BIOTECHNOLOGY LETTERS Volume 17 No.6 (June 1995) pp.575-578 Received as revised 28th April

MEVALONIC ACID INCREASES trans-ASTAXANTHIN AND CAROTENOID BIOSYNTHESIS IN Phaffia rhodozyma

¹Pilar Calo, ¹Trinidad de Miguel, ²Jorge B. Velázquez and ¹Tomás G. Villa*

¹Departamento de Microbiología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15706 Santiago de Compostela, and ²Area de Tecnología de los Alimentos, Escuela Politécnica Superior, Universidad de Santiago en Lugo, E-27071 Lugo, Spain

SUMMARY

Mevalonic acid has been tested as enhancer of pigment biosynthesis in wild-type *Phaffia rhodozyma*. The addition of 0.1% mevalonic acid to the culture media stimulated both *trans*-astaxanthin and total carotenoids biosynthesis, with average increases by ca 400%.

INTRODUCTION

The good quality of salmonids and crustaceans is first judged on the basis of their colour, the main red colour of these animals being the ketocarotenoid *trans*-astaxanthin (3,3'-B-B'-carotene-4-4'-dione) (Johnson *et al.* 1977). This carotenoid is abundant in nature, but only a few microorganisms can synthezise it, the yeast *Phaffia rhodozyma* being the most important one (Avalos *et al.*, 1986). Wild salmonids have enough sources of carotenoids (microalgae, small crustaceans and the like), but penreared salmonids must incorporate these pigments from their diets to acquire the desirable red colour. B-Ionone (Lewis *et al.*, 1990), lycopene (Johnson and Lewis, 1979) and acetic acid (Meyer and du Preez, 1993) have been reported as exerting some effect on the synthesis of carotenoids by *P. rhodozyma*. Mevalonic acid, 3,5 dihydroxy-3-methyl pentanoic acid, is a key carotenoid precursor. In this paper we report on the

effect of the addition of mevalonic acid to the culture media of the pigmented yeast *P*. *rhodozyma* on the accumulation of *trans*-astaxanthin and other carotenoids of biotechnological interest.

MATERIALS AND METHODS

Strain and Medium. The P. rhodozyma strain used was the natural isolate UCD-FST-67-210 (Miller et al., 1976). The medium used for yeast growth and maintenance was YM (yeast extract: 3 g/l; malt extract: 3 g/l; peptone: 5 g/l; glucose: 10 g/l; and agar: 30 g/l for solid media).

Reagents and Chemicals. All solvents were HPLC-grade from Romil Chemicals. Mevalonic acid, which was used as mevalonic acid-lactone (Sigma), was tested at 0.05 and 0.1% (w/v) concentrations. This compound was added to YM medium immediately before pouring the plates.

Sample preparation for HPLC. P. rhodozyma was grown in YM broth in a shaker at 230 rpm and 23°C for five days. Then cells were harvested by centrifugation at 7000 rpm for 15 min, washed with sterile water and dried in an oven at 37°C. Afterwards 0.2 g. of dried yeast were resuspended in 5 ml of dimethylsulfoxide (DMSO), preheated to 55°C and vortexed for 30 s (Sedmak *et al.*, 1990). Then 0.5 ml of phosphate buffer pH 7.0 and 10 ml of hexane-fraction from petroleum were added and mixed by vortexing for an additional minute. Finally, samples were filtered through 0.45 μ m Millipore membranes and stored at -20°C until analyzed.

Carotenoid Analysis and Standards. Chromatographic separations were performed by high performance liquid chromatography (HPLC) on an Ultrasphere silica 5μ , 250 x 4.6 mm column (Beckman) protected by an Ultrasphere 5μ , 450 x 4.6 mm guard column (Beckman). The eluting solvent was hexane-fraction from petroleum/ethyl acetate 1/1 (v/v) and flow rate was 1 ml/min. The eluant was monitored at 476 nm. β -carotene (Sigma) was used as standard and the concentrations of the other carotenoids were calculated in relationship to this compound. Standard stock solutions were diluted in hexane-fraction from petroleum. β -carotene had linear calibration curves (peak area vs concentration) through the origin.

RESULTS AND DISCUSSION

Figure 1 shows chromatograms of the carotenoids extracted from P. rhodozyma wild-type grown in the presence of 0.05% and 0.1% mevalonic acid, with respect to the the control assay without this acid. Quantitative results from HPLC-analysis in the three assays are summarized in Table 1. The addition of mevalonic acid to the medium has a strong effect on the accumulation of carotenoids. Average

increases of over 300% were determined in the assays corresponding to the addition of 0.05% and 0.1% mevalonic acid to the medium.

Figure 1. HPLC-carotenoid profiles of intracellular extracts from *P. rhodozyma* grown in A) usual media; B) 0.05% mevalonic acid-supplemented medium; and C) 0.1 % mevalonic acid-supplemented medium. Peaks: $1 = \beta$ -carotene; 2 = 3-hydroxyechinenone; 3 = trans- astaxanthin; and 4 = cis-astaxanthin.

Mevalonic acid concentration (%)	ß-carotene	*ND1	3-hydroxy -echinenone	*ND ₂	<i>trans</i> - astaxanthin	<i>cis-</i> astaxan	Total thin
0 (Control)	20.8	9.0	39.9	14.4	181.6	1.9	274.9
0.05	127.5	88.2	124.9	62.4	399.9	9.6	889.7
0.1	28.2	25.8	238.2	16.6	758.2	4.0	1074.9

Table 1. Effect of mevalonic acid on the biosynthesis and accumulation of intermediate and total carotenoids (μ g/g. dried weight) by *P. rhodozyma*.

*ND₁ (retention time: 3.6 min) and ND₂ (retention time: 5.3 min) correspond to carotenoids which structure was not determined, possibly biosynthetic intermediates.

A direct relationship between mevalonic acid concentration and both *trans*astaxanthin and 3-hydroxyechinenone biosynthesis was also observed. Thus, the overproduction of *trans*-astaxanthin in the presence of 0.1% mevalonate rose from 180 (control assay) to 760 μ g/g yeast (dried weight). The accumulation of 3hydroxyechinenone in the presence of 0.1% mevalonate increased six-fold with respect to the control assay. Minor carotenoids, these including B-carotene, *cis*-astaxanthin and others whose structure has not been determined so far, did not show the same proportionality pattern.

The overproduction of *trans*-astaxanthin by P. *rhodozyma* in the presence of 0.1% mevalonic acid may acquire practical interest in the biotechnological production of this ketocarotenoid for the fish and poultry industry.

ACKNOWLEDGEMENTS

The authors wish to thank F. Camiña for his technical assistance and Nick Skinner for styling the English manuscript. P. Calo is a recipient of a research fellowship from the Xunta de Galicia. This work was partially was partially supported by a grant from the Xunta de Galicia (XUGA 26201A93).

REFERENCES

Avalos, J. and Cerdá-Olmedo, E. (1986). Phytochemistry 25, 1837-1841.

Johnson. E.A., Conklin, D.E. and Lewis, M.J. (1977). J. Fish. Res. Board Can. 34, 24172421.

Johnson, E.A. and Lewis, M.J. (1979). J. Gen. Microbiol. 115, 173-183.

Lewis, M.J., Ragot, N., Bertlant, M.C. and Miranda, M. (1990). Appl. Environ. Microbiol. 56, 2944-2945.

Meyer, P.S. and du Preez, J.C. (1993). Biotechnol. Letters 15, 919-924.

Miller, M.W., Yoneyama, M. and Soneda, M. (1976). Int. J. Syst. Bacteriol. 26, 286-291.

Sedmak, J.J., Weerasinghe, D.K. and Jolly, S.O. (1990). Biotechnol. Techn. 4, 107-112.