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Hypercomplex Structures on Stiefel Manifolds
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Abstract: This paper describes a family of hypercomplex structures {ZO(p)}a=,2,3 de-
pending on n real non-zero parameters p = (Pl,... ,n) on the Stiefel manifold of complex
2-planes in C" for all n > 2. Generally, these hypercomplex structures are inhomogeneous
with the exception of the case when all the pi's are equal. We also determine the Lie algebra
of infinitesimal hypercomplex automorphisms for each structure. Furthermore, we solve the
equivalence problem for the hypercomplex structures in the case that the components of p
are pairwise commensurable. Finally, some of these examples admit discrete hypercomplex
quotients whose topology we also analyze.
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Introduction

A hypercomplex structure on a smooth manifold M is a G-structure where G =
GL(n, H) that admits a necessarily unique torsion free connection, the Obata con-
nection [Bon, Ob]. In particular, every such M has three complex structures I, J,
and K which satisfy the relations of the algebra of imaginary quaternions and thus
generate an entire two-sphere's worth of complex structures on M. Until recently,
there were few known examples of compact, irreducible, hypercomplex manifolds in
dimension 8 and higher. The first class of such examples are the hyperkahler twisted
products of K3 surfaces constructed by Beauville [Bea]. Examples of hypercomplex
manifolds that are not hyperkihler were very scarce, the simplest ones being the
Hopf manifolds S4n+ 3 x S 1 which are locally conformally hyperkiihler. Recently the
authors [BGM2] gave a class of new compact locally conformally hyperkiihler mani-
folds by replacing S4n +3 with any 3-Sasakian manifold. Similar examples involving
the quaternionic Heisenberg group were found by Hernandez [Her]. None of these
examples, however, are simply connected.

In contrast to the 4-dimensional case, where all hypercomplex structures on com-
pact 4-manifolds are locally conformally hyperkahler [Boy], in higher dimensions
this is no longer true. A class of hypercomplex manifolds that are not locally confor-
mally hyperkihler was studied by physicists interested in supersymmetric a-models.
In this regard, Spindel et. al. [SSTP] classified compact Lie groups which admit
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hypercomplex structures. This is the generalization to the hypercomplex category
of the classic work of Samelson [Sam] and Wang [W] on the classification of com-
pact Lie groups [Sam] and homogeneous spaces [W] admitting complex structures,
respectively. Using different methods, Joyce [Joyl] later recovered this [SSTP] clas-
sification and developed a theory of homogeneous hypercomplex manifolds which
generalizes Wang's [W] result.

In this paper, guided by our previous work on 3-Sasakian manifolds [BGM1,
BGM2], we prove the existence of uncountably many distinct hypercomplex struc-
tures on Stiefel manifolds of complex 2-planes in complex n-space. An announcement
of the main results of this paper has appeared in [BGM3], and a general theory of
hypercomplex structures on circle bundles over 3-Sasakian manifolds is currently
being developed [BGM4].

Our main results are as follows.

Theorem A. Let n > 2 and p = (Pl,. . . ,Pn) E (R*)n be an n-tuple of non-zero real
numbers. For each such p there is a compact hypercomplez manifold ((p),Ia(p)),
where Af(p) is diffeomorphic to V, 2, the Stiefel manifold of 2-frames in C'.

Since ,,2 is (2n - 4)-connected, it cannot admit a locally conformally hyperkiihler
structure. A priori, all the hypercomplex structures {Za(p)} on V,2 could be equiv-
alent. In particular, permuting the coordinates of p or changing their signs does
not change the hypercomplex structure. Thus, we can assume that p is an n-tuple
of positive, non-decreasing, real numbers; i.e., p is an element in the positive cone

Cn = {p E Rn I O < P < P2 < ... < Pn}. However, we prove

Theorem B. If p and q are both commensurable sequences in the positive cone
C, then the hypercomplex manifolds Af(p) and Af(q) are hypercomplez equivalent if
and only if p = q. Here p is said to be commensurable if each of the ratios P is a

Pi
rational number. Furthermore, the manifold f (p) is hypercomplex homogeneous if
and only ifp = A(1,...,1) for some A E R*.

The one parameter family of distinct U(n)-homogeneous hypercomplex structures
on V, 2 given in Theorem B was found implicitly by Joyce [Joyl] (see also [Bat]);
however the remaining inhomogeneous hypercomplex structures on ,2 are new.
They are analogous to the inhomogeneous complex structures found by Griffiths [Gr]
in the versal deformation space of homogeneous complex structures. The equivalence
problem in the case of incommensurable sequences p appears to be beyond the scope
of the techniques used in this paper and is relegated to a future work.

Our next main result determines the connected component of the group of hyper-
complex automorphisms of N(p). In particular, it is shown that this group depends
only on the multiplicities mi of the components Pi of p. More precisely,

Theorem C. For all p E (R*)n the Lie algebra b(p) of infinitesimal hypercomplex
k

automorphisms of Af(p) is isomorphic to flu(mi). Hence, the connected component
i=l

k

of the group of hypercomplex automorphisms of Pf(p) is Ij U(mi). In particular,
i=1
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there exists a natural hyperhermitian metric h(p) on KA(p) such that every infinites-
imal automorphism is an infinitesimal isometry with respect to h(p).

Notice that Theorem C implies that the set of multiplicities in p is an invariant
of the hypercomplex structure even when p is not a commensurable sequence.

Many of our examples admit discrete quotients which are also hypercomplex. To
state this result we need some additional notation. A commensurable sequence p is
called basic if all the coordinates are integers and the greatest common divisor of
all the coordinates is one. A basic sequence is said to be coprime if the coordinates
are pairwise relatively prime. If p is an integer multiple of a basic sequence and if
the triples (pi,Pj, k) have no common factor for all 1 < i < j < n then p is called
k-coprime.

Theorem D. Let p be k-coprime. Then there is a compact hypercomplex manifold
9-(p, k) with universal cover Pk : NA(p)-+'(p, k) such that 7rl('H(p, k)) - Zk and Pk
is a hypercomplex map. Moreover, 7W(p, k) is never locally conformally hyperkdihler
and is hypercomplex homogeneous if and only if p = (p, p,..., p).

Theorems B and C immediately extend to these non-simply connected examples
so 9W(p, k) is hypercomplex equivalent to 7(q, ) if and only if p = q and k = . Fur-
thermore, the Lie algebra of infinitesimal hypercomplex automorphisms of fl(p, k)
is the Lie algebra I](p) given in Theorem C. Moreover, if p is commensurable but
not k-coprime then H7-(p, k) is a hypercomplex orbifold.

This paper is organized as follows: In Section 1 we construct by the method of sym-
metry reduction two equivalent models for the n-parameter family of hypercomplex
structures on the Stiefel manifold V ,2 . Both of these models are then used in Sec-
tion 2 together with a crucial scaling argument in the parameter space to completely
describe the connected component to the identity of the group of hypercomplex
automorphisms for each hypercomplex structure. The precise statement is Theo-
rem C above. Next we turn our attention to the question of when the hypercomplex
structures on V,, 2 defined by different p are inequivalent and prove Theorem B. This
is done in the case of commensurable p by analyzing the holonomy groups associated
to certain foliations canonically attached to the hypercomplex structures. We briefly
address a few questions in the more general case when some of the Pi ratios are irra-

Pi
tional. This is done in Sections 3 and 4. This leads to the study of the moduli space
of hypercomplex structures on the complex Stiefel manifold V, 2 . Finally, in the
last section we construct the hypercomplex structures on certain discrete quotients
'7(p, k) and analyze their topology.

We would like to thank Dr. H. Hernandez and Dr. T. Nitta for interesting remarks
and discussions. The second author would like to thank Professor F. Hirzebruch and
the Max-Planck Institute for support and hospitality. This article was written in
part during his visit there.

1. The Hypercomplex Geometry of Stiefel Manifolds

Recall that the Stiefel manifold Vn2 of complex 2-planes in C" is the homoge-
neous manifold U(n)/U(n - 2). Alternatively, Vn, 2 can be described as an embedded
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submanifold Vn,2 C S4n - 1 C Hn. It is the zero set of a 3-Sasakian moment map
,i: S4n- 1 - R3 associated with the central U(1) subgroup of U(n) [BGM2].

We shall induce the hypercomplex structures on Vn,2 from the flat hypercomplex
geometry of Hn . This is the flat G-structure with G = GL(n, H). Since the first pro-
longation gf(n, H)(1) vanishes [Sal] the automorphism group of this flat G-structure is
the semidirect product GL(n, H) Q where Q is the quaternionic translation group
generated by u -4 u+q. Owing to the noncommutativity of the quaternions there are
two (equivalent) flat hypercomplex structures on H". With respect to the standard
quaternionic coordinates (ul,..., u,) they are given by

Ir= (Zu u u ) (1.1)

The two hypercomplex structures are distinguished as follows: On Hn there is a
natural action of Sp(l) · Sp(1) = Sp(1) x Sp(1)/Z2 acting diagonally on each coor-
dinate ui by ui '- luir, where l, r E Sp(1). This action induces representations of
Sp(l) ·Sp(1) on the trivial vector bundles V+ spanned by I, respectively. These
representations are id ® Ad on V+ and Ad ® id on V_. We shall mainly confine our-
selves to the hypercomplex structure defined by I . Let Ca denote the infinitesimal
generators of the right Sp(1) action on H", and let T denote the Euler field that gen-
erates dilatations on Hn. Together this gives an action of H* on H" that acts freely
on the open submanifold Ha \ {O}. The hypercomplex structure I+ on Hn restricts to
give a hypercomplex structure, also denoted by I+, on H" \ {O} with automorphism
group GL(n, H). The Lie algebra gl(n, H) of GL(n, H) has the Levi decomposition

g[(n, H) ~ sl(2n, H) r, (1.2)

where the radical r is the central one-dimensional Lie algebra generated by the Euler
vector field I. One can easily check that the followings compatibility relations hold

I b = EabCce + 5ab~. (1.3)

This leads to

Definition 1.1. An almost hypercomplex structure {I"a}=1 on a smooth mani-
fold M is said to be Sp(1)-compatible if there are a smooth action of Sp(1) and a
vector field - on M such that

(i) is an infinitesimal automorphism of Ia for each a = 1, 2, 3.

(ii) The vector space V spanned by {Ia}3= 1 is the adjoint representation of Sp(1).

(iii) For all a, b = 1, . .., 3 we have Iab = -eabcec + SabE, where Ca are the infinites-
imal generators of the Sp(1) action.

We denote an Sp(1) compatible hypercomplex structure by the triple (Ia, a, ).
One easily checks that the above conditions imply the following facts:

(i) The vector fields and Ca commute, that is, [, 4a] = 0.
(ii) E is nowhere vanishing on M if and only if the Sp(l) action is locally free.

(iii) All complex structures in the two sphere of complex structures of the hyper-
complex structure la are equivalent.
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Assume that the vector field E is nowhere vanishing on M. Then 1,~2, 3,E span
a trivial subbundle V4 of the tangent bundle TM. Furthermore, since these vector
fields give a basis for the Lie algebra sp(1) @ R, for each a = 1,2,3 there is a
nested sequence of foliations F1 C YT C F4 of M generated by the subbundles
V1 = span{_}, V2a = span{E, a } and V4, respectively. We refer to this nested
sequence of foliations on M as the multifoliate structure associated with the Sp(l)
compatible hypercomplex structure. Clearly, we have

Proposition 1.2. The triple (I+, ~, Ti) defines an Sp(l) compatible hypercomplex
structure on both Hn and H" \ 0{}.

Remark 1.3. The space H \ {O} is the Swann H* bundle over quaternionic pro-
jective space HP - l , and the spaces of leaves of the foliations YTl and F2, are the
3-Sasakian manifold S 4n -1 and the twistor space CP2" - 1, respectively. One might
thus expect that under suitable conditions, in the general case of a given Sp(l)
compatible hypercomplex manifold, the geometry of these foliations persist. That
is, that YF describes 3-Sasakian geometry, Y2 describes twistor geometry with a
complex contact structure, and F4 describes quaternionic Kiihler geometry.

A particularly efficient way of constructing explicit new examples of a given geom-
etry is by the method of symmetry reduction. In the case at hand there are two ways
of performing this reduction. The first is related to 3-Sasakian reduction [BGM2]
and is tied to a Riemannian metric. The second is Joyce's [Joyl] hypercomplex
reduction and is ostensibly independent of any metric. In our case it will be shown
that these two methods give equivalent hypercomplex structures on the Stiefel man-
ifold V,2 . We now consider symmetry reduction of the flat hypercomplex structure
on H" \ ({O} by a one-parameter subgroup of its group of automorphisms GL(n, H).
The maximal compact subgroup of GL(n, H) is Sp(n) with maximal torus Tn. This
torus lies in a U(n) subgroup of Sp(n), and thus fixes a complex structure, say II, of
the "opposite" hypercomplex structure Ia . The action of this torus on H" is linear
and given by the diagonal representation

(t, U) = (e2ritlu,.. .,e
2 ri u,,). (1.4)

Thus, the corresponding representation of the Lie algebra t of Tn is given by the
multiplication by diagonal matrices diag(p1,... ,pn) on the quaternionic vector u =
(ul, ... , un) E H". Thus, we identify p = (P,. .. ,Pn) E Rn as an element of the Lie
algebra t . Let E: t - r(T(Hn \ {O})) be the map associating to each element in t,
the corresponding vector field on Hn \ {0}, where r(TM) denotes the smooth vector
fields on a smooth manifold M. Let ei denote the standard basis of Rn ~ tn,, then
we have

E(ej) = Hj = u j -u + u -u (1.5)
3 Ojau _ j - 3j2_

We shall be interested in the vector field E(p) on Hn\{0} corresponding to an element
p E t. If pi $ 0 for all i = 1,..., n the vector field E(p) is nowhere vanishing on
Hn \ {O}. So we define the subset

(1.6)
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In [BGM2] we constructed a 3-Sasakian moment map from the hyperkihler mo-
ment map p(p) on Hn . This moment map is given by

Y(p)(u*, u) = ,+(E()) = U* ipu, (1.7)

where 71+ = il + j72 + k773 , the 1-forms {r]+}a=1 are dual to the vector fields (,
* denotes the quaternionic adjoint, · is the flat Hermitian inner product on Hn , and
p is identified with the diagonal matrix diag (1,... ,pn).

Definition 1.4.

An(p) = y(p)-l(o) n S4 "-1 C Hn \ {O}.

Our first result is a slight generalization of Proposition 7.5 of [BGM2] whose proof
is identical.

Theorem 1.5. For every p E in the subspace Xf(p) is a smooth manifold of real
dimension 4n - 4 diffeomorphic to the complex Stiefel manifold V,2 .

From their definitions one easily sees that the restrictions of the vector fields Hi
and ~r to V(p) are tangent to f(p). These restrictions we denote by Hi and 'a,

respectively. The vector fields {Hi}i_-I generate a commutative Lie algebra sheaf
SF that is a subsheaf of the tangent sheaf TP(p) for all p E in. This sheaf defines
a singular foliation [Mol] on J/(p) which we also denote by S. One easily sees that
when p E in (which we shall hereafter always assume), the vector fields (p) and a

are everywhere linearly independent on P/(p). These vector fields give rise to locally
free actions of certain Lie group on P1(p), and associated foliations. We now give
an easy generalization of the theory of connections in principal fiber bundles to the
case of foliations described by locally free actions.

Let F be the foliation determined by a locally free action of a Lie group G on
a smooth manifold M, and let V denote the vertical subbundle of TM generated
by the fundamental vector fields determined by the action of G. We have the exact
sequence of G-modules

O0-V--4TM - -TM/V-. (1.8)

Definition 1.6. A principal connection in the foliation F is a splitting TM =
V @ t as G-modules. Given a chain of Lie subgroups Gk. < < Gk, < Gk = G
and an associated multi-foliate structure F = Fk C C Fkl, C Fko with
kn < ... < kl < ko, we call the sequence of splittings TM - Vki e )ki satisfy-

ing /kn D '... D ' , D 7/ko a principal connection in the multi-foliate structure .K
or simply a multi-foliate principal connection.

We construct almost hypercomplex structures Zla(p) on the Stiefel manifold V,2

for each p E in. In order to minimize notational baggage we use the same notation
for objects on the submanifold N(p) and on the Stiefel manifold SV,2. There are two

cases to consider, namely, ,(p) generates an S 1 action on VnC,2 , or E(p) generates

an R action on Vn,2 We denote the respective groups together with their actions by
S1 (p) and R(p). We have the chain of subgroups G1 (p) < G(p) < G4 (p) given by
Gl(p) = Sl(p), G2 (p) = Sl(p) x S., G4(p) = Sl(p) x SU(2) ~ U(2)(p) or Gi(p) =
R(p), G2(p) = R(p) x S., G4(p) = R(p) x SU(2), where S1 denotes the circle action
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generated by a'. For each a = 1, 2, 3 these subgroup chains give associated multi-
foliate structures

FI(P) C (p ) C 4(p) (1.9)

on PA(p). Let go(p) denote the pushforward to V, 2 of the restriction to Pf(p) of the
flat metric on Hn. The vector fields ~a are mutually orthogonal and of unit norm on
V,2 and E(p) is orthogonal to these vector fields. Thus, we get splittings of TVC2
and horizontal subbundles 7i 1 (p) D Vt/(p) D 974(p) corresponding to the multifoliate
structure (1.9). This allows us to construct almost hypercomplex structures on V 2
as follows:

Definition 1.7. Let 7a(p) denote the sections of End V4(p) e End l4(p) defined
by

(i) On V4(p), Za(p)Sa = -eabcc + 6 abe and La(p)E(p) = _(a.

(ii) On 7/4(p), Za(p) = I.

One easily checks that

Proposition 1.8. For each p E tn the endomorphisms la(p) define an Sp(1)-
compatible almost hypercomplex structure on VSn2.

We now investigate the integrability of Ia(p). First, we have

Proposition 1.9. The chain of horizontal subbundles 'lI(p) D Ht/(p) D 4(p)
defines a principal connection in the multifoliate structure (1.9).

Proof. The vector field (p) has unit norm with respect to go(p) only if p = 1.
Thus, we set p2 = go(p)(E(p), E(p)). One checks directly that p2 is basic with respect
to the foliation Y4(p). Letting 770 (p),71,7 2,q 3 denote the 1-forms on V, 2 dual to
the vector fields -(p), 1,. 2, 23, respectively, we define another metric h(p) on Vn,2
by rescaling go(p) in the leaves of the foliation F1 (p) by the factor p-2. That is,

h(p) = 7rhg(P) + p-27rvg(P), (1.10)

where rh and rv denote the projections onto /l1(p) and V1(p), respectively. One
now sees that the result follows from the fact that E(p) and ,a are all Killing vector
fields with respect to h(p) for a = 1, 2, 3. [

The 1-forms {t7O(p),7a} are the connection 1-forms of the connection W4(p) with
respect to the standard basis e0, ea) of the Lie algebra g4(p) of G4 (p).

Theorem 1.10. For each p E n the almost hypercomplex structures a(p) are
integrable.

Proof. Let ({w, wa} denote the components with respect to the standard basis of
the curvature of the connection 7 = (p)e°+.a 7 aea. A straightforward but tedious
computation shows that the vanishing of the Nijenhuis tensor of Ia (p) is equivalent
to the two facts which are direct to verify:

(i) The curvature components wa are, up to a factor of 2, the restriction of the
fundamental hyperhermitian forms to the horizontal subspaces 7H4(p).

87



C.P. BOYER, K. GALICKI AND B.M. MANN

(ii) The curvature w0 is type (1, 1) with respect to all of the complex structures in
the hypercomplex structure Ia (p).

0

It is straightforward to verify the following

Proposition 1.11. The metric h(p) is hyperhermitian with respect to the hyper-
complex structure Za (p) on V, 2 . Furthermore, the leaves of the foliations F1 (P),
F:C(p), YF4 (p) are totally geodesic with respect to h(p). The vector field E(p) + a
is holomorphic with respect to the complex structure a(p) for fixed a; hence, the
foliation .T2a(p) is holomorphic.

As in [BGM2] the Weyl group W of sp(n) acts on i, x V, 2 sending the hyper-
complex structure Za (p) to the hypercomplex structure a (wp) for w E W, and a
representative for a Weyl group orbit is obtained by restricting p to the positive
Weyl chamber C, C , defined by 0 < P1 ... < Pn . Thus, we have proved a more
precise version of Theorem A of the introduction.

Theorem 1.12. On V,2 two hypercomplex structures Za(p) and Za (p') are equiv-
alent if they lie on the same W orbit.

Henceforth, we restrict p to lie in the positive Weyl chamber C,. Now if the
components of p are commensurable each leaf of the foliation F4 (p) is a hypercomplex
Hopf surface of the form S 1 x SU(2)/r, where r is one of the finite subgroups of
SU(2), and each leaf of the foliation F2a(p) is an elliptic curve. If some pair of
components of p are incommensurable the leaves of both foliations are noncompact,
and the spaces of leaves are not Hausdorff. We say that p E C, is commensurable if
all the components of p are commensurable. Otherwise p is called incommensurable.
When p is commensurable the space of leaves .A((p)/.l(p) is a 3-Sasakian orbifold
S(p), and the space of leaves Z(p) = f(p)/F2a(p) is a complex orbifold. In fact, in
a future work, we shall prove that the twistor space Z associated to a 3-Sasakian
orbifold is always a projective algebraic variety. Notice that the orbifolds S(p) and
Z(p) do not depend on the scale of p; hence, if p' = Ap for some A E R+, the
respective hypercomplex structures I a (p) and 27(p) can only differ along the leaves
of the elliptic foliation .7a (p). We shall prove in Section 4 that this is indeed the case
when p is commensurable (see Proposition 4.9).

We now discuss another isomorphic model of .A(p) that will be useful in the next
section. This model is related to Joyce's [Joy2] hypercomplex reduction. We begin
again with the flat hypercomplex structure I+ on Hn \ {0}. We can easily check that
the Euler vector field %l is annihilated by 77+. The consequence of this is that the
moment map (1.7) is also a moment map with respect to the vector field + E(p) on
Hn \ {0}. For each p E Cn it will be convenient to consider the one-parameter family
of vector fields defined by q1(A) = + _(Ap). Each vector field T (A) generates an
R-action on Hn \ {0} which we denote by R(A), and one can use the corresponding
flow to show that the sphere S4n-1 is a totally transverse submanifold to this action.
(Notice that if A = 0 this R-action is just the radial flow on Hn \ {0}.) Since the
vector fields _(p) and P are tangent to the zero set p(p)-l(0) = p(Ap)-(0), the
action R(A) restricts to an R-action on u(p)-l1 (0). Thus, we have
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Proposition 1.13. For each A E R there is a natural identification (p)-'(O)/R(A) -
.h(p) given by sending each R(A) orbit in p(p)-l(O) to its point of intersection with
the unit sphere S4n-. The inverse map sends x E '(p) to the corresponding R(A)
orbit in p(p)-1 (O).

We shall use this quotient model in the next section to compute the Lie algebra (p)
of infinitesimal automorphisms of hV(p). From this point on we assume that A > 0.
First we show that /i(p)-'(O)/R() has an induced hypercomplex structure given
essentially by Joyce's hypercomplex reduction [Joy2]. To see this we define some
vector bundles on p(p)-1(0). Let LAp denote the subbundle of Tp(p)- 1 (0) generated
by E(Ap)+T , and Q its quotient bundle. Let : (p)-l(0) -4 H"\{0} be the natural
inclusion, and let N(p) denote the normal bundle. Note that N(p) is spanned by the
gradient fields igrad Iua(p). We also denote by NA (p) the subbundle of L*T(Hn \ {0})
spanned by the vector fields ~_ -igrad j/a(Ap), and define MAp = Lp @ NX(p). We
have following commutative diagram of exact sequences

(0) 
0 LAP£Tp TI(0) QAP 0

0 MAp - *T(H" \ {0}) -- p - 0. (1.11)

0 - NA(p) N(p) 0

i 1
0 0

The hypercomplex structure I restricts to give automorphisms of the bundle
t*T(H" \ {O}). Furthermore, the computations

IT(Ap) =-igrad pa(Ap) and Iq = a (1.12)

show that the subbundle MAp is invariant under I+. Thus we have an induced
hypercomplex structure on the quotient RAp and hence, on QAP which we denote
by I(Ap). Notice that on QAp the tensor field depends on A and p, but only
through the combination Ap. Using the natural isomorphism between the fibers of
QAp and the tangent spaces of j(p)-(O)/R(A), this provides p(p)-'(0)/R(A) with a
hypercomplex structure, denoted by I+(p).

Theorem 1.14. Under the identifications QAp - Tp(p)-(O)/R()) ~ TA(p) de-
scribed above, the hypercomplex structures I I(Ap), I+(Ap), and Za(Ap) are equiva-
lent.

Proof. First Proposition 1.13 gives a diffeomorphism p(p)-'(O)/R(A) ~ A(p). We
give the equivalence between the first and third hypercomplex structures. The hy-
percomplex structure {I+})=1 on QAp is that obtained by restriction and computing
modulo the ideal generated by the vector field E(Ap) + . Definition 1.7 and the
fact that the vector bundle 7/ is independent of the scale of p show that the two

89



C.P. BOYER, K. GALICKI AND B.M. MANN

hypercomplex structures coincide on A. Then for a fixed a one easily checks that
the endomorphisms (p) and la (p) coincide as well on the subbundle spanned by

g, for a, b, c all different. Using the definitions, (1.12), and computing modulo
the Lp, we have

IE(Ap) = -(A) I = Za = (Ap)(AXp) (1.13)

A similar computation on ~ concludes the proof. 0

2. The Infinitesimal Automorphisms of Af(p)

In this section we compute the Lie algebra D(p) of infinitesimal automorphisms of the
hypercomplex Stiefel manifolds Pf(p) and thereby prove Theorem C of the introduc-
tion. Our proof crucially uses the scaling behavior in the parameter space Cn. The
Lie algebra (p) will depend on the number of equalities among the components of
p E C,. Accordingly, we write p = (pll',... ,pk) for some positive integer k = k(p)
where the component Pi occurs mi times, and mi is called the multiplicity of pi. We
define the multiplicity of p by m = (ml,..., mk). Notice that E=l mi = n.

Definition 2.1. Let (p), (p), and =4(p) denote the Lie algebras of infinitesimal
automorphisms of the hypercomplex structures Za(p), (p), and I+(p), respec-
tively.

Notice that elements in (p) are vector fields on p(p)-l(0)/R(A), whereas elements
in (p) are equivalence classes of vector fields on u(p)-l(0) modulo sections of A,.p
Then Theorem 1.14 gives the identifications

(p) 6(p) -4(p). (2.1)

In particular, every vector field X representing an element X E (p) is projectible
to a vector field X E 6(p). It follows from the vanishing of the first prolongation
g[(n, H)(1) that the Lie algebra b(p) is finite dimensional.

Definition 2.2. Let fl(p) denote the Lie algebra of vector fields on p(p)-(0) that
satisfy LXI(p) = 0.

Recall the vector fields Hj of equation (1.5). It is easy to check that kI, H 1, , H,
generate an (n + 1)-dimensional abelian Lie algebra which we denote by t+l. Notice
that for all p the vector field E(p) lies in the subalgebra tn of tn+l spanned by the Hj .

Lemma 2.3. For each p E Cn, t+l is a Lie subalgebra of ll(p). Moreover, for
each E R+ we have l 1(Ap) = 41(p).

Proof. The first statement follows by a straightforward computation. The second
statement follows from the equalities p(Ap)-l(0) = (p)-l(0) and I(Ap) = I(p).

Lemma 2.3 allows us to define linear maps IrA: hi (P) - 6(Ap) for each E R + by
sending each X E 1 (p) to its equivalence class modulo + -(Ap).

We have

90



HYPERCOMPLEX STRUCTURES ON STIEFEL MANIFOLDS

Proposition 2.4. For every p E Cn and each A E R+ there is an ezact sequence
of Lie algebras

0-,{41 + -(Ap)}--(p) 6 -ij(Ap)--O.

This exact sequence splits so there are Lie algebra isomorphisms:

41(P) D(P) E {I + E-(p)} b (p) E {O}.

Moreover, we have

(i) The two-dimensional abelian algebra spanned by OF and E(p) is central in §l(p).

(ii) (Ap) = (p) for all A E R+.

Proof. The one-dimensional vector space spanned by \I + E(Ap) is clearly the kernel
of 7rA, and since all vector fields in (p) are projectible this vector space is a Lie
algebra ideal. So the first statement will follow from the surjectivity of the map rA,.
We prove the surjectivity together with (ii) by considering the equivalence of the
two models ((p),Ia(p)) and (Qp, I (p)). Let 0Xp(t) denote the flow generated by
the vector field IQ + E(Ap). We see that

(pP)-l(0) = /(p)- 1 (0) = {qAp(t)(A('p)) I t E R).

This gives an isomorphism 7r o p(t) : TJV(Ap) - QAp, and induces the equiva-
lence between Za(Ap) and I+(Ap). Then we have for any vector field X on A

LrAoxop(t).XI+(AP) = 7rAXp(t).LXa()p) ((7rAXp(t).) 1. (2.2)

Now choose any splitting of the top horizontal exact sequence in diagram (1.11), and
accordingly consider QAp as a subspace of Tt(p)-l(0). Let X be any vector field on
(p)-'(0) that commutes with E(p). Then qAxp(t).X = (t).X, where b(t) is the

flow of the Euler field O. Notice that this vector field is independent of both A and p.
Moreover, Ia(Ap) = I(p) for all A, so on the subspace Qxp equation (2.2) lifts to

£Z(t).XI+(P) = ('P + E(Ap)) ® bp(t).x + qxp(t),CxZa(Ap) o (xp(t).) -1 , (2.3)

where b(t).x is some 1-form on p(p)-(0). Now the left hand side of (2.3) is inde-
pendent of A, and the Euler field OF is not in the image of xAp(t). It follows that
the two terms in the right hand side of equation (2.3) must both be separately inde-
pendent of A. In particular, if X E I(Ap) for a fixed A it must be in (Ap) for all A.
This proves (ii).

Proving the surjectivity of ar, amounts to proving that the isomorphism

7rA o 0)p(t)*.: (Ap) (Ap)

factors through l(p). From (2.3) we have for X E I)(Ap)

L (t).XI+(p) = ( + (Ap)) ® be(t).x (2.4)

on QAP . The independence of A once again implies that b,(t).x vanishes on QXp. We
claim that it vanishes on all of T (p)-1(0). A simple calculation using (2.4) shows
that

[0(t).X, IF] = bp(t).x(T)I+(p)(T + E(Ap)).
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Again the left hand side is independent of A so that b(t).X(') = 0. But since the
vector space generated by I is complementary to Qp we must have b,(t).x = 0,
implying that b(t).X E ll(p). Notice that this argument also implies that T is
central in 1(P). Similarly it is not difficult to show that E(p) is central in 1(p)
proving (i).

It is now easy to see that the map +(t), (rA o Ap(t)) - ' : (ApP) -4 I(P) splits
the exact sequence, and the string of isomorphisms follows easily. 0

Proposition 2.5. Every infinitesimal hypercomplex automorphism X E b(p) com-
mutes with the vector fields a. In particular, every such X is foliate with respect to
the foliation F4(p). Furthermore, every infinitesimal hypercomplex automorphism is
an infinitesimal isometry with respect to the metric h(p).

Proof. Consider the endomorphism

Ia(Ap) - a(p) = ( - 1)E(p) ® ia - (A-' - 1)"a ® i 0(p). (2.5)

Now for X E (p) (ii) of Proposition 2.4 implies that the Lie derivative of the left
hand side of this expression with respect to X vanishes. This gives

(A - 1)_(p) ,® £Xl a - (A-' - 1)([X, a ] 770 + Ca ® CX?0 ) = 0. (2.6)

Now one easily checks that (x7 0)(=(p)) = (x77a)(E(p)) = 0. Thus, evaluating
(2.6) on -(p) proves the first statement, and then post-composing (2.6) with 7 0 and
77a gives

£x71 = Cx7 °0 = O0. (2.7)

This in turn implies that the tensor field £xh(p) is horizontal with respect to the
foliation 4 (p). But for any sections Y,Z of 'H4 (p) we have 2h(p)(31(p)Y, Z) =
d~7a(Y, Z). The last statement now follows from (2.7). 0

Corollary 2.6. The group AutA/(p) of hypercomplex automorphisms of NV(p) is
compact.

Proof. It follows from Proposition 2.5 Aut f(p) is a subgroup of the isometry
group I(NJ(p), h(p)) which is compact by a well-known result of Myers and Steenrod.
But it is immediate that any subgroup of a Lie transformation group that is defined
by an invariance condition on a tensor field is a closed subgroup. a

Lemma 2.7. If X E (p) then Xp2 = 0; hence, X is a Killing vector field with
respect to g(p).

Proof. The second statement follows from the first since g(p) = h(p)+(p2 -l)(0)2,
where p2 is the basic function defined in the previous section. To prove the first
statement we consider the curvature form w0 = d/0. From (2.7) this is an invariant of
the infinitesimal hypercomplex automorphisms. From this fact a direct computation
shows that the 1-form

p4 d(p-2(Xp 2))
= -P 2Xp2

is closed. But it is easy to see that this implies the existence of a smooth function F
depending only on p2 such that Xp 2 = F(p2). Now by (ii) of Proposition 2.4 we can
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take X to be independent of A and p2 is a polynomial of degree 2 in the components
of p. This implies the scaling behavior F(p2 (Ap)) = A2 F(p2 (p)), and this implies
that F(p2 ) = ap 2 for some real constant a. Then the 1-parameter group generated
by X is a dilatation of p2. But on AJ(p) we have the bound p2 < p12 . This gives a
contradiction unless a = 0. 0

This lemma allows us to use the restriction of the flat metric to the surface
: 1A(p) - H \ {0}. On PA(p) the normal bundle has a global orthonormal

frame (and is thus trivial) given by (n = , n" = igrad pa(p)). The dual
coframe is r° = dr, a = idpa(p), where r2 = Ei ui1 2. Thus the metric in the
vector bundle *THn on W/(p) obtained by restricting the flat metric to PA(p) is
90 = g(p) + Ea(ra)2 + (r0 )2 . We now have

Proposition 2.8. Every X E (p) is the restriction to A(p) of a Killing vector
field X on S 4n - 1 with respect to the canonical metric.

Proof. By Lemma 2.7 we know that any X E (p) is a Killing vector field with
respect to the metric g(p) on P1(p). Moreover, according to either Theorem 18 or
19 of volume IV of Spivak [Sp], if the metric go, the second fundamental forms, and
the normal fundamental forms are invariant under every X E (p), then X is the
restriction of an infinitesimal Euclidean motion. But since X itself is already tangent
to the sphere, any extension to an infinitesimal Euclidean motion will be in so(4n).
To show that the fundamental forms are invariant we prove

Lemma 2.9. If X E (p) then £xn° = £ x n a = £XT 0 = LXra = 0.

Proof. The invariance of no and r° is immediate. To see the other conditions we
compute [X, -igrad ~a(p)] = [X, I+(p)E(p)] = (CxI+)(_(p)) + [X, E(p)] = 0. Then
the result follows from Lemma 2.7 0

Continuing with the proof of Proposition 2.8 we notice that Lemmas 2.7 and 2.9
imply that Cxgo = 0. Thus, if we denote by V° the connection in *TI n induced
by the fiat Levi-Civita connection on Hn , then also £xV 0 = 0. The second funda-
mental form is given by the projection PNV0 where PN = E3=0 nv ® nVJgo . Thus,
Lemma 2.9 implies the invariance of the second fundamental form. Similarly, the
normal fundamental forms are given by 3b = go(Vona, nb), so again £LX/3 = 0 by
Lemma 2.9. 0

To conclude the proof of Theorem C we see that any X E (p) generates a unique
linear map on Hn \ {O} that also satisfies L£xI(p) = 0. It follows that X is the
restriction of an element X E gl(n, H). But we must also satisfy [X, _(p)] = 0. The
proof of the following lemma is standard and left to the reader

k
Lemma 2.10. The centralizer of E(p) in g[(n, ) is 01g[(mi, C).

i=l

k k

Now Theorem C follows from so(4n) n D g[(mi, C) = u(mi). 0
i=1 i=l1

Finally we remark that (p) is clearly an invariant of the hypercomplex structure
Z'(p). However, since (p) depends on p only through the multiplicities mi as an
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unordered set of natural numbers, it is a very crude invariant. We shall prove in
Section 4 that, for commensurable p, Af(p) and fV(p') are equivalent only if p = p',
whereas Theorem C implies

Corollary 2.11. The Lie algebras fI(p) and 4(p') are abstractly isomorphic if and
only if k(p) = k(p') and there is a permutation a in the symmetric group Ek on k
letters such that m' = am.

3. Singularities and Leaf Holonomy

In this section we analyze the holonomy of the singular leaves of the Fi and Y4
foliations on MJV(p). In the special case when p = (q,p, . ,p) such an analysis can
be found in [GL]. Here we generalize this study to arbitrary p in order to solve the
hypercomplex equivalence problem in the next section.

Definition 3.1. Let q = (ql, ... ,q,) E Cn . If q is commensurable then there is a
positive number A so that q = Ap = A(pl,... ,pn) where p E C, with each Pi E Z
and the greatest common divisor gcd(pl,... ,p,) = 1. We shall call this p the basic
commensurable sequence associated to q. A basic commensurable sequence is called
coprime if the Pi coordinates are pairwise relatively prime.

Given a basic commensurable sequence p = (,.. . ,Pn,) E Cn we consider ordered
subsequences p(l) = (pi,,... ,pit) (which are not necessarily basic), and denote the
length of the subsequence by . To each such subsequence p(l) with > 2 we can
associate an embedded submanifold Af(p (l )) C PA(p) defined by setting the quater-
nionic coordinates uj = 0 for all j i1 ,.. ., il. We only consider subsequences with
length I > 2. As the notation indicates one can easily verify

Proposition 3.2. The submanifolds Af(p( t)) are hypercomplez Stiefel manifolds of
real dimension 41 - 4 with hypercomplex structure Za (p(l)).

The submanifolds KA(p( 2 )) of length 2 will play a special role in what follows. For
p(2) = (i,pj) we denote these submanifolds by Hij and refer to them as vertices.
Our next task is to compute the holonomy groups of the singular leaves of the
foliations F4 (p) and Fi (p) when p is a basic commensurable sequence. Recall that
these foliations were defined in Section 1. First we analyze the foliation F1. For a
leaf L of F1(p) we denote its holonomy group by G1 (L). The circle action on n
generated by the vector field E(p) is given by

(ul,. .. , Un) (e2 iplt ul,..., e2 7riPt un). (3.1)

Notice that if a leaf L of F1 intersects one of the submanifold n.(p(l)) then L lies
entirely in Mf(p(')). Thus, we have

Lemma 3.3. Let L be a leaf of Fi lying on the submanifold f(p(l)) corresponding
to the subsequence p(l) = (pil,. ,Pit) of length . Then the holonomy group of L is
G1(L) = Z,,...j, where ril...it = gcd(pi, ... ,Pi).

Next we consider the holonomy groups of the foliation F4 . If L is a leaf of F4 we
denote its holonomy group by G4(L). Since the action of SU(2) on the quaternionic
coordinates u is the diagonal action on it components, a leaf of F4 is either disjoint
from the submanifold JV(p( /)) or it lies entirely in it.
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Lemma 3.4. The manifolds Hij are Hopf surfaces diffeomorphic to S' x S3 and
there is a covering map Hij -+ Lij where Lij is a leaf of the foliation .F4(p). Moreover,
the holonomy group G4(Lij) is given by

{ Z + i if pi + pj is even for all i,j;

Zp,+pj otherwise.

The leaf Lij is singular unless Pi = pj = 1 and all other sums Pk +pm are even. Fur-
thermore, the holonomy group of any singular leaf L of 74 that lies in a submanifold
Af(p(l)) but not in a submanifold of smaller length has the form

G4 (L) = { Z ifpi + pj is even for all i, j;
Zg otherwise.

Here g is the gcd of the sequences of length at least I - 1 whose elements are of the
form pi, + pj where j = i l,..., ill. In particular, if the sequence p(l) contains both
i and j and Uij is a neighborhood of the vertex Hij in Af(p(l)), then g < Pi + pj for
all leaves intersecting Uij.

Proof. Clearly Hij is equal to Mf(p( 2)) where p(2) = (i,pj) which is, in turn, diffeo-
morphic to Af(1, 1) = U(2). Thus, Hij is a Hopf surface. This last diffeomorphism
is given by writing ui = z + zi2j and forming the U(2) matrix

Now the action of U(2) on Af(p(2)) restricts to a U(2) action on Hij. Furthermore,
the diffeomorphism above intertwines the action of U(2) on /(p( 2 )) with its action
on AK(p). This later action is given by sending the Z E U(2) to the matrix

e2tO e27ripjt) Za (3.2)

where t E [0, 1] and a E SU(2). By Lemma 3.3 the isotropy subgroup of the circle
group U(1)p acting on Hij is Zri. Thus, the quotient of Hij with respect to this circle
action is a 3-Sasakian manifold S3/p. We need to determine the group r. Since S3 /r
is a homogeneous manifold with respect to the SU(2) action we can use a E SU(2)
to set zj2 = 0. The moment map equations for Hij then imply that z/I = = 0. The
isotropy subgroup of this set of points is the torus subgroup T2 obtained by setting

a = (0 e-2ris ) in (3.2). Then the isotropy subgroup r C T2 is determined by
the conditions

s-p j t=O and s+p it=l.

This implies that r = Zpi+pj This is the holonomy group if SU(2) acts effectively
on PA(p), and then, as in the proof of Proposition 7.16 of [BGM2], this occurs only
if Pk +pi is odd for some pair (Pk,PI) of components of p. If all of the n(n1) sums of
pairs of components of p are even, the action of SU(2) is not effective and one has
an effective action of the factor group S0(3). In this case r = Zi+P .

2
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To determine the holonomy group of singular leaves L that are not covered by a
vertex we argue as above and, by using a choice of a, set zi2 = 0 and then choose
s = pi,t. The conditions for fixed points are

zl = e2ri(i-pi)tzj and 2 e2i('+pj)t (3.3)

for all j = i,.. . , it_1 . Since u does not lie on a sub-Stiefel of smaller length than 1,
both zj and z2 cannot vanish. Thus, at most - 1 of the zl's and z2's can vanish
while the moment map constraints imply that not all the z2 's can vanish. It follows
that the order of G4 (L) is as stated in Lemma 3.4 where g is the gcd of a sequence
of elements of the form Pi, f pj of length at least I - 1. To prove the last statement
we notice that in a neighborhood of a vertex Hij in .J(p(')) we must have ui, uj 0.
As before we can set z2 = 0 and choose s = pjt. Then since ui 0 0, g must divide
either Ipj - Pi or pj + Pi . In either case g < Pi + Pj . [

The proof of Lemma 3.4 implies that there are two types of Stiefel manifolds Jf(p),
namely, those for which SU(2) acts effectively, and those where its Z2 factor group
SO(3) acts effectively. We refer to these two type as type 1 and type 2, respectively.
The type also gives the generic fibre of the orbifold fibration PV(p) -+ O(p). For
type 1 the generic fibre is S1 x SU(2), whereas for type 2 it is S1 x S0(3). As
illustrated in the proof above type 2 occurs if and only if the sums Pi + pj are even
for all i, j.

Given a basic commensurable sequence p, consider the case that a component pi

has multiplicity mi > 1. Then we let pim') denote the subsequence (i,. .. ,pi) with
mi repetitions. We have

Proposition 3.5. If mi > 2 then JA(pimi)) is a homogeneous hypercomplex Stiefel
manifold of real dimension 4mi - 4. In this case the holonomy group G1 (L) of any

leaf L of the foliation 'F1(p) lying in Ng(pm')) is Zpi and the holonomy group G4 (L)

of any leaf of the foliation F44(p) lying in AJ(pm)) is given by the equation

G4(L) - IZpi ifpk + pj is even for all k,j;
2p, otherwise.

Proof. It suffices to prove the homogeneity statement as the remainder of the propo-
sition follows easily from Lemmas 3.3 and 3.4. The group Aut PA(p) of hypercomplex
automorphisms of J/(p) is given explicitly in Theorem C, and since p contains the

subsequence p(m'), Aut (p) must contain a subgroup isomorphic to U(mi). Fur-
thermore, one can check that U(mi) acts transitively on gj(plm')). O

Let i(p) denote the singular locus of the quaternionic Kiihler orbifold O(p). Since
the holonomy group of any leaf of F4(p) is a cyclic group, we can stratify O(p) and
thus E(p) according to the orders of the holonomy groups G4 . For convenience we
say that a leaf L of 4(p) has orderp if its holonomy group G4(L) has order p. Notice
that in general a stratum Ep can be disconnected. However, the stratum consisting
of leaves of maximal order is special. We have

Proposition 3.6. Let pn. denote the stratum of the singular locus consisting of
leaves of maximal order.
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(1) If mn = 1 then Sp, consists of mn- isolated points and the associated leaves
are Hopf surfaces S! X S3 /Zr, that are covered by vertices. Here rn = Pn +Pn-1
or rn = Pn+P"-l if fX(p) is type 1 or type 2, respectively.

(2) If mn > 2 then Sp, is a homogeneous Wolf space Gm., 2(C). In particular, if
mn = 2 then Ep = G2,2 (C) = pt) is an isolated point, and the leaf is a
homogeneous hypercomplex Hopf surface S1 x S3 or S1 x S0(3) if Af(p) is
type 1 or type 2, respectively.

Note that the leaves of maximal order for mn > 2 are all Hopf surfaces, just as the
generic non-singular leaf. However, they are not isometric to the generic leaf as they
have non-trivial U(1) holonomy.

4. Holonomy and the Equivalence Problem

In this section we show that an equivalence between hypercomplex structures on V,2

implies an equivalence between the various foliations, and then use the holonomy
of the singular leaves to solve the equivalence problem for the hypercomplex struc-
tures 21 a(p) on V, 2 for commensurable p. The equivalence problem for the case
of incommensurable p is more involved and is relegated to future work. However,
the fact that [a(p) and la(p') are inequivalent when p is commensurable and p' is
incommensurable will follow immediately from our considerations below.

Definition 4.1. We say that hypercomplex structures I and I are equivalent if
there is a choice of generators 1 a and ia for and , respectively, and an
F E Diff(V, 2) such that

FZ a = aF. (4.1)

for all a = 1, 2, 3. Alternatively, F is a map of Clifford algebras.

Recall the definition of Sp(1)-compatible hypercomplex structures given by Defi-
nition 1.1.

Lemma 4.2. Let I and f be two hypercomplex structures on VCn,2 that are compat-

ible with two given Sp(l) actions. Let A and A, respectively denote the extension of
these actions by the one-parameter groups generated by the vector fields l- =ala
and = aa, respectively. Furthermore, suppose that I and I are equivalent under
a diffeomorphism F E Diff(A). Then A = F o A.

Proof. Since every element of U(2) lies on a one parameter subgroup, it suffices
to work infinitesimally. Let (a, -) and (, -) denote the fundamental vector fields
corresponding to the action A and A, respectively. Let adx denote the global endo-
morphism sending any vector field Y to [X, Y]. Then we have

£F.&ib = [adF.,i b] = F.[add.,b]F-I = 2eabcic. (4.2)

This equation implies that for each a = 1,2,3 the vector fields ra defined by Ta =
F._' - a lie in the Lie algebra b' of infinitesimal automorphisms of the hypercomplex
structure I. Thus, by Proposition 2.5, ra commutes with ib and one easily checks that
Ta span the Lie algebra su(2), viz. [a, rb] = 2eabkT. Moreover, a similar computation
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to that above shows that F. E '. So r0 defined by r0 = F.E - E' must lie in I',
and it is direct to check that quadruple (ra, r° ) satisfies the compatibility condition

ia rb = + abc b. (4.3)

But by Proposition 2.5, r° commutes with a. So taking the Lie derivative of equation
(4.3) with respect to e we find that ra = r0 = 0 for all a = 1, 2, 3. 0

This lemma says that any F E Diff(N) which gives an equivalence of U(2)-
compatible hypercomplex structures also gives an equivalence of the corresponding
foliations. In fact F gives an equivalence of the nested sequence (1.9). Now let F
and f denote any of the above foliations on NA. Let L be a leaf of F, and let G(L)
and G(F(L)) denote the holonomy groups of L and F(L), respectively. We have the
following two immediate consequences of Lemma 4.2:

Corollary 4.3. Let F E Diff(K) be an equivalence of U(2)-compatible hypercom-
plex structures I and I. Then F induces a diffeomorphism of the leaves of F with
the leaves of F and thus, an isomorphism of the holonomy groups G(L) ~ G(F(L)).
In particular, in accord with the notation of the previous section, if L is a leaf of F
(respectively, F4 ) then Gi(L) Gi1(F(L)) (respectively, G4 (L) G4(F(L)).

Corollary 4.4. Suppose that F : K/(p) -4 J/(p') is an equivalence of hypercom-
plex manifolds. Then F induces orbifold diffeomorphisms F1, F2 , F4 such that the
following diagram commutes:

./(p) , A(p')

I F

S(p) -, S(p')

1 1
Z(p) - Z(p')

I I
O(p) -F4 (p').

To prove Theorem B we need the following two propositions.

Proposition 4.5. Let p, p' E C, be basic commensurable sequences. Then Ia(p)
is equivalent to la(p I) if and only if p = p'.

Proof. The if direction is obvious. Let F : /(p) -4 Af(p') be a diffeomorphism
inducing a hypercomplex equivalence. We assume that N/(p) is type 1 (the proof
for type 2 is essentially identical). We first show that p, = p' and then inductively
show that this fact forces equality for the remaining Pi, Pi coordinates. We begin
with two cases:
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Case 1. m, > 2: By Proposition 3.5, KA(pm") is a homogeneous hypercom-
plex Stiefel submanifold of Af(p). Moreover, the order of every leaf of the foliation
JF4(p) through this submanifold is maximal, namely 2pn. Let L be any such leaf
then, by Proposition 4.3, F(L) is a leaf of the foliation F4(p') of order 2pn. Thus,
2p, < p'n + pn-1 . Applying the same argument to F-l shows that 2p, = p +Pn-l.
F(KA(p m")) is a homogeneous submanifold of KV(p') all of whose leaves of the foli-
ation F4(pt) have maximal holonomy. The only way that this can occur is that pl,
have multiplicity mn, and that F(A(pm")) = ((1m")). Thus, we have pn = Pn
and mn = n

Case 2. mn = 1: By Proposition 3.6 there are mn-1 isolated leaves of maximal
order p, + Pn-l . As above there are precisely mn-1 leaves of the foliation Y4(p') of
order Pn + Pn,-1 So Pn + Pn-1 < p' + Pn-lI Again applying the same argument to
F-' implies that Pn + Pn- = p + -lI and that pl must occur with multiplicity

n-l = mnl . Furthermore, each of the mn-1 maximal leaves F(Lj) of the foliation
F4 (pt) where j = n - mn-1 ,.. ., n is covered by a vertex H . It follows that the
submanifold .(pm"-1 1 ) of PA(p), where pmn_ ,1 = (Pn-1 ,. ,Pn-1 ,Pn), is mapped
diffeomorphically by F to the submanifold o(m - ' 11) of Jf(p'). If mn_l > 2 then
each of these submanifolds contains a homogeneous Stiefel submanifold by Propo-
sition 3.5, namely KJ(pnm" - ') C jn(pmnl ,1') and N/(`l j') C P(pm"S' 'i). Thus, in
this case, F(Pf(pm '-')) = N(i1 )') and hence that Pn-l = Pn-l This implies that
Pn = Pn as well.

Now assume that mn-1 = 1. We look at leaves of F(p) of order Pn + Pn-2. All
such leaves must lie on the Stiefel submanifold N(pm- 2 ,1,1) where

pm,-2 ,, = (Pm-2,. .. ,Pm-2,Pn-1 ,Pn).

There are several types of leaves on N(pmn-2,11). There is a unique leaf of
maximal order + Pn-, and since Pn + Pn-2 cannot divide Pn + Pn-1, and
Pn + Pn-2 pi + pj for all other i, j, there are precisely mn- 2 isolated leaves Lj
(j = n - 1 - mn2, , n- 2) of order pn +Pn-2 and each is covered by a vertex Hjn.
Now since F(Hn-1n) = H_1i we see that F(Lj) are leaves of F4 (p) that of maximal
order in the set of all leaves excluding the leaf Ln-i. By a maximality argument
similar to that used above we see that Pn+Pn-2 = Pn+Pn-2, and that F(Hjn) = Hn
for all j = n - 1 - m-2,..., n - 2. Hence, F(Ag(pmn - 2,11)) = f(mn-2,1, 1).

If mn- 2 > 2 then Proposition 3.5 implies that Pn-2 = Pn-2 and thus that
Pn = p and Pn- = Pn-l' If mn-2 = 1 then Af(pn- 2 ,Pn-l,Pn) maps diffeo-
morphically by F to AN(pn_ 2,p-_l ,pn) and the vertices Hn-1n and Hn-2n map
diffeomorphically to the vertices Hn_In and Hn_2n, respectively. Furthermore,
NA(Pn-2 ,pn-1 ,Pn) contains at least one leaf of order Pn-1 + Pn-2 covered by the
vertex Hn-ln-2 (if Pn-1 + Pn-2 divides Pn + Pn-1 or Pn +Pn-2 there are many leaves
of order Pn-l + Pn-2 that are not covered by vertices but this fact is not relevant
to the proof). Applying Proposition 4.4 to the submanifolds r(Pn- 2 ,Pn- ,Pn)
and A(pn_2,pn_-1,pn) we obtain a diffeomorphism of spaces of leaves, namely
O(Pn-2,Pn-l,Pn) 0 (Pn-2 ,Pn-1Pi,') Let S and S' denote the suborbifolds of
O(Pn-2,Pn-1 ,Pn) and (pn-2,Pn_1 ,,n), respectively, which are obtained by re-
moving the leaves of orders Pn + Pn-1 and Pn + Pn-2 in the first case, and those
of orders Pn + Pn-1 and Pn + P'n-2, in the second. By applying the maximality
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argument to S and S' we see that P,-l + Pn-2 = Pn-1 + Pn- 2. This implies that
Pn , Pn-1 = Pn - Pn- , Pn-2 = Pn-2 ·

Thus, in all cases, p, = pt. Now let j be the greatest positive integer less than
n such that pj # pj but Pi = p for all i > j. Let q = (j+l,. . ,p,) then, by the
inductive hypothesis, Af(q) is a submanifold of both JV(p) and A(p'). Moreover, a
leaf L of maximal order in A(p) that is not in P/(q) has order p, + p . Similarly, a
leaf of Af(p') that is not in Pf(q) has maximal order pn + pj = p, + pj . Again, by
the maximality argument, pj = p . O

Next we relate any commensurable sequence to a basic commensurable sequence.

Proposition 4.6. Let p E Cn be commensurable. For A E R+ the hypercomplez
structures la (p) and Za (Ap) are equivalent if and only if A = 1.

Proof. Here assume that PN(p) is of type 2 (the proof for type 1 is essentially
identical). We identify the complex structure on a generic leaf of the foliation F2
with a point of the Teichmiiller space of a Riemann surface of genus 1. To do this
we choose a complex structure in the hypercomplex structure by fixing a = 1 and
notice that the hyperhermitian metric h(p) restricted to a leaf of the foliation F2 is
given by

ds 2 = (0)2 + (1) 2

The generic leaves of the foliation F4 are the form S1 x 50(3), and we can param-
eterize the elliptic curve E by two angles , b. The angle 4' is the azimuthal angle
about the a = 1 axis in the group S0(3). Its range is 0 < 4' < 2r. To determine
the range of the angle , consider the circle action generated by E(p) on the coor-
dinates uj of Ha. This action is uj -4 ePjouj . Since p is commensurable there is
a A E R+ such that p = As where s is a basic commensurable sequence. Then we
see that a complete circle is obtained when b starts at zero and ends at 2. Now
the Teichmiiller space of a genus 1 Riemann surface is the upper half plane H, and
since (p) is the real part of the holomorphic vector field generating translations
on E, we see that the complex structure on E corresponds to the point iA E H.
Now two complex structures on a genus one Riemann surface are equivalent if and
only if they differ by an element in the subgroup PSL(2, Z) C PSL(2, R), where we
have the natural action of PSL(2, R) on the upper half plane H. It is easy to see
that there is no element other than the identity in PSL(2, Z) that corresponds to a
dilatation on p. 0

Proof of Theorem B. The first statement is now an immediate consequence of
Corollary 4.4, Propositions 4.5 and 4.6, and the fact that Z(Ap) = Z(p). Next, by
Theorem C, the connected component of the hypercomplex automorphism group in
the p = (1,... ,1) case is U(n), and the action is transitive; hence, PA(A1) is U(n)-
homogeneous. For all other p's the inhomogeneity follows from Propositions 2.4, 2.5,
and the fact that the group of 3-Sasakian isometrics of S(p) cannot act transitively
unless p = 1 [BGM2]. 0

We shall now briefly consider the case of incommensurable p. In this case the
vector field (p) integrates to an action of R rather than an S1 action, and the
generic leaf of the foliation F (p) is not closed in Ar(p). Turning to the foliation
F4(p), one sees easily from the proof of Lemma 3.4 that the holonomy group G4 (L)
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of any leaf L contained in a vertex is isomorphic to the integers Z independent of
the value of pi + pj . Hence, our method of distinguishing hypercomplex structures
by the orders of leaf holonomy groups is of little use in the incommensurable case.
Nevertheless, if the sequence p contains a commensurable subsequence, there will be
closed R orbits that are diffeomorphic to S 1, and these can be used to distinguish
the hypercomplex structures. More generally we consider

Definition 4.7. Let p E C, be an arbitrary sequence. We define the integer rank
(or simply rank) of p to be the number of independent constraints over the rational
numbers Q of the form

n

EaiP i = 0
i=1

that are satisfied by the components pi of p with ai E Z for i = 1,. ., n. The integer
rank of p is denoted by rk(p).

Note that 0 < rk(p) n - 1 and if p is commensurable then rk(p) = n - 1.
We conclude this section by showing that the integer rank rk(p) is an invariant
of the hypercomplex structure Ia(p). To begin we need to study the closures of
the leaves of the foliation F1 (p). Let 1(p) denote the partition of gJ(p) by the
closures of the leaves of F1 (p). It is known [Mol] that 1 1(p) is a singular Riemannian
foliation of Af(p). There is another important singular Riemannian foliation [Mol]
on VC,2 , namely that given by the sheaf SF discussed in the paragraph following
Definition 1.4. Now Hi E (p) for all p E Cn, so that SF D Fi(p) for all p.
The leaves of SF are all tori Tk of variable dimension ranging from k = 2, ... , n.
At a generic point of Pf(p), that is, a point for which none of the quaternionic
coordinates ui vanish, any leaf is a maximal torus T of Aut PA(p). The leaves of
smallest dimension are T2 's lying on the vertices Hij. Notice from the form of the
vector field E(p) every leaf L(p) of the foliation F1 (p) is contained in precisely one
leaf T of the singular foliation S, and associated to each such leaf L(p) there is a
unique subsequence p(t) C p of length 1 such that T I C nA(p(l)). Generally there are
two extreme cases: If p is commensurable then all the leaves of YF (p) are closed and

1 (p) = (P). On the other extreme if the integer rank rk(p) = 0, then p is totally
incommensurable and F! (p) = SF. More precisely, we have

Lemma 4.8. Let L(p) be a leaf of F1 (p) lying on the toral leaf Tt of SF, and let
p(l) be the unique subsequence of p associated to L(p). Then the closure L(p) of the
leaf L(p) satisfies the equation

L(p) = T- rk ( p( ))

Furthermore, every leaf closure L(p) is an embedded submanifold of Af(p).

Proof. Suppose that L(p) lies in T. If we can show that the closure L(p) in N(p)
coincides with the closure of L(p) in T l, then the result will follow by known results
for tori [Mol]. Consider the sequence of inclusions

L(p) T A/(p( t) ) ,- Af(p).

Since the right most inclusion is an embedding, it suffices to show that the inclusion
Tn " r A(p) is an embedding, that is, that the maximal tori are closed, embedded
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submanifolds. But this follows from the form (1.4) of the action of the torus T" on
H" and the fact that N/(p) - Hn is an embedding. O

We are now able to prove the following

Proposition 4.9. Let F: PA(p) -* IV(p) be an equivalence of hypercomplex struc-
tures, then rk(p) = rk(p').

Proof. Lemma 4.8 implies that, for any p E Cn, the leaves of F (p) of maximal
dimension are tori of dimension n - rk(p). Without loss of generality we can assume
that rk(p) rk(p'). By Lemma 4.2 F is foliation preserving, so F(L) is a leaf of
TF (p'). Moreover, F sends closures to closures so that F(L) is a leaf of the singular
foliation . 1 (p') of dimension n-rk(p). But the leaves of F1 (p') of maximal dimension
have dimension n - rk(p') by Lemma 4.8. So n - rk(p) < n - rk(p') which implies
the equality of the ranks. 0

So far we have not been able to completely solve the equivalence problem for the
incommensurable case, although we do have several invariants including the integer
rank rk(p) and the unordered set mi}(P) of multiplicities. We shall return to this
classification problem in a future work.

5. Some Hypercomplex Quotients of VC,

In this section we consider certain quotients of the Stiefel manifolds that also carry
hypercomplex structures. Our construction here can be seen as a generalization of
both the Stiefel manifolds themselves and the hypercomplex structure on the trivial
bundle S(p) x S 1 noticed in [BGM2]. Let k be a positive integer and p E C, an integer
multiple of a basic commensurable sequence. If gcd(pi,pj, k) = 1 for all 1 < i < j n
then p is called k-coprime; otherwise such p is called k-composite. Let p be a
commensurable sequence, k a positive integer, and let 7/(p, k) = AN(p) X(rp,k) S',
where the action map (rp, k): S1 x A1(p) x S 1 > PJ(p) x S 1 is given by Op on the
first factor and by the standard map of degree k on the second. More precisely,

(rp,k)(, (n,w)) = (p(n),8kw). (5.1)

We set 9(p,0) = S(p) x SI . The following proposition, which is direct to ver-
ify, explains why we referred to Af(p) and S(p) x S 1 as the two extreme J7(p, k)
subfamilies.

Proposition 5.1. For all commensurable p there is a diffeomorphism J(p) 
7-(p, 1). Furthermore, if p is k-coprime then tl-(p, k) is a smooth (4n-4)-dimensional
manifold with fundamental group rl(H (p, k)) = Zk, and if k = Im > 0 then there is
a natural projection r(1, k): W (p, 1) -- >+ (p, k) which is an m-fold covering space
map. In particular, the universal covering space of 'H(p, k) is /V(p). Here we are
using the convention that Z1 = 0. If p is k-composite then 7(p, k) is an orbifold.

Proof of Theorem D. This follows directly from Theorems 1.10, 1.12 and Propo-
sition 5.1. 0

Next we have a direct corollary of Theorems B and C:

Corollary 5.2. Let p be k-coprime and q be l-coprime. Then H(p, k) is hyper-
complex equivalent to 'fl(q, I) if and only if p = q and k = . Furthermore, the Lie
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algebra of infinitesimal hypercomplex automorphisms of 'R(p, k) is the Lie algebra
4(p) given in Theorem C.

It is natural to ask how the homology of f/(p, k) depends on p. For the rest of
this section we will restrict our attention to the case when p is coprime. Here the Op
factor in the (rp, k) action is free so we have a circle bundle S' -+9(p, k)-+S(p)
where the base space is one of the 3-Sasakian manifolds S(p) described in [BGM2].
While the topological structure of 7/(p, 1) -~ A(p) is independent of p, for every
n 3 the S(p) run through infinitely many distinct homotopy types. Our next
theorem computes the integral cohomology ring H*(H(p, k); Z).

Theorem 5.3. Let p be coprime and k a positive integer. Then, as rings,

H*('7-(p,k),Z) [X - 0] E[Y2n-3,Z2n-1 /R(7(pk)), (5.2)

where the subscripts on X2, Y2n-3 and Z2n-1 denote the cohomological dimension of
each generator. The relations J(1(p, k)) are given by

d(p, k)x2n- = d(p, k)x 2 Y2n- 3 = 22n-3 = xn- 1 Zn-l 2Y2n3Z2n = --- xYn- ~'2 2n- 22Y2n-32n-1 = O.

Here an-l(p) is the (n - 1)St elementary symmetric polynomial in the coordinates
of p and d(p, k) = gcd(Un-l(p), k). The conventions here are that d(p, 0) = an-l(p)
and Z 1 = 0.

Corollary 5.4. As abelian groups

Zk if * = 2,4,...,2n-4,
Z if * = 0,2n - 3,4n - 4,

H*(7(p, k); Z) = Zd(p,k) if * = 2n 2,
Z f d(p,k) if * = 2n - 1,
Zk if* = 2n + 1,2n + 3,...,4n- 5,
0 otherwise.

Proof of Theorem 5.3. Given the circle bundle S1 -+Hl(p, k)--S(p) there is an
associated complex line bundle with first Chern class cl. This Chern class determines
the key homomorphism in the associated Gysin sequence. Since the cohomology ring
of S(p) is completely known [BGM2: Theorem E], standard techniques using the
Gysin sequence and Poincare dualtity gives the result. 0

Notice that, with our convention that Z1 = 0, Theorem 5.3 recovers the classical
computation of the torsion free ring H*(W(p, 1); Z) ~ H*(NA(p); Z) - H*(Vn,2; Z) ~
E(f 2 n-3 , f2n-l). Another immediate corollary of our results is:

Corollary 5.5. For all coprime p, n 3, and k > 1 there is one cohomological
invariant of 7/(p, k) that depends on p; namely, the integer d(p, k) which is the
order of the torsion subgroups of the 2n - 2 and 2n - 1 integral cohomology groups
of 3l(p, k).

While the fundamental group can be used to distinguish the 7'(p, k) for different
values of k it is more interesting to look for distinct homotopy types within a fixed
choice of dimension and fundamental group. On one extreme, when the fundamental
group vanishes, all the examples in any fixed dimension are homeomorphic. On the
other extreme, when the fundamental group is Z, there are infinitely many distinct
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homotopy types for the 9-/(p, 0) in every dimension of the form 4n - 4 for n > 3.
Of course, this cohomological computation does not completely determine the ho-
motopy type of the 9 -/(p, k) but only gives a lower bound on the number of possibly
distinct homotopy types that occur. Still, Corollary 5.5 does permit us to detect
some interesting distinctions for fixed k. Moreover, the computations when the fun-
damental group is finite cyclic are also dependent on n. For example, when n = 3,
it is known that the c,2 (pl,p2,p3) take on every odd integer value greater than one
[BGM2]. This implies the following proposition.

Proposition 5.6. Let k = 2rm with m odd. Then there are at least (m) distinct
homotopy types for the 8-dimensional hypercomplex manifolds W(Pl,P2,P3; k). Here
r(m) is the number of positive divisors of m. Moreover, all these homotopy distinct
examples have isomorphic fundamental groups.

On the other hand, since it is always the case that a2(Pl, P2,P3) is odd, Theorem 5.4
cannot be used to distinguish homotopy types in dimension 8 for even values of k
when n = 3. However, when n = 4 and k = 2 the examples -1/(1,2,3,5;2) and
W(1, 3, 5, 7; 2) are not homotopy equivalent. There are many other similar examples
for other values of k and n.
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