol 2 OP OU+ u - - +  w - - + - - - - +  - - = 0 ,  
Ot Ox Oz Br Ox Ox 

(5) 

Ow Ow Ow OP 
- - + u - - + w - - + - - = 0 ,  (6) 
Ot ax Oz Oz 

Ou Ow 
- -  + - -  = 0 ,  ( 7 )  
Ox OZ 
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w =  u, (z =x ) ,  (8) 

Or/+ u -  = O, (z = r/), (9) 
Ot Ox 

P =  o, (z = , ) .  (lO) 

These equations are defined by only two mathematical parameters: the sloping 
angle o~ and the breaking parameter 

o)2R 
Br = (11) ga2" 

As a rule, tsunami waves are long. Therefore, if the beach is relatively steep 
(a is not small), then the coastal zone has a width much less than the tsunami 
wave length and can be treated as a wall. The wave remains long everywhere and 
the tsunami run-up on a vertical wall can be investigated within the nonlinear 
shallow-water theory (we shall return to this problem below). The strongest ampli- 
fication of the wave is possible on a mild slope. In this case, a is small and it is 
the basis for various asymptotic procedures to be performed. This parameter can 
be neglected in the first approximation. Equation (6) can then be omitted (Kais- 
trenko et al., 1985) and the integration of Equation (7) using (8) and (9), leads 
to 

- "  + = [ ( -x  + n)u] -- 0 
Ot Ox 

(12) 

which, together with (5) at ~ = 0, 

Ou Ou 1 0~7 
- -  + u - -  + - 0 ,  ( 1 3 )  
Ot Ox Br Ox 

forms the well-known nonlinear system of shallow-water equations determined by 
a single dimensionless parameter Br. It is interesting to note that the system (12)- 
(13) contains only one dimensionless parameter Br. It is understood that other 
dimensionless parameters are introduced, then other parameters (possibly more 
than one) can appear in this system. In particular, these equations may have no 
parameters; in this case, however, a parameter, equivalent to Br, can appear in 
the initial condition (Kaistrenko et al., 1985). We emphasize that the parameter 
Br was used in the analysis of the partial solutions of the shallow-water system 
(Goto, 1974) and of the experimental data (Battjes, 1974; Bowan 1977). In this 
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particular case, this parameter is obtained from the dimensional analysis, thus 
indicating its fundamental importance. 

3. Method of Solution 

For the solution of system (12)-(13), it is efficient to use the tangential Legendre 
transformation (its use for the nonlinear system of shallow-water equations was 
first described by Carrier and Greenspan (1958)); 

1 2 0 ~  
bt - -  

Br o- 0~r' 

1 
~7= Br 

1 
x = - -  

Br 

0-~ 0 -2 \00", ] J 

-~- 4 o'; \O'J/J 

(14) 

2 0 ~  
t = A - - - - -  

o-0o-  

using which, system (12)-(13) reduces to a linear wave equation: 

02(I) 02(I) 1 0 ~  

Oh 2 00 .2 0"00" 
= O, (15) 

where the new variable o- is proportional to the total basin width: 

0 "2 ---- 4 Br07 - x). 

Equation (15) is solved on a fixed semi-axis 0 ~< o- < ~ (or = 0 corresponds to a 
moving run-up boundary) unlike the variable region for the initial system. 

Together with the nonlinear shallow-water equations, we shall consider the 
linear system 

__Ou+ 1 0~7 
O, 

Ot Br Ox 

on + o (_xu) = o. 
Ot Ox 

(16) 

Using the linear version of the Carrier-Greenspan transformation in system (16) 
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U ~ m _ _  
2 O~0 

O "2 Br Oo-0' 

1 0q% 
- , ( 1 7 )  

rt Br Oho 

x - t =  )to 
4Br'  

we reduce Equations (17) to linear wave equations 

0 2 ~ 0  0 2 ~ 0  1 0 ~  0 

o)t g Oo "g O'o 0O'o 
- -  - 0 ,  ( 1 8 )  

where ~r0 = 0 corresponds to the shoreline. 
As will be shown below, a comparison of the linear and nonlinear problems is 

useful for the tsunami run-up calculation. Let the tsunami be generated in the 
open ocean far from the shore. In this case, the wave is linear and the asymptotic 
forms of the functions ~(o-, )t) and q5o(O-o, )to) appear to be identical and corre- 
spond to the same initial and boundary conditions. Because of the identity of 
Equations (15) and (18), the functions ~(o-, )t) and q~0(o0, )to) will be the same in 
the whole variation range of their arguments and, therefore, the functions ~(0, h) 
and q5o(0, )to) and their maxima will be the same. The first function q5(0, )t) 
describes the moving shoreline oscillations in the real problem, while the second 
one, ~o(0, )t), describes the water-level oscillations on the fixed shoreline (x = 0) 
in the equivalent linear problem. Analogous results are obtained for the flow 
velocity. Consequently, by solving the linear problem and determining the maxi- 
mum wave height and flow velocity on the shoreline, we find the maximum water 
elevation on the shore and the flow velocity within the framework of the nonlinear 
equations. This is exactly what makes the linear approach useful for the calculation 
of extreme run-up characteristics. Such a conclusion was drawn by Keller (1961) 
from the analysis of the partial solutions of Equations (15)and (18) but has, in 
fact, a general meaning. Meanwhile, the detailed characteristics such as the time- 
dependence of run-up and flow, run-up and run-down time, etc., are related to 
the nonlinearity of the wave approaching a beach. For their calculation, however, 
it is not necessary to completely solve the nonlinear equations again; if the solution 
of the linear problem is known, then the required characteristics are obtained 
from the linear solution with the aid of its Riemann transformation. In fact, the 
first and fourth relations of system (14) at o- = 0 are combined as 

U = U n n ( t  + B r .  u ) ,  ( 1 9 )  

where the function ~Uli n has a clea r physical meaning; it describes the time-depen- 
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Fig. 1. Moving shoreline velocity. 

dence of the moving shoreline velocity in the linear problem (Br = 0) (Figure 1). 
So, using (19), it is possible to describe the time-dependence of the running-up 
wave tongue at any amplitude if the solution of the linear problem is known. 

Through the velocity u, it is easy to also find the time-dependence of the water 
elevation on the shore. From the definition u = drl/dt (in dimensionless variables), 
we find, using (19), 

= • - ~Br- u 2, (20) "r/(t) "qlin(t + Br u) 1 

where 771in(t ) = f Ulin(t) dt is the water elevation in the linear approximation. The 
functions u(t) and ~7(t) are implicit, but they can be easily constructed graphically. 
Note that from (19) and (20) it follows that the nonlinearity does not influence 
the extrema of both functions (such a conclusion was cited above), but influences 
the asymmetry of shoreline oscillations leading to increased steepness of the front 
slope of the wave, increased flow velocity, and a sharp peak in the water-level 
oscillogram. 

These solutions, based on the Legendre transformations, describe the dynamics 
of the run-up of nonbreaking tsunami waves. The breaking criterion is usually 
obtained from the condition of unambiguous solvability of the Legendre transfor- 
mations, and only for a monochromatic wave. From formula (19), this criterion 
is easily obtained for an arbitrary form of the wave as the condition of unambiguity 
of (19) or boundedness of Ou/Ot. The wave unboundedness (gradient catastrophy, 
or breaking) occurs at the following value of Br: 

1 1 
= = , ( 2 1 )  

B r , -  dUu~ d ~lin 
Max Max - -  

dt dt 2 

that is why Br is called the breaking parameter. Because of its impor t ance ,  
Equation (21) is rewritten in a dimensional form: 
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M a x  d2"Olin = gee 2. (22) 
d t  2 

The left-hand side of (22) determines the vertical acceleration of fluid particles; 
therefore the breaking corresponds to a rather large value of vertical acceleration 
in the wave, equal to go~ 2. Taking into account (16) and the condition u = 0 by 
x = 0, relation (22) can be rewritten as 

M a x  07"/lin x=O = o~. (23) 
Ox 

It is interesting to note that condition (22), proposed by Miche long ago (Mei, 
1983), is thus rigorously proved for a wave of arbitrary shape. 

4. Run-up of a Monochromatic Wave 

As an illustration, we shall first consider the classical problem of monochromatic 
wave run-up on a beach. The solution of the linear problem is well known (in 
dimensional variables): 

rt(x,t ) =RJo(?@X{)cosoJt. (24) 

Far from the shore, using asymptotic expressions for the Bessel function Jo, we 
find that formula (24) corresponds to a standing wave 

7 = H(x){sinlo~(t-f ~ g h ) +  4 ] +  sin[w(t + f ~ g h ) - 4 ] ) '  (25) 

where 

c~ ~ g " 1/2 
"(x)=R(~-ww ~-~)  " (26) 

Far from the shore, the wave amplitude changes in accordance with Green's law 
H ~ N - 1 1 4  ~ h -1 /4 ,  and near the shore, this formula is not valid because of the 
reflection so that the wave amplitude remains bounded. From Equation (26), we 
get an important formula for the wave amplification coefficient on the slope, or 
the fluid elevation height on the shore: 

R-R-=(~ w / 4 o  h~/@) 1/2 = 2~r ,22~Ao, (27) 

where Ho is the amplitude of a wave of length ao at a distance L from the shoreline 
and ho is depth at the distance L from the shoreline. We emphasize that formula 
(27), which determines the extreme run-up characteristics, is also exact in the 
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nonlinear theory. Using (24), we can easily find the critical value of the breaking 
parameter Br ,  = 1. Assuming, for example, that the tsunami wave period of 
10 min, ~ -  10-2 and Br ,  = 1, we find the run-up height at which the breaking is 
started (this height is approximately 10 m). Such a conclusion is confirmed by the 
tsunami data analysis in the Pacific Ocean (Mazova et al . ,  1983). Figure 2 repre- 
sents the dependence of the tsunami wave-breaking probability of run-up height, 
averaged over 114 tsunamis. It is seen that waves with heights of more than 10 m 
generally break. Totally, 75% tsunami waves do not break; this confirms that the 
theory proposed is applicable to the tsunami problem. Combining (27) with the 
critical value Br ,  = 1, we obtain the maximum amplification coefficient 

Max - -  = 2.75 (28) 
Ho (87r3"~f2)l/5 \ ho ] 

(at Br > Br , ,  the wave will break and the run-up height will not increase). We 
emphasize that the maximum run-up height is rather weakly dependent on the 
incident wave nonlinearity parameter Ho/ho .  Thus, for tsunami waves in the open 
ocean, we have: Ho - I m, ho - I km, Max R / H o  ~ 11. Usually, the hydromode- 
ling yields large values of Ho/ho  ~ 10 -1 and Max R / H o  ~ 4.3. This fact must be 
taken into account when the hydromodelling data are applied to full-scale experi- 
ments. 

The time-dependence of water level is calculated using Equations (19) and 
(20) and is presented in Figure 3. As Br increases, the velocity profile becomes 
asymmetric, the leading front steepens, so that the wave becomes a shock one at 
Br = 1, as was to be expected, The water-level profile remains symmetric with 
respect to the vertical axis; at Br = 1 (at the time of breaking), the curve R( t )  

contains a kink (Figure 3). That is why it is difficult to distinguish the wave- 
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Fig. 3. The maximum run-up R and moving shoreline velocity u for a monochromatic wave. 

breaking moment  in numerical calculations using the fixed shoreline records; it is 
easier to use the moving shoreline velocity records. Note that the run-up height 

profile became asymmetric with respect to the horizontal axis; this corresponds to 
water elevation on the average. The same Conclusion follows from (20) after some 
transformations: 
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~/R = ¼ Br > 0. (29) 

As a result, the run-up time will exceed the run-down time. We omit cumbersome 
expressions and give a simple approximation formula which is valid in the region 
B r <  1: 

O)tr . . . .  p = 7r + Br, wt . . . .  d o w n  = 7r - Br. (30) 

Such behaviour of a moving shoreline in the case of monochromatic wave run-up, 
confirms the results of numerical experiments by Synolakis (1986), Gogodre et al. 
(1985). 

5. Run-up of Pulse Perturbations 

In practice, tsunamis represent a finite train of waves or even a single perturbation. 
As was mentioned above, the run-up of such waves can be investigated in two 
stages. At  the first stage, the linear problem is solved, and at the second, the 
nonlinearity is taken into account through the Riemann transformation of the 
solution. We begin by considering the first stage. The general solution of the linear 
system (16), as is well known, can be written in two equivalent forms: the Poisson 
formula: 

f0 f'x 0(x) ('XUo(X) dx, 
. o ( o , t ) = l O t J o ~ +  Jo ~ t>x, 

(31) 
lO, t<x, 

and the Fourier integral: 

rl(x,t)=fA(to)Jo(~@aXl)cos(o)t-O(w))dw, (32) 

where the choice of A(w) and 0(~o) depends on the initial conditions for tsunami 
waves ~(x, 0 ) =  ho(x), u(x, O)= Uo(X) (the piston model o f  tsunami wave-gen- 
eration is often considered with the assumption Uo(X)= 0). These solutions are 
equivalent, at the corresponding choice of A and q~, to those obtained from the 
initial conditions. Then it is necessary to put x = 0 in (32); such a solution describes 
the shoreline oscillations in the linear problem. It should be borne in mind that 
although the initial conditions can be formally arbitrary within the framework of 
the linear system (16), the initial assumption that the wave is linear in the source 
permits one not to consider the initial problem and to solve the boundary-value 
problem assuming that a tsunami wave, with assigned properties, comes from the 
open ocean. Indeed, a t  large distances from the source, the ray approximation is 
valid so that the initial perturbation decays into oppositely directed waves on an 
even bottom. Thus, the wave propagating to the shore should be considered as 
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the initial one. This fact is also important, since the real geometry of the ocean 
bottom does not change linearly; such an approximation is convenient only for 
the coastal zone and it is reasonable to assign the initial condition at the boundary 
of this zone (a similar situation is usually realized in laboratory and numerical 
experiments). 

In the following, we shall assume as given the parameters of a wave moving to 
the shore at some (fixed) depth ho, spaced at a distance L from the shore. We 
shall suppose that the wave is characterized by only two parameters: the height 
H0 and the length ho. Then, investigating (32) for extremum at x = 0, we find a 
parametric formula for the run-up height of a wave of arbitrary form: 

Ho 
(33) 

where Po is the form factor defined as Po = max P(t); 

P(t) = 2 ~  f ff--~(f~) e i(f~t-~-(~/4) sgn ~) dFt, (34) 

where q and 8 are the dimensionless amplitude and phase spectra of the approach- 
ing wave. 

Thus, functionally, the run-up height of an arbitrary pulse is described by the 
same formula as that of a monochromatic wave; therefore, the dependences on 
Ho, A0, and L are universal. Meanwhile, formula (33) also includes a form factor. 
Since almost nothing can be said about the form of a wave spaced well enough 
from the shore because of the poor measurement data, the problem arises to 
determine the possible dispersion of Po among the most probable wave forms, at 
least. 

As an example, we shall consider the initial perturbation of a Lorenz form: 

, [cos(o 4)] 
\To/ 

where the parameter 0 is arbitrary. To is the period of the pulse: The chosen class 
of perturbations has a wide variety of forms (Figure 4) with equal energies thus 
being, in a sense, standard. A substitution of (35) into (34) permits one to find 
the extrema of the function P (Figure 5), in particular P÷ determining the run-up 
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height and P_ determining the run-down depth: 

P+ = 7rV2 COS 5/2 5 '  

p _  = _ ~.~/~ cos5,2 2 (~r  - 0 ) .  

5 

(36) 

The coefficients P+ and P_ change rather weakly. We are dealing, however, with 
the ambiguous interpretation of/4o. Specifically, in this example Ho is the run-up 
height (i.e., a sum of the crest height and the trough depth). If in (33) by P0, only 
the crest height is meant, then the coefficients must be divided by cos2(0/2) so 
that the dependence on 0 becomes strong. Thus, to interpret experimental data, 
it is important to know the particular form of the running-up wave. It is also 
interesting to compare these coefficients in the case where only a crest of a 
Lorenzian or sinusoidal form comes to the shore. Calculations show that in the 
first case, we have P+ = 4.4; P_ = -0.23,  while in the second case, P+ = 3.9; 
P_ = -1 .4 .  Bearing in mind that the real form of the tsunami wave is indefinite 
but assuming it as a single crest, we propose that for rough preliminary estimates, 
we can conservatively adopt P0 = 5. Such a formula was used to plot the tsunami 
zonation scheme of the U.S.S.R. (Pelinovsky, 1988; Go et al., 1982). 

The existence of the run-up and run-down phases, even when a unipolar pulse 
comes to a beach, permits one to formulate the problem of 'dangerous' forms of 
tsunami waves. So, if the crest motion is accompanied by a precursor seen as a 
trough, then a run-down will first occur on the shore, followed by a greater run- 
up than without a precursor. Calculations show that most dangerous is the wave 
with a short deep or very long negative phase, as well as with a short high hump 
behind the trough (Figure 6). (A more detailed analysis of this problem will 
appear separately.) 

Let us note another important feature of the run-up of single perturbations. 
Since short spectral components are appreciably amplified on a beach, discontinuit- 
ies can arise in the wave, thus indicating the wave-breaking. Generally speaking, 
a localized pulse whose derivatives have discontinuities at the pulse edge, does 
not satisfy the shallow-water approximation: the vertical acceleration becomes 
unlimited. It should be borne in mind, however, that the vertical acceleration 
reaches high values in a Very narrow zone near the front; therefore, it is difficult 
to ascertain whether or not the wave-breaking really occurs, since it is necessary 
to take into account the dispersion that smooths out such a feature on the front. 
Meanwhile, the wave crest remains smooth and satisfies the unbroken wave ap- 
proximation under the condition Br < Br , .  

Using the linear solutions (31) or (32) for a wave field on the shoreline, we can 
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res tore  the nonl inear  dynamics  of  a moving  shoreline by (19) and (20). A typical 
calculation is given in Figure 7. As  Br  increases,  the shoreline velocity profile 
takes on a characterist ic  shock fo rm and the curve R(t)  remains symmetr ic  to the 

vertical axis. W e  emphas ize  that  the critical value of  Br  is 2 in this problem.  
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In the nonbreaking case, besides the run-up characteristics, it is easy to obtain 
simple formulae for a reflected wave. If we neglect, as before, the dissipation and 
breaking, then the whole energy of the wave will transform to the reflected wave 
energy. The reflection characteristics are investigated in the region where waves 
are linear, while the wave field is described by (25). From this formula, it is seen 
that the reflected-wave amplitude remains equal to the incident-wave amplitude 
and the phase shift becomes rr/2. Consequently, in the pulse perturbation case, 
the spectral amplitudes do not change and all phases undergo a ~-/2 shift. Such a 
situation is characteristic for total internal reflection and the relationship between 
the incident and the reflected wave in the pulse perturbation case can be written 
through the Hilbert transformation: 

r/refl(t ) = ! (~  ~inc(T) d1". 
~rJ-= t - ~ -  

(37) 

Figure 8 is a marigram of incident and reflected waves for the Lorentz pulse run- 
up (35). It is seen that the form of the reflected wave changes appreciably as 
compared to the incident wave. 

7. Wave Run-up on a Beach with a Kink 

Let us now consider the case of wave run-up on a beach conjugate with an even 
bottom. Such a situation is most important from the viewpoint of laboratory 
modeling (Figure 9). An exact solution of the nonlinear problem for this case has 
not yet been obtained. Nevertheless, if the kink point is relatively far from the 
shoreline, it seems reasonable to use the linear approximation to find the run-up 
height. Omitting elementary calculations, we shall write down the final expression 
for shoreline oscillations: 

R(t) = [~ 2 H ( ~ )  
WS(z) + J (z) 

where H(w) is the spectrum of the approaching wave, z = 4rrL/ao. If z >> 1, then 
using the asymptotic representation of the Bessel function, we can find a more 
simple expression: 

,54,;r [( ] R = 2  a , g j  ~ H ( w )  expi o) t +  C + 4 s g n w  do). (39) 

As a result, the formulae for run-up height and run-down can be parametrized 
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Fig. 9. Scheme of wave run-up on a slope conjugate to an even bottom. 

as (33). In the other  limiting case (z ~ 1), we deal with a 'wall ' ,  where R+ = 2H0 

and R_ = 0. Combining these asymptotic forms, we propose a simplified formula 

to calculate the extreme characteristics of tsunami wave run-up on a beach with 

a kink: 

max {X/U  
R__ _ 2, 

Ho o max P+,  

Rmax 0~ f 
Hoo - ~ o  max IP-I, 

L < L , ,  

L > L , ,  

L < L , ,  

L > L , ,  

(40) 

where P+,  P -  are the maximum and minimum function P(t), Rmax is the max imum 

runup height, Rmin the maximum rundown, and L ,  is the distance f rom the 
shoreline characteristic for concrete pulses. 

To find the applicability range of the asymptotic formulae,  we used (38) and 
(39) with corresponding curves given in Figures 10 and 11 (solid and dashed lines, 

respectivtey). It is seen that the asymptotic formula slightly underest imates the 
run-up height; this can be an important  circumstance for the experimental  data 
interpretation. 

8. Wave Run-up on a Vertical Obstacle 

To estimate the role of  nonlinear effects in the problem of wave run-up on a 
beach with a kink, we shall consider the case of wave reflection from a vertical 
obstacle (in the other limiting case where the kink is spaced far enough from the 

shoreline, the nonlinearity does not influence characteristics of the run-up). Using 
the Riemann invariants 



246 E . N .  PELINOVSKY AND R. KH. M A Z O V A  

I 

-2 

R/Ho 

2 

-t 0 

-2  

-0.5 RI% 
~o 

L 2 

I~_ ~----- t i t  0 

L = 0.8 
ZQ 

A 

B 
t ,  - 5  

Calculation by an exact (38) (solid) and an asymptotic (39) formula (dashed line). Fig. 10. 



NONLINEAR PROBLEMS OF TSUNAMI WAVE RUN-UP 247 

R 

H0 

2.0 

Fig. 11. 

/ /  

"t/ / 

/ 
/ /  

/ 
i / I I I I 

0.2 0A 0.6 0.8 4.0 L/; o 
Exact (1-solid line) nad asymptotic (2-dashed line) dependences for run-up. 

V= = u-+ 2 [ ~ +  7/) - ~ l ,  (41) 

we can write the initial shallow-water equations (in dimensionless variables); 

__OV 3 1 OVw 
+ (+ ~ + ~V_+ + ~V~) = 0. (42) 

Ot Ox 

The wave-wall interaction process is illustrated in Figure 12, where the character- 
3 1 

istics C_+ = --_X/-~gh + xV± + ~V= are shown. Being straight lines (shown dashed) 
everywhere in the linear theory, these characteristics are bent in the interaction 
region between the incident and reflected waves near the wall because of the 
nonlinearity. From (42), it follows that the quantities V_+ remain unchanged on 
the characteristics C+; therefore, the interaction effect reduces to additional time 
delays of the reflected wave phases. Our primary interest, however, is the wave 
height near the wall; this value can be calculated exactly. Indeed, from the boun- 
dary condition on the wall u = 0, we find the relationship between the run-up 
height and the invariant V+; 

V+ = 2 [ ~  + R) - X~hgh]. (43) 

Outside the interaction region, we have a common expression for the invariant: 

V+ = 4[X/g(h + Ho) - X/~gh. (44) 
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Fig. 12. A quantitative variation of the incident and reflected wave characteristics. Characteristics of 
the linear problem are indicated by a dashed line; for nonlinear problem - a solid line. The incident 
and reflected wave interraction region are indicated by hatched lines. 

Equating (43) and (44), we find the sought formula: 

(45) 

In the linear approximation, from (45) it follows naturally that R = 2H0. Thus, 
taking the nonlinearity into account leads to increased water elevation at the wall 
but such an increase is not so large. Therefore, if/4o < h0, then the linear theory 
yields a relatively small error in the run-up height calculation. 

References 

Battjes, J. A.: 1974, Surf similarity, Proc. 14th Coast. Eng. Conf., Copenhagen, pp. 466-480. 
Bowan, A. J.: 1977, Wave-wave interactions near the shore, Lecture Notes in Phys. 64, 102-103. 
Carrier, G. F. and Greenspan, H. P.: 1958, Water waves of finite amplitude on a sloping beach, J. 

Fluid Mech. 4(1), 97-109. 
Goto, Ch. and Shuto, N.: 1978, Numerical simulation of tsunami run-up, Coastal Engrg. Japan 21, 

13-20. 
Goto, Ch.: 1979, Nonlinear equation of long waves in the Langrangian description, Coastal Engrg. 

Japan 22, 1-9. 
Goto, Ch.: 1974, Nonlinear waves in a channel of variable section, Coastal Engrg. Japan 17, 1-12. 
Golin'ko, V. I. and Pelinovsky E. N.: 1988, Run-up of long waves on a beach in channels of variable 

cross-section, Meteorologiya i Gidrologiya No. 9, 107-112. 
Gogodze, I, K., Popov, Yu, P., and Khutsishvili, V. V.: 1985, Continuous self-similar and periodic 

solutions of the shallow-water equations, Run-up of Tsunami Waves on Shore, Inst. Appl. Phys., 
Acad. Sci. U.S,S.R., Gorky, pp. 64-74. 



NONLINEAR PROBLEMS OF TSUNAMI WAVE RUN-UP 249 

Go, Ch. N., Kaistrenko, V. M., and Simonov, K. V.: 1982, Local long-term prediction and tsunami 
zonation, Preprint of Sakh. No. 11, DVNTs Akad. Nauk U.S.S.R. 

Kaistrenko, V. M., Pelinovsky, E. N., and Simonov, K. V.: 1985, Run-up and transformation of 
tsunami waves in shallow waters, Meteorologiya i Gidrologiya, No. 10, 68-75. 

Kaistrenko, V. M., Mazova, R. Kh., Pelinovsky, E. N., and Simonov, K. V.: 1985, The analytical 
theory of tsunami wave run-up on shelves of different geometries, Tsunami Run-up on Shore, Inst. 
Appl. Phys., Acad. Sci. U.S.S.R., Gorky, pp. 34-47. 

Kaistrenko, V. M., Mazova, R. Kh., Pelinovsky, E. N., and Simonov, K. V.: 1991, Analytical theory 
for tsunami run-up on a smooth slope, Sci. Tsunami Hazards 9, 115-127. 

Keller, J. B.: 1961, Tsunamis - Water waves produced by earthquakes, in P. C. Cox (ed.), Proc. 
Tsunami Meeting lOth Pacific Science Congress JUGG, Monograph, 24, pp. 154-166. 

Kozlov, S. L.: 1981, On tsunami wave run-up on a beach without breaking, Izv. Akad. Nauk S.S.S.R. 
Fiz. Atm. i Okeana 17(9), 996-1000. 

Mazova, R. Kh.: 1984, Reflection of tsunami waves from a slope, Theses of reports of tsunami meeting, 
Inst. Appl. Phys., Acad. Sci. U.S.S.R., Gorky, pp. 103-105. 

Mazova, R. Kh.: 1985, The linear theory of tsunami wave run-up on shelves of different geometries, 
Tsunami Run-up on Shore, Inst. Appl. Phys., Acad. Sci. U.S.S.R., Gorky, pp. 48-63. 

Mazova, R. Kh. and Golubtsova, T. S. : 1989, Run-up of a wave of alternating form, Oscillations and 
Waves in the Solid Media Mechanics, Gorky Polytechnical Institute, Gorky, pp. 52-63. 

Mazova, R. Kh. and Osipenko, N. N.: 1988, The effect of the form of a long wave coming to the 
shore on run-up characteristics, Oscillations and Waves in a Fluid, Gorky Polytechnieal Institute, 
Gorky, pp. 71-83. 

Mazova, R. Kh~, Osipenko, N. N., and Pelinovsky, E. N.: 1987, The effect on nonlinearity on run- 
up characteristics of long waves, Izv. Akad. Nauk U.S.S.R. Fiz. Atm. i Okeana, 23(9), 950-955. 

Mazova, R. Kh. and Pelinovsky, E. N.: 1982, The linear theory of tsunami waves climbing a beach, 
Izv. Akad. Nauk. S.S.S.R. Fiz. Atm. i Okeana 18(2), 166-171. 

Mazova, R. Kh., Pelinovsky, E. N., and Shavratsky, S. Kh.: 1983, The nonlinear theory of wave run- 
up on a beach, The Excitation and Propagation of Tsunami Waves, Inst. of Oceanology, Acad. Sci. 
U.S.S.R., Moscow, pp. 38-103. 

Mazova, R. Kh., Pelinovsky, E. N., and Solovjov, S. L.: 1983, Statistical data on tsunami wave run- 
up, Okeanologiya 23, 932-937. 

Le Mehaute, B., Koh, C., and Hwang, L. S.: 1968, A synthesis of wave run-up, J. Waterways Harb. 
Div., ASCE, 94(1), 77-92. 

Mei, C. C.: 1983, The Applied Dynamics of Ocean Surface Waves, Wiley, New York. 
Pelinovsky, E. N.: 1989, Tsunami climbing a beach and tsunami zonation, J. Tsunami Soc. 7(2), 118- 

122. 
Shuto, N.: 1972, Standing waves in front of a sloping dike, Coastal Engrg. Japan 15, 13-23. 
Synolakis, E. S.: The run-up of long waves, Ph.D. thesis, California. Inst. Technology, 1986. 
Spielfogel, L. O.: 1976, Run-up of single wave on a sloping beach, J. Fluid Mech. 74(4), 685-694. 
Vol'tsinger, N. E., Klevanny, K. A., and Pelinovsky, E. N.: 1989, Long-wave Dynamics of the Coastal 

Zone, Gidrometeoizdat, Leningrad. 
Zheleznyak, M. I. and Pelinovsky, E. N.: 1985, Physical-mathematical models of tsunami run-up on 

shore, Tsunami Run-up on Shore, Inst. Appl. Phys., Acad. Sci. U.S.S.R., Gorky, pp. 8-33. 


