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Abstract. In their Mixed Spectral Finite Difference (MSFD) model for flow over complex terrain, Beljaars 
et al. (1987) solve a set of coupled, second-order ordinary differential equations (ODES) for the first-order 
perturbations to the logarithmic velocity profile caused by nonuniform surface roughness and topography. 
To solve this set of ODES, they employ a Forward Euler Shooting Method. It is demonstrated here that 
the shooting method is computationally unstable for this problem. An absolutely stable finite-difference 
method based on a block tridiagonal LU factorization of the finite-difference matrix is presented. The 
advantages of the present algorithm over the method used by Beljaars et al. are demonstrated both by 
theoretical argument and numerical experiment. 

1. Introduction 

In a recent paper, Beljaars et al. (1987), hereafter referred to as BWT, present a linear 
Mixed Spectral Finite Difference (MSFD) model for neutral surface-layer flow over 
complex terrain. They employ a Forward Euler Shooting Method to solve equations for 
the first-order perturbation to the flow caused by topography and by variations in 
surface roughness. In a comparison with measured field data, the algebraic stress 
version of their model is seen to make good predictions of both the mean flow and 
turbulent stresses (BWT, Section 5). However, the numerical method employed exhibits 
divergent behaviour under certain conditions. In this paper, a signi6cantly more robust 
and accurate numerical method is presented. 

2. The MSFD Model Equations 

In the interest of brevity, the model equations will be presented here with minimal detail. 
For a more exhaustive discussion that includes the rationale for model approximations, 
the reader is referred to BWT. 

In formulating their model, BWT begin with the Reynolds-averaged stationary 
Navier-Stokes equations in Cartesian coordinates (BWT, Equation (1)). They trans- 
form to an (x, y, Z) coordinate system where the Z-coordinate is terrain-following: 

z=z-h(X,Y), (1) 

where fi (x, JJ) is the height of the surface above a reference level. 
To make the problem tractable, BWT postulate that the solution to the nonlinear 
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model equations can reasonably be decomposed into the sum of a zero-order solution 
for horizontally homogeneous flow over a flat surface of uniform roughness, zO, and 
small first-order corrections that account for variations in topography and surface 
roughness (BWT, Equations (3), (3a), and (4)). This approximation reduces the original 
nonlinear problem to the solution of a set of coupled, linear partial differential equations 
for the first-order perturbations. The solution of this set of equations is realized by first 
performing a finite-area Fourier transform in the x - y plane. For the wavenumber pair 
(k, m), this operation yields the following set of coupled ordinary differential equations : 

duo 1 a 
iu,(Z)li, + dz 6, = - - ik@, + az tx,, 

P 

duo 1 a 
iu,(Z)O, + - kc’1 = - - irnjj, + - ty, ) 

dZ P az 

iu,(Z)ti,, - u&(Z) p, = - ; $ p, ) 

a 
ik6, + imB, + - ti,, = 0, 

8Z 

where 

u,(Z) = ku,W + muo(Z), 

cosq 
u,(Z) = ~ 1nU + z,M~ K 

sin f$ 
u,(Z) = ~ ln KZ + zdh 1 K 

and the ‘top-hat’ symbol denotes Fourier-transformed quantities. All symbols have the 
meaning attached to them in BWT except that velocities (and stresses) have been 
normalized by the friction velocity, u *, corresponding to the zero-order velocity profile. 

BWT study several alternative closure schemes including the mixing-length hypoth- 
esis, an E - E model and an algebraic stress closure. All three closure schemes make 
similar predictions for mean flow quantities; however, the mixing-length hypothesis was 
found to be inferior to the E - E and algebraic stress models for predictions of surface 
stresses. Furthermore, in the outer layer, stresses predicted by the algebraic stress model 
are more realistic than those calculated from the E - E model. Considering the 
superiority of the algebraic stress closure over other closures, this paper will focus on 
that version of their model. 

In the algebraic stress model employed by BWT, the first-order perturbations to the 
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turbulent shear stresses are calculated according to 

where 8, is the Fourier transform of the first-order pertubation to the turbulent kinetic 
energy and $r is related to the Fourier transform of the first-order perturbation to the 
dissipation, B , , by the relation 

$, = a,(z+z,) (4) 

The first-order perturbation to the turbulent kinetic energy is required to satisfy 

iu, (Z)B, = 
2 

f4z + zo> 
( - al?, + ^zxl cos($J) + 4,, sin((b)) + 

+ 2 K(Z + zo) a ” 

( az CKE az E1 > 
(5) 

and the quantity &I is calculated from 

1 
iu,(Z) tjl = ~ $ + 24% - G2) h 

(Z+zd 1 4z + 4 
$1 - 

- (3C,, - C,,) a2 
a + zo) 

8, + 

+ Cd 
2a 

4z + ZCJ 
(tXl 

+ K(Z + z(J a -- 
C Ke ( 

a 

az az 

cos(~~ + $,I sin(#) + 

(6) 

Given that in the near-surface zone, the solution is approximately logarithmic and in 
the outer layer it is very nearly exponential, BWT employ the coordinate transformation 

WZ + zo)/zol + zlro 
‘= ln[(li + zO)/zO] ’ 

(7) 
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where ii and Z, are the inner and outer length scales, respectively. Following the theory 
of Hunt and Simpson (1982), the length scales li and I, are chosen to be wavenumber- 
dependent. 

(Ii/L) In (l,/z,) = 2 ic* , (84 

I, = (/I* + my’*. @b) 

In Equation (8a) above, L is the horizontal scale of the perturbation (topography or 
roughness induced) and is calculated according to Equation (9). 

L= pccosf$+msinc#~-‘. (9) 

Equations (8) and (9) are inappropriate for highly anisotropic perturbations (for 
example, when m % k). In the highly anisotropic case for certain angles I#J, the inner 
length scale Zi can exceed the outer length scale I,,. In these degenerate cases, an 
alternative definition for the inner and outer length scales must be employed. 

To solve Equations (2), (3), (5), and (6), boundary conditions are required both at 
the surface and at some as of yet unspecified upper boundary. Near the surface (i.e., 
in the vicinity of rl = 0), it is assumed that a shallow, constant-stress wall layer exists 
within which ti and B satisfy the following relations: 

^zxl cos $ al= _-__ 
C 

( ‘2,,cosf$+ S,,sin$) 1 In- ___ m 
z+z,+cos$J ” 

u 2u 1 3 

ZO u 

[ 

Q,, sin Q fi,= --~ ( 9,.cos@+ Q,,sin~) 1 Z+z, sin+ 1 
In--- __ m + 1 Y (10) 

u 2JC zo u 

where fi, is the Fourier transform of the function m, (x, y) which relates the local 
roughness length, z,,, to the upstream roughness length z, by 

zo, (x, y) = z, eCml(x*u). 

Additionally, at q = 0, we must have 

(11) 

GJ, = 0. (12) 

BWT require A!?,/aZ and aGl/aZ to vanish at q = 0. We prefer to employ a local 
equilibrium hypothesis to deduce boundary conditions on 8, and 3,. If it is 
assumed that production and dissipation of turbulence are in local equilibrium in a thin 
wall layer, then 8, and I$~ must satisfy 

u.E, = 9,, cosfp + $,I sin$, 5, = $%?z, . (,l3) 

Beljaars (1985) has demonstrated that at heights several times the local roughness 
length, differences between the zero gradient and equilibrium boundary conditions are 
negligible. 

Ideally, the upper boundary conditions should be imposed at infinity where perturba- 
tions to the flow are known to vanish. However, in practice, the upper boundary 
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conditions are imposed at a height q = Q, where Q, is chosen to equal a large but finite 
number. To derive boundary conditions at q = Q,, the flow above Q, is assumed to be 
inviscid and it-rotational. It follows from this approximation that at r~ = Q,, 

WI 

and 

Sill@ kak Ic(Z + zo) -- 
z + z, 

A+ A 

9,, = 
U 

1 + KU,JZ + z0iC3 
(14c) 

where ak = (k’ + m2)- i” Furthermore, at the upper boundary, perturbations to the . 
turbulent kinetic energy and the dissipation are required to vanish. 

To solve the model equations, BWT employ a first-order accurate shooting method. 
Beljaars (1985) reports, however, that for large values of l/z,,, where 

J.= 
2K 

(k2 + m2y2 ' 
(15) 

the shooting method is unstable. This problem did not develop for the mixing-length 
closure, but was prominent for the E - E and algebraic stress closures. The problem is 
exacerbated for large Q; consequently Beljaars performed some of his calculations using 
a different deilnition for 1, than that given above, namely 

I, = 10li . (16) 

Although ?I,, was left unchanged, redefining lO according to (16) effectively lowered the 
height of the upper boundary. In certain cases, this action might be undesirable. In the 
next section, an analysis of the instability encountered by Beljaars is presented and an 
alternative to the shooting method is proposed that is unconditionally stable for any 
choice of L/z, or Q. 

3. Numerical Analysis of the MSFD Equations 

3.1. THE SHOOTING METHOD 

Rather than applying a two-point boundary-value finite-difference technique to the 
MSFD model equations, BWT employ a forward Euler shooting method. There are at 
least two good reasons for choosing the shooting method over a finite difference 
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formulation. First, the shooting method is very easy to code. Second, the shooting 
method is computationally economical. For the solution of a set of q coupled first-order 
ordinary differential equations at N levels by the shooting method, O(Nq2) floating point 
operations are required. Using a corresponding finite-difference method, O(Nq3) opera- 
tions are required if the block tridiagonal structure of the difference equation is exploited 
and the operation count rises to O(iV3q3) if the difference matrix is treated as though 
it is full. Despite these advantages, the shooting method should be cautiously applied 
to boundary-value problems because parasitic solutions can cause the method to be 
computationally unstable. 

Following the standard shooting method for boundary-value problems, the MSFD 
model equation set, Equations (2) through (6) inclusive, can be recast as an initial-value 
problem : 

a - 
az 

Q =F(@, Z;kmz,, j(,,&), 

with initial conditions 

ae++D=.i. 

(17) 

(18) 

where G and fi are 10 x 10 matrices and y is a vector. Note, however, that 5, b, 
and y are not fully specified and must be determined as part of the solution process. 

Since F is linear in CD, fir, and f^ r, BWT consider the roughness and 
topographic perturbations separately. They decompose @ into the sum 0 = 0, + Qtr 
where @‘I and @‘r are the roughness and topographic perturbations, respectively. O’, and 
@‘r satisfy 

a 

a 
- mt = (@,, Z; k, m, z,, 0, fi,), az 

(19) 

with initial conditions like those of Equation (18). 
The solution procedure employed by BWT has two steps: 
(1) Subject to essentially arbitrary initial conditions, they repeatedly integrate 

Equation (18) from q = 0 to q = Q, so as to generate five independent solutions to the 
homogeneous equations (i.e., fir = p, = 0) and two particular solutions (fir = 1, 
p, = 0 and A, = 0, p, = 1). The integration is accomplished by a fixed-step length 
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forward Euler method. In matrix notation, the Euler method can be represented as 

A@+ ’ = B@’ + b , (20) 

where i is an index that denotes the integration level. The matrix A is lower triangular 
and of dimension 10 x 10. Since A is lower triangular, ai+ ’ can be calculated explicitly 
from @“. 

(2)Let {@jNlj= 1,2,..., 5}, Cpz, and @y be the homogeneous solution set, the 
particular solution for the roughness perturbation and the particular solution for the 
topography, respectively, at the upper boundary (i = N). The solution to the two-point 
boundary-value problem can be written 

(21) 

To determine {a; lj = 1,5} and {a; Ij = 1, 5}, 0, and QD, are required to satisfy (14); 
this involves the solution of two 5 x 5 systems of equations: 

Ya’ = b’, Pa’ = b’ . (22) 

Once a’ and a’ are known, the solution is fully determined. 
Unfortunately, the procedure outlined above is computationally ill-conditioned. In 

Figure 1, the modulus of the residual on the stress pressure-relation (Equation (14b)) 
at q = Q, normalized by the modulus of surface value of 9,, (which we shall call 
the relative error) is plotted against n/z,, = 27r/(kz,,) for a two-dimensional sinusoidally 
varying perturbation of unit amplitude to the logarithm of the surface roughness length 
for the case @ = 0 and Q, = 3. When n/z, is small, the relative error is clearly negligible; 
however, by the time l/z, exceeds 5 x 105, the relative error is no longer small and 
cannot be ignored. A similar pattern of error is to be found for all the components of 
@ for both roughness and topographic perturbations. As a further example, the relative 
error in the perturbation to the turbulent kinetic energy at q = Q, for a sinusoidal 
topographic perturbation of unit amplitude is plotted on the same figure. 

For larger values of qbb, the computational instability is more acute. In Table I, the 
relative error in the stress-pressure relation (Equation (14b)) at the upper boundary (i.e., 
at q = v~) for the aforementioned roughness perturbation with J/z0 = lo5 is tabulated 
as a function of %. The relative error is seen to grow monotonically with Q. For Q, = 12, 
the algorithm diverges. 

There are two independent sources of the observed computational instability. First, 
the Forward Euler integration (Equation (20)) employed to calculate the set of inde- 
pendent solutions is unconditionally unstable - that is, for all values of J/z,,, N, and v~, 
round-off and truncation errors are amplified on passing from level i to i + 1. For (20) 
to be stable to round-off and truncation errors, it is necessary and sufhcient that the 
spectral radius of A - ’ B (i.e., jj A - ’ B II 2) be less than or equal to one. In Table II, for 
qb = 3 and various values of N, the geometric mean and minimum value of If A - 1 B /I 2 
over all levels i, is tabulated. We see that the spectral radius of A - l B always exceeds 
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Fig. 1. Relative error in the stress-pressure boundary condition, Equation (14b), for a sinusoidal variation 
in surface roughness (dashed line) and relative error on the turbulent kinetic energy boundary condition, 
8, = 0, for a sinusoidal topographic perturbation (solid line). For both the roughness and topographic 
perturbations, the upper boundary was located at qb = 3. Computations were performed on a Cray 1-S 

computer using single-precision arithmetic (15 digit word length). 

TABLE I 

Relative error in ?,, at q = q* (roughness 
perturbation) for l/z,, = 10’ and An = 0.075 

c Relative error 

1.5 8.36 x 1O-9 
3.0 7.73 x 1o-4 
6.0 5.18 x 10’ 

12.0 Diverges 

unity. Further, we can deduce from the tabulated values that the spectral radius only 
asymptotically approaches unity in the limit as N tends to infinity. 

A second cause of the observed computational instability in the shooting method is 
to be found at the stage where the coefficients {uJ I j = 1,5} and {uj I j = 1,5} are 
calculated (Equation (22)). For large values of L/z0 (say, in the range lo5 to lo7 when 
qb = 3), the matrix that must be solved to determine {$ ( j = 1, 5) and {a,! 1 j = 1, 5) is 
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TABLE II 

Spectral radius of the matrix A- ‘B for qb = 3 

N 
n/z, = lo3 l/z, = lo5 n/z, = 10’ 

21 
41 
81 

161 

Minimum Mean Minimum Mean Minimum Mean 

1.58 1.89 2.49 5.51 4.11 22.05 
1.25 1.38 1.60 2.45 2.11 7.07 
1.12 1.18 1.27 1.61 1.46 3.29 
1.06 1.08 1.13 1.28 1.21 1.94 

0 18 

n 1’ 
MSFD (Eleljaars et al.) 
Eauilibrwm boundatv conditions ;I: 

lo3 10' LAMl;~,zo 106 10 7 

Fig. 2. Condition number of the matrix .Y as a function of l/z,. 

poorly conditioned. In Figure 2, the condition number of the matrix Y is plotted as a 
function of L/z0 for rlt, = 3 and N = 41. If the condition number of the matrix 9 equals 
lo”, then on a computer with a p digit word length, the solution vectors a’ and a’ will 
be accurate to only (p - n) decimals. Therefore, even if we were to replace the Forward 
Euler integration with an A stable scheme (Gear, 1971), the poor conditioning of the 
matrix LZ would still render the shooting method unstable. A finite-difference formu- 
lation based on a block tridiagonal LU factorization of the MSFD model is proposed 
in the next section as a replacement for the shooting method. 
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3.2. A BLOCK Lu FACTORIZATION FORMULATION 

After central conservative differencing of the MSFD model equations, Equations 
(2)-(6), on a ‘MAC-like’ staggered grid (Harlow and Welch, 1965), we are left with the 
following system of difference equations: 

B,cD,+C,(D*=b1, 

A$- 1 + B,a+ + ciq+ 1 = bi) i= 1,2 )...) N- 1. 

4v@,- 1 + B,@,= bN, 

(23) 

Incorporated into (23) are the boundary conditions, Equations (lo)-( 14), at both rl= 0 
and q = VI,. 

To derive a solution algorithm for the set of equations just above, it is preferable to 
recast (23) in matrix notation as follows: 

A@==, (24) 

where 

r 4 G 1 
A, B, C, 

A= A, B, C, 
. . . . . . . . . . . . . . . 

AN B, 
and b = [b,, b,, . . . , b,JT Ai, Bi, Ci are 8 x 8 matrices and @ is as defined in 
Equation (17). The matrix A is said to be block triadiagonal. In direct analogy to the 
Thomas tridiagonal algorithm (March& 1982, pp. 212-223) for scalar tridiagonal 
systems of equations, a block variant of that algorithm can be derived. 

Let it be assumed that the matrix A can be factored into the product form 

A=LU, 

where 

L= 

I 

L2 1 

L3 1 

. . . . . . . . 

LN 1 

(25) 

(26) 
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and 

U= 

-u1 Cl 
u2 c2 

u3 c3 
. . . . . . . . . . . 

UN 

(27) 

Once the matrix A has been factored as indicated above, a combined forward/backward 
sweep of the factored system efficiently yields the solution vector Q. It remains, however, 
to specify first the matrices Li and Vi in terms of known quantities. Recursion relations 
for Li and Ui are easily derived by substituting for L and U from Equations (26) and 
(27) into (24) and comparing coefficients. Following this procedure it is deduced that 

U, =B,, 

Li = Ai U;‘, , i = 2,3, . . . , N . (28) 

Vi = B, - L,C,, , 

It is not hard to see that for a block size of q (q = 8 for the MSFD algebraic stress 
model), the block tridiagonal algorithm can be realized at a cost of Q(Nq3) floating point 
operations. Gaussian elimination on the other hand would require 0(N3 q3) operations 
to solve the same system of equations. For typical values of N in the neighbourhood 
of 40, the advantage of the block tridiagonal algorithm over full Gaussian elimination 
is considerable. Theoretically, we would expect the block tridiagonal algorithm to be 
about q times as expensive as the shooting method; this estimate is borne out by 
numerical experiments. 

Varah (1972) has determined necessary and sulhcient conditions which state require- 
ments on the matrices Ai, Bi, and Ci so as to guarantee that the set of recursion relations 
stated in Equation (28) is numerically stable against the growth of round-off errors. It 
can be shown that for any reasonable discretization of Equations (2)-(6), the matrices 
Ai, Bi, and Ci satisfy Varah’s stability conditions; therefore, the block tridiagonal 
algorithm represents an unconditionally stable solution technique for the MSFD model 
equations. 

4. Example Calculations 

For the extra cost involved in the block tridiagonal factorization, a considerable gain 
in accuracy and stability is realized. In Figure 1, previously referred to in the discussion 
of the shooting method, the relative errors in the upper boundary conditions for stress 
and turbulent kinetic energy as a function of A/z,, are plotted for both the shooting 
method and the block tridiagonal formulation. The latter formulation is several orders 
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of magnitude more accurate than the former even for low values of 1/z,. Furthermore, 
the relative error of the block tridiagonal formulation is approximately constant over the 
range of calculated l/z, values. 

For a set of ordinary differential equations with constant coefficients, we would 
expect a central conservative difference scheme to be of second-order accuracy - it 
cannot be assumed without question that such a scheme would be of second-order 
accuracy when applied to the MSFD model equations which have non-constant 
coefficients. A grid refinement study conducted by the author demonstrated that the 
conservative central differences are in fact of order Aq2 accurate. For rlt, = 3, it is 
sufficient to use 41 vertical levels to achieve an accuracy of within 1 y0 in the surface 
stress for L/z, = 105. 

3.00 

2.00 

r7 

1 .oo 

a 

k I I_ I L I 

0.00 Y -0.40 0.00 0.40 -0.40 0.00 0.40 -0.40 0.00 0.40 

b 

Re(TAUX1) Re(TAUX 1) Re(TAUX1) 

Fig. 3. Vertical profile of Re( ?,,) for a sinusoidal variation in surface roughness for (a) A/z0 = 103, 
(b) A/z,, = 105, and (c) A/z, = 10’. Calculations made with 41 vertical levels. (Karpik - solid line; Beljaars 

er al. - asterisks.) 

In Figure 3, the real part of 9,, (corresponding to values above roughness 
maxima) for a two-dimensional sinusoidal variation of unit amplitude in the logarithm 
of the surface roughness length as calculated by both the shooting method and the block 
tridiagonal formulation, is plotted as a function of the vertical grid coordinate, q, for 
L/z0 = 103, 105, and lo’, respectively. For A/z, = 103, any differences between the two 
sets of calculations are imperceptible; when n/z0 = 105, there are some small but 
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noticeable differences between the results produced by the shooting method and the 
block tridiagonal formulation. The shooting method is obviously unstable for n/z0 equal 
to lo7 whereas the block tridiagonal formulation continues to perform well. Similar 
results for a sinusoidal topographic perturbation of unit amplitude are presented in 
Figure 4. Again, differences between the stress protiles calculated by the two solution 
techniques are negligible for J./z,, = lo3 and lo’, while for L/z0 = 107, instabilities in the 
shooting method grow to corrupt the solution near the upper boundary. It is important, 
however, to note that the stress calculated by the shooting method is reasonable in the 
near-surface zone and that the calculation only begins to break down well above the 
surface. 

3.00 

2.00 

'1 

1 .oo 

0.00 
-c I.4 0 0.00 0.40 -0.40 0.00 0.40 -0.40 0.00 0.40 

Re(TAUXl)/ X-' Re(TAUX 1 )/ A' Re(TAUXl)/ h' 

Fig. 4. Vertical profile of Re( ?,,)/A-’ for a sinusoidal variation in topography for (a) l/z, = lo’, 
(b) A/z0 = 105, and (c) l/z,, = 10’. Calculations made with 41 vertical levels. (Karpik - solid line; Beljaars 

et al. - asterisks.) 

5. Concluding Remarks 

It has been clearly demonstrated that the tinite-difference method outlined here is 
signihcantly more robust than the shooting method for the solution of the MSFD model 
equations. However, one might argue that the difficulties with the shooting method 
occur only for extreme values of n/z, (say, greater than 107) and at a height well above 
the surface. Thus, one might question the need for adopting the block tridiagonal 
finite-difference formulation. 



286 S. R. KARPIK 

It was mentioned earlier that for the mixing-length variant of the MSFD model, the 
shooting method apperared to work well. Extension of the model to incorporate the 
E - E and algebraic stress turbulence models caused the shooting method to become 
unstable for certain values of l/z,. The shooting method became ill-conditioned because 
of the addition of two second-order differential equations to the model set. If one wishes 
to extend the model further by adding additional closure equations or the thermo- 
dynamic equation, the model equation set will grow again. In this case, the shooting 
method will likely be inapplicable for an even wider range of A/z, values. The present 
solution algorithm is considerably more robust and will, therefore, better accomodate 
modifications and/or additional equations as the MSFD model is developed to simulate 
increasingly complex problems. 
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