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Abstract 
For general images of smooth objects wholly contained in the field of view, and for illumination symmetric around 
the viewing direction, it is proven that shape is uniquely determined by shading. Thus, shape from shading is 
a well-posed problem under these illumination conditions; and regularization is unnecessary for surface reconstruction 
and should be avoided. Generic properties of surfaces and images are established. Questions of existence are also 
discussed. Under the conditions above, it is argued that most images are effectively impossible, with no correspond- 
ing physically reasonable surface, and that any image can be rendered effectively impossible by a small perturba- 
tion of its intensities, This is explicitly illustrated for a synthetic image. The proofs are based on ideas of dynamical 
systems theory and global analysis. 

1 Introduction 

Shape from shading has traditionally been considered 
an ill-posed problem, although it is known to be well- 
posed in special cases (Horn & Brooks 1989). For a 
typical shaded image, it has been assumed that there 
is an infinite number of possible corresponding sur- 
faces. On the other hand, Bruss (1982) proved that for 
images with exactly one singular point-that is, a single 
maximally bright point-and with known illumination 
from the camera direction, there is essentially a uni- 
que corresponding surface. Thus, shaded images of this 
type contain enough information to completely deter- 
mine the imaged object. 

The question of whether shape from shading is ill- 
or well-posed is important, because the traditional ap- 
proach to reconstructing shape employs regularization 
techniques, implicitly assuming the problem to be ill- 
posed. If the problem is actually well-posed, then 
regularization is unnecessary, and should be avoided 
since it can lead to a distortion of the recovered sur- 
face (Horn 1990b). It is also important to understand 
what the constraints on the solutions to shape from 
shading are, especially if they are significant enough 
to render the problem well-posed. Through incorpor- 

ating all available constraints in a shape reconstruction 
algorithm, it may be possible to improve the robustness 
of shape recovery. 

This article presents the first uniqueness proof for 
shape from shading that is valid for generic images. As 
in previous work, the illumination is assumed to be 
from the camera direction-see Saxberg (1989a, b) and 
Oliensis (1990) for the case of more general illumina- 
tion. More generally, our result, as well as previous 
ones, applies to reflectance functions symmetric around 
the optical axis. We also make the standard assump- 
tions about the imaged object-that it is smooth, matte, 
uniform in reflectance, non self-occluding, and wholly 
contained in the field of view. Under these conditions, 
a shaded image uniquely determines the imaged sur- 
face. A fortiori, shape from shading is a well-posed 
problem. In a companion paper, our results are par- 
tially extended to the case of illumination from a general 
direction (Oliensis 1990). In general, therefore, shape 
from shading should not be assumed ill-posed, and reg- 
ularization should be used with caution. 

The existence of solutions is also discussed. For il- 
lumination conditions as described above, it is argued 
that for almost all images, that is, for almost all inten- 
sity functions Z(X, y). effectively no solution to shape 
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from shading exists.’ Moreover, we argue that a true 
image can be converted into an effectively impossible 
one, with no object solution, or else just nongeneric 
and physically unacceptable solutions, by a small per- 
turbation of its intensities. This is illustrated for an ex- 
plicit image example in section 9. Thus, true images 
of objects are very special intensity functions. The only 
previous nonexistence result was limited to a restricted 
set of images (Horn et al. 1990). 

The potential impossibility of images provides an im- 
portant failure criterion for shape from shading. If the 
method is applied to an inappropriate image, this may 
be signaled by the nonexistence of any reasonable solu- 
tion, showing that the assumptions made about the 
scene were incorrect. Another consequence is that 
discretized and noisy images are likely not to corres- 
pond exactly to any acceptable 3D surface. Thus, some 
of the difficulties encountered by Horn (1975) using the 
classical characteristic strip method of solution are not 
due merely to the discretization error of numerical in- 
tegration, but inherent in the inaccuracies of the image- 
formation process. 

Our approach is based on the properties of char- 
acteristic strips and singular points, and uses ideas of 
dynamical systems theory and global analysis. The 
techniques of dynamical system theory, well developed 
by mathematicians, have been applied recently to a 
variety of vision problems. Saxberg (1989a, b) noted 
that the problem of shape from shading can be useful- 
ly reinterpreted along these lines, and proposed a new 
method of solution which appears to have some pro- 
mise. In this article, a new viewpoint on the problem 
is developed based on these techniques; it is simple and 
intuitive, and offers qualitatively new insights. 

The organization of the remainder of the article is 
as follows. We first describe the method of characteristic 
strips and demonstrate that the resulting equations 
represent a Hamiltonian dynamical system. Next, the 
characteristic strips are interpreted as curves on the im- 
aged surface, and shown to be curves of steepest as- 
cent in depth. In section 4, singular points are introduc- 
ed; their constraints on the surface and characteristic 
strips in their neighborhood are explored. The results 
of these sections can be generalized to the case of 
general illumination direction (Oliensis 1990). In sec- 
tion 5, the statement of our uniqueness theorem is 
given, and an intuitive overview of its proof is 
presented. The detailed proof is given in sections 6-8. 
Finally, the existence of solutions and impossible im- 
ages are discussed in section 9. 

2 The Characteristic Strip Method as a 
Hamiltonian Dynamical System 

A characteristic strip is, roughly, a line in the image 
along which the surface depth and orientation can be 
computed, assuming that these quantities are known at 
the starting point of the line. Characteristic strips were 
used by Horn in his original algorithm for reconstruct- 
ing shape from shading (Horn 1975). A consistent solu- 
tion to shape from shading determines aflow of charac- 
teristic strips in the image, with every image point lying 
on exactly one characteristic strip line. Conversely, such 
a flow of characteristic strips uniquely determines a 
shape solution (see figure 1). Most of our proof is foc- 
used on uniquely specifying the flow of characteristic 
strips, and thus, from the above, a unique shape solution. 

Fig. I. The flow of characteristic strips in the image determines the 
surface solution, and is determined by it. 

To begin with, arbitrary reflectance functions R(p, 
q) will be considered. As usual, it is assumed that the 
imaged surface is uniform, so the reflectance is the 
same at every point, and that the image is derived via 
orthographic projection. The image irradiance equa- 
tion can be written as 

H = Z(x, y) - R@, q) = 0 (1) 

p, q represent as usual the derivatives of the surface 
depth z with respect to x and y, respectively. The 
characteristic strip equations are: 

X = HP 
c I 

,aH 

ap ’ 
j = H4, d = -HI, 4 = -Hy 

(2) 
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The dot denotes a derivative with respect to ‘time,’ an 
arbitrarily chosen variable that parameterizes the posi- 
tion along the characteristic strip. The subscripts denote 
partial differentiation. As pointed out by Saxberg, these 
equations constitute a dynamical system, that is, they 
can be thought of as determining the ‘motion’ of a par- 
ticle whose ‘position’ is specified by the four parameters 
(x(t). y(t), p(t), q(t)). This four-dimensional ‘posi- 
tion’ space will be referred to below as phase space. 
For dynamical systems, the quantities on the right-hand 
side of the dynamical equations are referred to as the 
components of a vector field. However, more can be 
said. These equations determine a very special type of 
dynamical system, namely a Hamiltonian one. 

Hamiltonian dynamical systems are familiar and well 
studied. They have the defining properties that (a) there 
exists an energy function which is a constant of the mo- 
tion, (b) the motion parameters can be divided into 
equal numbers of ‘coordinate’ and ‘momentum’ param- 
eters, and (c) the evolution of the system is governed 
by Hamilton’s equations. Many problems of classical 
Newtonian mechanics, celestial mechanics, etc., fall in- 
to this category. Essentially, it comprises all systems 
without frictional, or dissipative, forces. 

As an example that will prove to be relevant later on, 
consider an electrically charged particle moving on a 
plane, in response to an electric field. This system has 
a conserved energy which is the sum of a kinetic energy 
of motion, and a potential energy, whose gradient is 
equal to the negative of the electric field. The momen- 
tum vector pis equal to the mass of the particle times 
its velocity. The energy is explicitly: 

H = -L p2 + V(.q 
2m 

with E(x3 = -m/(Z), and mass m. 
In general, Hamilton’s equations are 

X. = !!&! and rj. = - &fi! I 
dPi l aXi 

(3) 

for each coordinate-momentum pair (xi, pi). I-Z is the 
energy. For the example, these equations become: 

2 
Xi = & and di = m d2 = Ei (4) 

m dt2 

The second equation is just the familiar Newton’s law, 
F = ma, while the first defines the momentum. 

On comparing equation (3) with the characteristic 
strip equations, one finds that the latter are equivalent 

to a Hamiltonian system, with conserved energy H = 0, 
and generalized momentap (corresponding to X) and q 
(corresponding toy). With this insight, one can think of 
the characteristic strip equations as describing the motion 
of a particle on the image plane, with momentum P’ = 
@, q). This is now a two-dimensional problem, much 
easier to visualize than the apparently four-dimensional 
dynamical system of equation (2). Also, more is known 
about the special case of Hamiltonian systems than 
about general systems. For example, they satisfy Liou- 
ville’s theorem that the flow in phase space preserves 
volume, with the consequence that all fixed points of 
the flow must be saddle points. This is useful in what 
follows, since the fixed (i.e., singular) points are im- 
portant in characterizing the shape-from-shading solu- 
tion. (To avoid later confusion, it should be remembered 
that the fixed points are saddle points in the full four- 
dimensional phase space parameterized by (x, y, p, q), 
but nor necessarily saddle points of the surface z (x, y).) 

From now on, it is assumed that the illumination is 
symmetric around the viewing direction, and that the 
surface is matte, with known reflectance, and no self- 
occlusion. For simplicity, we focus on the case of a 
Lambertian surface with unit albedo. Then the equa- 
tion for the image intensity I is 

[ = ; . i = (--P, -9, 1) ’ (0, 0, 1) = 

(1 + p2 + qy 

1 
(1 + p* + q2)“2 

(5) 

where ri is the unit surface normal, and L = z^ is a unit 
vector giving the light-source direction. Note that the 
intensity I reaches its maximum value 2 = 1 at p = 
q = 0. After some algebra, this can be rewritten as 

H = 1 (p2 + 42) + V(fl = 0 (6) 
2 

with 

2‘v(Y) = 1 - -!- 
I’ 

(7) 

This definition of the Hamiltonian (i.e., energy) func- 
tion H differs slightly from the one used above. It is 
chosen because of its simplicity: the energy is expressed 
as a sum of a quadratic kinetic energy term which con- 
tains all the ‘momentum’ dependence, and of a poten- 
tial energy term containing all the ‘coordinate’ depen- 
dence. The image irradiance equation can also be writ- 
ten in this form for more general reflectance functions 
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symmetric around the optical axis. This is the familiar 
form of the energy for elementary Newtonian 
mechanics. In fact, this H is exactly the same as the 
example above, with the mass taken to be unity. The 
characteristic strips for the given rejectance function 
are equivalent to the motion of a particle on a plane 
in response to a potential. 

Explicitly, the characteristic equations are 

X=HP=p 

r;= -HI= -v’ 

y=H,=q 

x7 4~ -Hy= -I/ 
Y  (8) 

The first two state that the surface slopes (p, q) = P’ 
are just the velocity of the moving point whose trajec- 
tory gives the characteristic strip. 

3 Characteristic Strips as Surface Curves 

The equation for the surface depth z has been neglected 
so far, since it is unnecessary in deriving the trajec- 
tory. It is 

i = pn + qy = x2 + jJ2 20 (9) 

The direction of time has been defined so that z always 
increases with time along the trajectory. Actually, since 

the tangent to a characteristic trajectory is parallel to 
the surface gradient. Thus, a characteristic trajectory 
(x(t), y(t)) is the image plane projection of a curve of 
steepest ascent on the 30 object. This result generalizes 
to the more general reflectance functions considered 
below, and to the case of general illumination direc- 
tion (Oliensis 1990). The two-dimensional dynamical 
system specified by the above equation is an example 
of a gradient system-a dynamical system that is even 
simpler than a Hamiltonian one. For instance, gradient 
systems can not have limit cycles (which are closed 
periodically traversed trajectories). 

A large part of the succeeding argument focuses di- 
rectly on the general properties of surfaces. For each 
surface z(x, y), the curves of steepest ascent on this 
surface constitute a flow: every point on the surface lies 
on exactly one of these curves. Also, this flow is a solu- 
tion of the two-dimensional gradient dynamical system 
described by equation (10). Our strategy is to analyze 
the properties of surfaces in terms of the properties 
of this flow, using general theorems about gradient 

dynamical systems. As stated above, these curves of 
steepest ascent correspond exactly to the characteristic 
strips in the image plane. Thus, our results on the flow 
of surface curves can be applied directly to the flow 
of characteristic strips, and used to establish the pro- 
perties of the solutions to shape from shading (see 
figure 2). 

Fig. 2. Characteristic strips in the image correspond to curves of 

steepest ascent on the imaged surface. 

The interplay between surface curves and char- 
acteristic strips-described by two different dynamical 
systems-is crucial to our argument. The essential dif- 
ference between the two systems is that in discussing 
equation (10) we assume that z is a known function of 
n and y, whereas in the characteristic strip equations 
z is determined from the equations. This difference is 
reflected in the fact that equation (10) represents a two- 
dimensional system, while equation (2) is four-dimen- 
sional. 

In the remainder of this article, the characteristic strip 
curves in the full four-dimensional phase space (x, y, 
p, q) will be referred to as trajectories, as a reminder 
that they can be considered the trajectories of particles 
moving on the image plane in response to forces. The 
projection of the characteristic trajectories onto the 
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image plane will be referred to as image strips, or as 
gradient curves, as a reminder that they can be 
associated with the two dimensional gradient dynamical 
system equation (10). The characteristic trajectories pro- 
jected on an object surface will be referred to as sur- 
face strips. 

4 Singular Points and the Winding Number 

The importance of singular points in determining and 
fixing a solution to the shape-from-shading problem has 
been stressed by many people (Bruss 1982; Saxberg 
1989a; Horn 199Ob), and they are crucial in this work 
as well. The singular points of an image are conven- 
tionally defined as those at which the value of the in- 
tensity I is maximal for the given reflectance function. 
Their importance stems from the fact that the surface 
orientation is uniquely determined at these points. For 
the reflectance function of equation (5)) singular points 
occur for I = R = 1. At a point where I attains the 
maximal value 1, p = q = 0, and the tangent plane 
to the surface is parallel to the image plane. Thus, for 
the reflectance functions we consider, singular points 
correspond to criticalpoints of z. Also, the derivatives 
of the reflectance function with respect top and q vanish 
at singular points. From the characteristic strip equa- 
tions, equation (2), this implies that X = jl = O-a 
characteristic trajectory initially at a singular point 
never leaves it. Singular points are thusJixedpoints in 
the language of dynamical systems theory. 

The concept of a nondegenerate singular point will 
also be important. For the present case, a singular point 
is nondegenerate if the matrix of second derivative of 
the intensity I is nonsingular at the point. At such a 
point, it is easy to show that the two eigenvalues of the 
second derivative matrix, if they are unequal, deter- 
mine the principal curvature values of the surface up 
to sign (Oliensis 1989). We always assume below that 
the eigenvalues at a singular point are in fact unequal, 
as is generically true. Then the nonsingularity of the 
matrix implies that the principal curvatures are both 
nonzero, which is clearly the generic case for a sur- 
face, at least for an isolated singular point, as was noted 
by Saxberg (1989b). 

As a result, the imaged surface at a nondegenerate 
singular point is either convex, concave, or saddle- 
shaped. Correspondingly, near the singular point, there 
are three possible types of flows of gradient curves. 
Consider the flow of curves of steepest ascent near the 

surface point corresponding to the singular point. It is 
clear that if the surface is locally convex, the direction 
of these curves is outward from the given point. The 
same is true of the corresponding characteristic strips 
projected as 2D curves in the image plane. The singular 
point in this case is referred to as a source (see figure 
3). Similarly, if the surface is locally concave, the cor- 
responding image strips converge toward the singular 
point, which is referred to as a sink (see figure 4). In 
the third case, the flow of gradient curves is more com- 
plicated: there are two gradient curves that converge 
to the fixed point, and two that originate at the fixed 
point; all other gradient curves, like comets, initially 
approach the saddle point, but miss it and recede into 
the distance (see figure 5). In this case the singular point 
is referred to as a saddle point. For obvious reasons, 
sources and sinks will be referred to collectively as 
elliptical points. 

A more formal characterization of the image strip 
flow near a nondegenerate singular point follows from 
the Grobman-Hartman theorem (Saxberg 1989, a, b). 
Consider equation (10) in the neighborhood of a singu- 
lar point. The matrix of partial derivatives of the right- 
hand side of this equation with respect to X, y is just 
the matrix of second derivatives of z: 

Fig. 3. A source. This image-plane flow, with all characteristic strips 

originating at the singular point, corresponds to a locally convex 
surface. 
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Fig. 4. A sink. This image-plane flow corresponds to a locally con- 

cave surface. 

Fig. 5. A saddle. This image-plane flow corresponds to a locally 

saddle-shaped surface. Only four characteristics strips actually con- 
nect to the singular point. 

A= a2z (11) 

where (xl,xZ) = (x, y). By the nondegenerateness 
assumption, and again assuming unequal eigenvalues 
of the intensity second-derivative matrix, A can be com- 
puted from the image up to a sign ambiguity, and is 
nonsingular. Then the Grobman-Hartman theorem 
(Palis & de Melo 1982) states that there exists a homeo- 
morphism defined in a neighborhood of the fixed point, 
mapping orbits of the flow to those of the linear flow 
exp @A), preserving the sense of the orbits, and also 
the parameterization by time. 

The meaning of the linear flow is that 

i? -+ x’(t) = efA.T (12) 

In a coordinate frame in which A is diagonal, 

x’(t) = (exp(tAll)x,exp(tA22)~) (13) 

Depending on the signs of Ait, A22 (which cannot be 
determined from the image), the flow will be con- 
vergent, divergent, or saddle-type, as described above. 
The existence of a homeomorphism between the com- 
plete flow governed by equation (10) and the linear flow 
means that these flows are topologically equivalent 
locally. Thus, the complete flow also must have one 
of these three forms. 

The nondegenerate singular points in the image and 
the corresponding surface points each have an 
associated integer-valued index. To define the index, 
consider a small circle containing some singular point 
and no others. For a given flow, each point on the cir- 
cle is intersected by a unique gradient curve. Define 
a function giving for each point on the circle the direc- 
tion of the flow curve passing through that point, as 
a unit vector. As one goes around the circle (say in a 
clockwise direction), eventually returning to the start- 
ing point, this unit vector rotates, and must also return 
to its original direction. The number of complete rota- 
tions it makes in the process, in the clockwise direc- 
tion, gives the value of the index (see figure 6). An 
index corresponding to a rotation in the opposite sense 
from the path taken around the circle is defined to be 
negative. 

The most important fact about the index is that it is 
a topological invariant. It does not depend on the par- 
ticular path chosen around the fixed point, which need 
not be a circle in general. Its value defined with respect 
to a path will not change as that path is distorted from 
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Fig. 6. The index of a singular point, here a source. The unit vector 

representing the characteristic strip flow direction describes a single 
clockwise rotation as a clockwise circuit is made around the circle 

containing the source. Thus, the index is +l. 

its original shape, as long as the interior of the path 
contains only the single fixed point. In general, the in- 
dex, or rather winding number, can be defined for an 
arbitrary closed curve, not necessarily containing ex- 
actly one fixed point in its interior, in the obvious way. 
Clearly, the winding number is always an integer. Also, 
the winding number of a curve is the additive sum of 
the indexes of all singular points contained within its 
interior. These general theorems can be proven fairly 
simply for the case at hand. 

A crucial fact is that the index for sources and sinks 
is +1 (e.g., figure 6), while for saddles it is -1. See, 
for example, Arnold (1973) and Abraham & Shaw (1983) 
for good intuitive expositions of these results. 

5 The Uniqueness Theorem 

In this section the uniqueness theorem is presented and 
its proof is sketched. 

First, we give some definitions. For a smooth, closed, 
object, the occluding boundary is defined to be the set 
of all object points at which the surface normal is per- 
pendicular to the optical axis; the limb is the image of 
the occluding boundary (see figure 7). A smooth, 
closed object is non-self-occluding if all points on the 
limb are also on the boundary of the image region con- 
taining the projected object. This is a slight extension 
of the standard, common-sense meaning: in addition 

0.’ 

Q 

----._., _/e k 
-.-..~..-----~’ 

Fig. Z The limb is defined as the image of the occluding boundary. 

to the usual cases of self-occlusion, it excludes those 
where the object virtually self-occludes-where the sur- 
face normal in the interior of the image becomes perpen- 
dicular to the optical axis with no actual self-occlusion 
(see figure 8). A genus zero surface is a closed surface 
with no holes or handles, essentially a deformed sphere. 

The class of reflectance functions we consider is the 
same as those considered by Bruss (1982). A Bruss 
reflectancefunction R(p, q) is defined as one satisfy- 
ing: (1) R is a smooth, non-negative, function depend- 
ing only on p2 + q* (thus, it is symmetrical about the 
optical axis i). (2) R attains a unique global maximum 
at p = q = 0, with the surface normal to the optical 
axis. (3) The derivative of R with respect to its argu- 
ment p* + 2 is less than zero at this point. (4) R + 
0 as its argument goes to infinity, so that R vanishes 
on the occluding boundary. (5) R is monotonic (thus, 
the image irradiance equation can be inverted, and 
transformed into eikonal form). A typical Bruss reflec- 
tance function corresponds to the illumination of a matte 
or Lambertian surface from the camera direction. 

A generic class is one containing essentially all in- 
stances, apart from a few special cases. If an instance 
is contained in this class, then all instances within some 
neighborhood are also. Moreover, any special case not 
in this class is unstable-an infinitesimal perturbation 
will yield an instance contained in the class. Similarly, 
we define a generic property to be true of essentially 
all instances, and false only in special and unstable 
cases. We show in the next section that conditions 4 
and 5 of the theorems stated below hold for essentially 
all images-they are generic properties of images. 
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intensity zero in the interior of the imaged region. 

Finally, we note that for images of closed, non-self- 
occluding objects, the limb is generically a smooth, 
closed curve (Giblin & Weiss 1987). The uniqueness 
theorem can now be stated: 

THEOREM: Assume conditions 1-5 above. i’hen the vis- 
ible surjke of the original object is the unique solution 
to shape from shading whose pose is nonaccidental. 

THEOREM: Assume (I) an image of a closed, smooth, 
non-self-occluding, genus-zero object is produced by 
orthographic projection; (2) the rejlectancefinction is 
a Bruss reflectance function; (3) the object is completely 
contained in the field of view, and the limb is a smooth, 
closed curve (this is generically true from the above); 
(4) the image contains a$nite number of singular points 
all of which are nondegenerate; (5) at each singular 
point, the matrix of second derivatives of the intensity 
does not have two equal eigenvalues. Then the visible 
sur$ace of the original object is the unique solution to 
shape from shading corresponding to a closed object. 

This uniqueness result may seem to conflict with the 
well-known, two-fold convex-concave ambiguity in 
reconstructing shape from shading. However, for the 
concave solution, the occluding boundary is seen edge 
on in the image, which clearly constitutes an acciden- 
tal alignment of the viewing direction with the rim of 
the surface. Moreover, this solution is impossible for 
a closed object-mere is no way to extend the surface 
to a closed object without occluding it. The second 
solution is therefore excluded as an acceptable one (see 
figure 9). These theorems may be summarized as stat- 
ing that for a Bruss reflectance function, and an object 
wholly contained in the field of view, there is essen- 
tially always a unique solution to shape from shading. 

Alternatively, the conclusion of this theorem can be The proof of these theorems is sketched below. The 
restated as follows. The pose of a non-self-occluding complete proof is given in the following sections. The 
surface is defined to be accidental if an infinitesimal first step is based on the local uniqueness theorem of 
rotation will cause the surface to self-occlude. Bruss (1982). Essentially, Bruss proved that in the 
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fig. 9 Surface solutions that are concave at the occluding boundary are excluded. 

neighborhood of a nondegenerate singular point, there 
is a unique locally convex surface solution, and, simi- 
larly, a unique locally concave solution. The singular 
point is a source in the first case, and a sink in the 
second. 

The second step of the proof is the demonstration 
that the convex and concave solutions around source 
and sink singular points can be extended beyond the 
local neighborhoods of these points. This follows from 
the existence and uniqueness theorems of differential 
equations: a characteristic strip, as the solution of a 
differential equation, can always be extended until it 
exits the image, or else converges to some limit point-a 
singular point. These strips carry the surface solution 
with them, extending it over a large region. In fact, the 
solution regions associated with sources and sinks 
essentially cover the image. This does not quite deter- 
mine the solution, however, since the relative depths 
of these singular points may not be known. One still 
needs to determine how the splicing of the different 
solution regions should be done. 

The third step proves that all singular points in 
a consistent solution actually are connected together 
by sequences of characteristic strips. Since the surface 
can be computed along these strips, this determines the 
relative depths of the singular points and the splicing 
of the different solution regions. This is sufficient to 
show that if the nature of the surface solution is known 
at each singular point-that is, whether it is concave, 

convex, or saddle-shaped-then the shape solution is 
uniquely determined. The last step in the proof shows 
that the type of the solution at each singular point is 
in fact uniquely specified, and that the solution is 
therefore unique. 

Various arguments are used to demonstrate the last 
step. Suppose some singular point is assumed to be 
a source, corresponding to a locally convex solution. 
This locally convex solution is uniquely determined, 
and therefore the characteristic strips emanating from 
the source are also. Then, one can show that the nature 
of the solution at any other singular point to which the 
first is connected by a strip is also determined. By a 
chain reaction of this reasoning, one can determine the 
nature of the solutions at many singular points which 
are connected to the original source by sequences of 
strips. Another important ingredient is the result that 
at the image boundary, all characteristic strips must be 
exiting the image region. Thus, all gradient curves in 
a consistent solution must originate at some singular 
point, which determines them. Also, any singular point 
connected to the image boundary by a characteristic 
strip can be identified as either a source or a saddle, 
but not a sink. Lastly, an argument based on the wind- 
ing number can be applied to uniquely determine the 
number of saddle-type singular points in the image. 
These and other arguments determine uniquely the 
nature of the surface solution at each singular point, 
and the surface itself. 
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6 Proof of Uniqueness: Preliminary Results 

The imaged object is assumed to be genus zero-with- 
out holes-and non-self-occluding. Also, it is contained 
in the field of view. The image therefore consists of a 
light blob in a black background, that is, the intensity 
is nonzero in a compact simply connected region and 
zero elsewhere. The image intensity is also assumed 
to be smooth, except at the boundary of the light region, 
where the intensity falls continuously to zero. This 
boundary corresponds to the occluding boundary of the 
imaged object. It will be referred to as the image bound- 
ary or limb. 

We consider only images with a finite number of 
singular points, all of which are nondegenerate. This 
is not a real restriction: it will be shown later that such 
an image can always be obtained by an infinitesimal 
perturbation of the imaged object, and that essentially 
all images have these properties. In other words, these 
images constitute a generic class. 

Some basic properties of the flow of gradient curves 
corresponding to a surface solution are now derived. 
We do this by considering the surface curves of steepest 
ascent-the gradient curves are just the image-plane 
projections of these. Let us fix a particular surface solu- 
tion. Every point on the surface clearly lies on a unique 
curve of steepest ascent. Moreover, since the surface 
is finite in depth and compact, every such curve clearly 
must terminate-either at some critical point of the 
depth (corresponding to a singular point), or else at 
the occluding boundary. The singular points are isolated 
by our (generically valid) assumption. It should there- 
fore be fairly clear that a singular point to which such 
a curve converges is the unique terminating point for 
the curve in the given time direction. Similarly, it will 
be shown that if a surface strip converges to the occlud- 
ing boundary, then it converges to a unique point on 
the boundary. Thus, for a consistent surface solution, 
the gradient curves in the image plane fill out the plane, 
and, at each end, a gradient curve must terminate either 
at a unique singular point, or else at a unique point 
on the image boundary. These conclusions are now 
proved in more detail. 

61 Gradient Curves Terminate at Unique Singular 
Points 

Suppose that a subsequence from a gradient curve con- 
verges to an interior point w as t + 00. We show that 
this point must be a singular point, and that it is the 

unique such point. (see Palis and de Melo (1982)). An 
equivalent argument works for convergence at t + - M. 
Suppose that Vz is nonzero at w. The gradient curve 
through w itself goes from z smaller than that of w to 
larger z. By continuity, trajectories through all points 
close enough to w will also reach z greater than that 
of w. Thus no gradient curve can converge to w, since 
if it approaches too closely it will attain larger z and 
never be able to return to w. Thus w must have Vz=O, 
and is a singular point. 

Next, suppose a gradient curve converges to more 
than one interior point as t + 00. Then, it must travel 
back and forth between them an infinite number of 
times. Different branches of the curve pass through 
points infinitesimally close to one of the fixed points, 
and thus, by continuity, these branches converge to an 
infinite set of points. But in the present case the image 
contains only a finite number of singular points, so this 
is impossible. Thus, as claimed, a gradient curve con- 
verging to an interior point as t --f 00 converges to a 
unique singular point. When a point lies on a gradient 
curve that converges to some singular point s, it will 
be called connected to s. Also, if there exists a gra- 
dient curve converging to two different singular points, 
one at either end, then we will say that these singular 
points are connected to each other by this curve. 

62 Gradient Curves Point Outward on the Image 
Boundary 

We next consider gradient curves near the image boun- 
dary. Along this boundary, there are essentially two 
possibilities for the shape of the object: either the sur- 
face protrudes toward the camera (the object is con- 
cave at the boundary), or else the surface recedes from 
the camera (it is convex at the boundary). The former 
case violates general position for nontransparent 
objects-the viewing direction accidentally coincides 
with a head-on view of the object rim. In this concave 
case, an infinitesimal rotation would cause the object 
to self-occlude. Also this case is impossible for a closed 
surface, since a smooth continuation of the object 
beyond the rim must again produce self-occlusion. This 
is shown in more detail below. In the convex case, in 
contrast, a small rotation would presumably just reveal 
a part of the continuation of the visible surface of the 
object. Therefore, in accordance with the statements 
of the uniqueness theorem in section 5, we will assume 
in the following sections that the surface is convex 
everywhere along its occluding boundary. Note, 
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however, that the proof contained in this article also 
demonstrates that there is a unique solution with the 
surface concave everywhere along the boundary. 

As will be shown, convexity implies that the surface 
curves of steepest ascent are heading ounvaro! from the 
visible region near the occluding boundary. Thus, the 
corresponding flow of gradient curves near the image 
boundary is also outward. (see figure 10). This fact, 
which follows from our stipulation that the recovered 
surface is either closed, or else in general position, will 
be very important in the uniqueness proof. 

fig. 10 For a closed surface, the direction of the steepest ascent curves 

at the occluding boundary is outward from the visible region. Cor- 
respondingly, the characteristic strip direction at the limb is outward. 

The foregoing statements will now be proved in more 
detail. It is shown that for each image boundary point 
there exists a gradient curve that smoothly converges 
to it, that the direction of this curve is outward, and 
that it intersects the image boundary perpendicularly. 
Consider a particular surface solution. We assume that 
it is smooth everywhere, including at its occluding 
boundary; this implies that the surface can be smoothly 
extended beyond the occluding boundary. The surface 
strips are determined on the 3D object by the standard 
equations: 

&-P -- a!=, 
’ dt 

dz = p= + q= 
dt ’ dt 

Let (Y (x) be a real infinitely differentiable function such 
that 1 1 01(x) > 0, and a(n) =1 if 1x1 I 0.2, U(X) = 0 

if 1x1 r 0.4. Such a function can be shown to exist. Con- 
sider the modified equations for the gradient curves: 

2 = (p2 + q*)R 
(P +J 

2 ’ 2 

(14) 

with 

R(x) = 1 + (Y(x)(x - 1) (15) 

These equations determine exactly the same gradient 
curves as the previous ones, since at every point the 
tangent direction to the curve is the same as before. 
Moreover, the new vector field (i.e., the right-hand 
sides of these equations) is as smooth as the previous 
one. Lastly, it is perfectly finite and well defined at the 
occluding boundary. Thus the flow of surface curves 
described by these equations can be defined on the ob- 
ject surface in a region containing the occluding boun- 
dary as well as on the visible surface. These curves 
are just the surface curves of steepest ascent, as illus- 
trated in figure 2. Note that we are explicitly defining 
the flow on the object rather than in the image plane- 
the corresponding flow projected in the image plane 
is not smooth at the occluding boundary. 

Consider a point on the limb b and a corresponding 
point B on the occluding boundary of the object. (Every 
point on the limb corresponds to at least one point on 
the occluding boundary of the object-just consider a 
line in the image that converges to 6, and its projection 
on the object surface.) For smooth surfaces with no self- 
occlusion, the limb is differentiable (Giblin & Weiss 
1987). For convenience, we switch to a new set of 
image-plane coordinates (X, j) with the origin at b, and 
rotated so that the tangent to the limb at b is in the X 
direction. We also take the image region to be on the 
left of the boundary line, that is, at negative j values 
(see figure 11). Then the tangent plane to the surface 
at B is given by the X and z directions. Because the sur- 
face is smooth, it can be parameterized locally by 
j(i, z). Also, 

p=& E zilj = - AZ -9 
ai j Yzli 

1 q = zylx = - 

%I.? 
(16) 



86 Oliensis 

b 
- 
Y 

Fig. Il. An image plane coordinate system defined so that the origin 
is a point on the lib b, and the tangent to the limb is in the~direction. 

The z. direction is into the page. 

and 

(17) 
4 zylx 

The notation j,l, signifies a partial derivative with 
respect to z keeping n fixed. From the above, 

1 -2 = f%Ii>’ 
P2 + q2 1 + p*/q2 = 1 + (j&)2 

The surface normal can be written 

;= C-L 1, -u,> 
(1 + 2 + j$)i’2 

sign Cc&,> (18) 

The occluding boundary is characterized by ;i, = 0 = 
j$ Elsewhere, j, must be nonzero, since the surface 
is non-self-occluding, and therefore has the same sign 
over the whole visible surface near B. Our stipulation 
that the surface be convex at the occluding boundary 

amounts to choosing y, > 0. It is shown below that this 
is the only possible choice when the surface is closed. 

Near the boundary point, the equation for the 3D 
gradient curve becomes: 

-uxlzrzlx 

dr’m. (1 + tiil,)’ 
-- 
dt %I, 

(1 + tiil,)’ 
1 1 (19) 

where 7 = (X, j, z). Since j has an extremum at B, 
by our coordinate choice, j$ and j& go smoothly to 
zero near B. Consider the gradient curve whose corre- 
sponding surface strip passes through B. The above 
equation indicates that its tangent approaches the j 
direction as the curve converges to b. Thus, as claimed, 
the direction of the gradient curve is outward as it 
crosses the limb, and it crosses this boundary perpen- 
dicularly. It is also clear that the point at which the gra- 
dient curve reaches the limb is the unique limit point 
of the curve in the positive time direction. It has there- 
fore been demonstrated that every gradient curve con- 
verges to a unique point at either end. 

Let us now reconsider the sign choice for j,. What- 
ever the choice, equation (19) implies that the direction 
of all gradient curves is the same-either all outward 
or all inward-along a portion of the limb near b. Since 
b was an arbitrary point on the limb, it follows that the 
gradient curve direction is the same on the entire limb. 
Now suppose that j, I 0 near b, so that the gradient 
curve direction is inward on the limb. Consider the cor- 
responding surface curves of steepest ascent. These can 
be defined over the invisible portion of the object, and 
therefore the surface strips that emerge into the visible 
region from the occluding boundary can be extended 
backward into the invisible region. These backward ex- 
tensions must project onto the image region in the xy 
plane. However, since z decreases in the backward 
direction, points on these extensions are closer to the 
camera than points on the later, visible portions of the 
curves. Therefore, these backward extensions, which 
were presumed invisible, will in fact occlude the later 
portions of the steepest ascent curves following their 
(presumed) entry into the visible region. This contra- 
diction shows that only the sign choice $ 2 0 is valid 
for a closed surface, and that consequently the gradient 
curve direction is outward everywhere on the limb. 

The fact that the gradient curves point outward at the 
limb has an extremely important consequence. Since 
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these curves cannot originate on the limb, it must be 
true for a consistent solution that all gradient curves 
originate at singularpoints. This is important because 
it will be shown later that singular points essentially 
determine the characteristic trajectories connecting to 
them. Since we have shown that all image points con- 
nect to singular points, this implies that the surface solu- 
tion may be determined over the whole image. 

Another consequence is as follows: consider the 
winding number of the image boundary curve. Because 
the gradient curves intersect the boundary perpen- 
dicularly, and because the boundary does not self- 
intersect, it has winding number +l. (For instance, 
compare figure 10 with figure 6.) It follows from the 
additivity property of the winding number that 

Ni + Nf - N, = 1 (20) 

where Ni is the number of sources, that is, singular 
points where the object is convex; Nf is the number of 
sinks (concave singular points on the object); and N, 
counts the number of saddle singular points. Since the 
total number of singular points is known from the im- 
age, this equation&es uniquely the number of saddle 
points in the image. Also, it implies that the image con- 
tains at least one source or sink. 

Note as an aside that equation (20) implies also that 
the total number of singular points in the image must be 
odd. If there is an even number of nondegenerate singu- 
lar points, the image cannot correspond to a smooth 
object that does not fold upon itself. This result excludes 
surface solutions that are concave at the occluding boun- 
dary, as well as convex ones. It has also been shown 
using a different method in (Horn et al. 1990). The only 
surface solutions possible are physically unreasonable 
ones in which the surface changes from convex to con- 
cave at some point along the occluding boundary. More 
‘impossibility’ results will be presented later, 

63 Properties of Generic Images 

Next, we justify our restriction to images containing 
finite numbers of singular points, all of which are 
nondegenerate. Based on some ideas of dynamical 
systems theory, it is proven that images with this prop- 
erty are generic among all smooth images. In fact, we 
prove slightly more than this. 

We define a closed surface to be structurally stable 
if its image satisfies the following three properties: (1) 
There are a finite number of singular points. (2) These 
are all nondegenerate. (3) No two saddle singular points 

-I a 

Fig. 12. An example of a nonstructurally stable flow, with two sad- 

dle points connected by a characteristics strip, is shown in 12a. An 
infinitesimal perturbation of the imaged surface will result in the situa- 

tion shown in l2b, in which the two saddles are no longer connected. 

are connected together by a gradient curve (figure 12). 
These surfaces can be shown to be stable in the sense 
that the image flow of gradient curves does not change 
drastically when the surface is perturbed-its topology 
remains the same. The Palis-Smale theorem (Palis & 
Smale 1968; Hirsch & Smale 1974; Palis & de Melo 
1982) states in part the following: 

Let v be a C-smooth gradient vector field (with a 
continuous rth derivative), defined on an open region 
W of the plane, such that v points outward on the 
boundary 6D of an open set D contained in Jl! Then, 
the set of all structurally stable v is open and dense 
in the set of all C’ gradient vector fields that point 
outward on 6D (see figure 13). 

A gradient vector field Vz defined on the xy plane 
is equivalent to a surface z(x, y). Thus, this theorem 
essentially states that any surface can be approximated 
by a structurally stable one, and that a perturbation of 
a structurally stable surface is also structurally stable. 
For a given image, Wean be identified with the interior 
image region where the intensity is nonvanishing. For 
the surfaces we are considering, we showed above that 



88 Oliensis 

Fig. 13. An open region W of the image plane containing a closed 

curve SD, which is defined so that the characteristic strip flow is out- 
ward on this curve. 

the vector field Vz points outward near the limb. Also, 
the magnitude of this vector field becomes infinite on 
the occluding boundary. Thus, it is clear (and 
demonstrated below) that a contour 6D in the image 
interior can be found such that the vector field also 
points outward on this line. 6D must simply be chosen 
close enough to the limb. The Palis-Smale theorem 
therefore applies to the surfaces we consider. 

If a given surface is not structurally stable, the 
theorem states that an infinitesimal perturbation will 
render it structurally stable. Since 6D can clearly be 
chosen so that there are no singular points outside it, 
and since the flow is outward on 6D , it is clear that 
this perturbation can be chosen (or modified) so that 
it vanishes outside SD, and does not alter the occluding 
boundary. Also, for a small enough perturbation of a 
surface, the corresponding vector field will clearly con- 
tinue to point outward on 6D since it is very large 
there-that is, the surface will continue to be convex 
on this curve. The Palis-Smale theorem therefore im- 
plies that a small enough perturbation of a structurally 
stable surface is also structurally stable. Structurally 
stable surfaces are therefore generic, and comprise 
essentially all surfaces. This justifies our restriction to 
images with a finite number of nondegenerate singular 
points. 

It can be proved that a contour 6D with the right prop- 
erties can be found: First, at each point b on the limb, 
there is an open region Rb centered at this point such 
that throughout Rb the direction of the vector field 
does not deviate from the normal to the limb at b by 
more than an angle de < < 1. This is true because of 
the smoothness of the vector field direction p/q near 

the boundary, which was shown in section 6.2. Simi- 
larly, there is an open interval of the limb such that the 
limb tangent direction does not vary by more than d0 
over this interval. This follows from the fact that the 
limb is smooth (Giblin & Weiss 1987). Therefore there 
is clearly an open interval Z, of the limb around b, and 
some distance eb, such that there is a smooth contour 
transversal to the vector field joining any two points 
whose distances from the boundary points of Ib are 
less than eb. Since the limb is compact, there is a finite 
subset of such open intervals that covers the boundary. 
Let emin be the least of the et, associated with these in- 
tervals. Then one can clearly patch together contours 
with endpoints less than E,in from the limb, corre- 
sponding to the different intervals, to form a smooth 
closed contour that is everywhere transversal to the vec- 
tor field. Q.E.D. 

A direct proof that structurally stable surfaces are 
generic among all closed surfaces, which dispenses 
with the necessity for finding a contour SD, can be 
found in Oliensis (1990). 

Condition 3 of the definition of structural stability 
is useful because it implies that if a gradient curve con- 
nects two singular points, then one must be elliptical; 
elliptical singular points uniquely determine the sur- 
face solution along strips connected to them (Bruss 
1982; Saxberg 1989a). Although this property is not 
needed here (its assumption would simplify the proof, 
however), it is useful in the general illumination direc- 
tion case (Oliensis 1990). 

Finally, it can easily be shown that, at a singular 
point, if the two principal curvatures of the imaged sur- 
face are unequal in magnitude, then condition 5 of the 
uniqueness theorem is satisfied. Thus, condition 5 
clearly holds generically-any structurally stable sur- 
face violating this condition can be perturbed in- 
finitesimally at the offending singular point, so that the 
two principal curvature magnitudes, and, consequent- 
ly, the two eigenvalues of the second-derivative inten- 
sity matrix, are no longer exactly equal. 

7 Proof of Uniqueness: I 

In the previous section, it was shown that for surface 
solutions convex at the occluding boundary, the gra- 
dient curves of the corresponding flow all connect to 
singular points in the image interior. From the Grob- 
man-Hartman theorem, only four gradient curves con- 
nect to each saddle singular point, while an infinite 
number connect to each source and sink. By our 
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generically valid assumption, the image has just a finite 
number of singular points. Thus, for a consistent solu- 
tion, all points in the image apart from those lying on 
a $nite number of gradient curves connect to sources 
and sinks. We will argue that the solution is fixed at 
all points connected to sources and sinks. Then z, is also 
determined on the isolated lines of points connected to 
saddle singular points, by continuity. 

In this section, we assume that the type of each 
singular point is known-each is identified as either 
a source, sink, or saddle. We prove, based on this 
assumption, that the imaged surface is uniquely deter- 
mined. In section 8, it will be proven that the type of 
each singular point is also uniquely fixed. 

Bruss (1982) proved that the surface solution in the 
neighborhood of a source or sink is unique up to an 
additive constant in z, that is, up to an overall transla- 
tion in depth. If the intensity function is r times dif- 
ferentiable, that is, C’, the local solutions are Cr.‘, 
from the stable manifold theorem (Palis & de Melo 
1982). Assume r 1 2. Since p and q-the first 
derivatives of z-are uniquely determined, the existence 
and uniqueness theorems for differential equations ap- 
plied to equation (2) state that the characteristic tra- 
jectories can be uniquely extended from starting points 
in the neighborhood of the elliptical point. This deter- 
mines 2. uniquely, up to an overall constant, over the 
region of the image plane connected to this singular 
point. The unknown constant can be thought of as the 
depth of the elliptical point itself. 

From the above, the depths of essentially all image 
points are known relative to the depths of the elliptical 
points. To show that the surface is uniquely determined, 
all that remains is to show that the relative depths of 
the elliptical points are uniquely fixed. We prove this 
based on the following: 

LEMMA: For a consistent surj&e solution, every 
singular point is connected to every other singular point 
by a sequence of gradient curves. 

Proof: Note that this proof concerns the properties of 
surfaces, and assumes that a particular surface is 
given-it deals with gradient curves as solutions of the 
two-dimensional dynamical system equation (10). 

Assume there is more than one singular point. We 
prove first that, for a consistent solution, every singular 
point is connected to at least one other singular point 
by a gradient curve. This is clearly true for any saddle 
point or sink. These singular points are terminal points 

of gradient curves, which must originate at singular 
points, since they cannot originate at the boundary. This 
immediately implies that a sink must be connected to 
some other singular point. Since gradient curves can- 
not be closed curves, one cannot begin and end at the 
same saddle point. Thus, saddle points also must be 
connected to some other singular point. 

The only remaining case is that of sources. Suppose 
there exists a source 0 that only connects to the boun- 
dary. The region U, consisting of all points in the im- 
age interior that lie on a gradient curve originating at 
0 is open. This is so because the unstable manifold 
of the source point, for the dynamical system equation 
(10) defined over any open set contained in the image 
interior, is open (Palis & de Melo 1982). By assump- 
tion, there are points in the image interior not contained 
in U,, for example all the other singular points. Thus 
the boundary of U, must contain points in the image 
interior. Consider a gradient curve passing through one 
of these points. Every point on this curve must also 
be on the boundary by continuity of the flow. One end 
of this curve must connect to a singular point s, which 
is also on the boundary. First, s cannot be a source. 
If it were, then all points in some neighborhood must 
originate from s. But since s is on the boundary of U,, 
there are points infinitesimally close to s that originate 
from 0 (see figure 14). Similarly, s cannot be a sink, 
since then all points in some neighborhood would termi- 
nate at s. But there are points infinitesimally close to 
s that originate at 0, implying that 0 is connected to 
s contrary to assumption. 

Fig. 14. A source cannot lie on the boundary of the region U, of 

charateristic strips connected to another source 0. 

Suppose then that s is a saddle. It cannot be an iso- 
lated boundary point. For, suppose there is a neighbor- 
hood of s that excluding s itself contains only points 
of U,. Then since there exist gradient curves converg- 
ing to s, s is connected to 0 contrary to assumption. 
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On the other hand, if every neighborhood of s contains 
both points in U, and points not in U,, then there are 
boundary points of U, infinitesimally close to s. Con- 
sider the gradient curves through a sequence of these 
boundary points approaching s. Since s is a nondegen- 
erate and therefore an isolated singular point, one can 
assume that none of these points is singular. Suppose 
first that they constitute an infinite number of different 
gradient curves. All of them must connect to singular 
points. But only a finite number can connect to saddle 
points, so some must connect to either a source or a 
sink, which by the previous arguments is impossible. 
But if there is a finite number of gradient curves, then 
some curve must contain an infinite subsequence of 
these boundary points converging to s. This gradient 
curve L therefore connects to s, and is in the boundary 
of U,. It is one of the four special curves that connect 
to s. (These curves constitute the stable and unstable 
manifolds associated with s for the two-dimensional 
gradient dynamical system in the image plane.) 

fig. 15. A sequence of saddle points connected by characteristic strips. 

These are assumed to form part of the boundary of a region U, con- 
nected to a source 0. If the saddle point s is not connected to 0, 
then there arc two characteristic strips I and L on the boundary of 
U,, which terminate and originate at S, respectively. 

We will show that a second gradient curve I connect- 
ing to s must also be on the boundary of U,, as shown 
in figure 15. Moreover, assuming that s is not connected 

to 0, then Z and L converge in the opposite sense to s- 
that is, assuming for convenience that L originates at s, 
I must terminate at s. In other words, the depth z. along 
the composite curve I + s + L is increasing. By the 
argument above, L and I cannot connect at their other 
ends to elliptical points, since these would also be on 
the boundary. They can only connect to other saddle 
points, as shown in figure 15, or else the limb. There 
is therefore a sequence of gradient curves on the boun- 
dary of U, joining saddle points, along which the 
depth is continuously increasing. Since there are only a 
finite number of saddle points, this sequence must even- 
tually end either at an elliptical point, which is ruled 
out, or the limb. But it cannot originate at the limb 
either, since all gradient curves exit at the limb. The 
only possibility is that one of the saddle points does 
connect to 0. This shows that every singular point is 
connected to some other singular point as claimed. 

It remains to show that there exists a gradient curve Z 
as above. The Grobman-Hartman result that there exists 
a ball I’ around s such that the flow is homeomorphic 
to a linear flow on I/ is used. This homeomorphism 
can be taken to be a finite distance from the identity 
map. See Palis and de Melo (1982). I/ is divided into 
four quadrants by the four special curves mentioned 
above, one of which is L. Let Q be one of these quad- 
rants bordering L, which contains points of U, arbi- 
trarily close to L. Let Z be the other gradient curve 
bounding quadrant Q. Z must converge to s (see figure 
16). It will be shown that Z is also contained in the boun- 
dary of U,. All that is necessary is to show that some 
point i from Z is on the boundary. 

Let I be a point from L. I is chosen so that there are 
points of U, arbitrarily close to 1. Choose i from I, with 
i not on the boundary of U,. Then there is a neighbor- 
hood of i which contains no point of U,. The Grob- 
man-Hartman theorem implies that one can choose new 
coordinates U, v on the region V around s such that: 
(a) the curve Z converging to s is on the u-axis; (b) L 
is on the v-axis; (c) other gradient curves, characterized 
by constants cl and c2, are given by 

(u(t), v(t)) = (clepa’, c2ebf) 

where a, b are universal positive constants, valid for 
every gradient curve; (d) these coordinates are valid 
for all u, v with u2 + v2 5 D for some distance D; 
and (e) u, v are continuous bounded functions of x, y. 
For concreteness, Q is taken to correspond to the up- 
per left quadrant in the u, v plane, as in figure 16. 

Let i and 1 be identified respectively with the points 
(i, 0) and (0, 1). These points are chosen to lie in the 
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fig. 16 An image-plane flow of characteristic strips around a sad- 

dle point, in linearized coordinates. Y is the region over which the 
linearization is valid. Q is a quadrant bounded by the gradient curves 
L and 1. Gradient curves that pass infinitesimally close to a point 

I on L also pass infinitesimally close to a point i on I. 

region V where the linearizing coordinates are valid. 
It is easy to see from the above equation that for any 
E, there exists a 6 such that all points within a distance 
6 from 1 lie on gradient curves that pass within a 
distance E of i. Since the change of coordinates is con- 
tinuous, there does exist an E such that no point in Q 
within E of i is contained in V,. All points on the same 
curve as a point not in V, are also not in V,. 
Therefore, there is a Q neighborhood of 1 that contains 
no point of V,, contrary to assumption. I is according- 
ly contained in the boundary of U,. Since this result 
holds for every saddle point on the boundary, the argu- 
ment given previously shows that one of the saddle 
points on the boundary must connect to 0. 

It is therefore true as claimed that every singular point 
is connected to at least one of the other singular points. 
Next, it is shown that there is a path along gradient 
curves between any two singular points. Consider the 
set C of all singular points connected to a particular 
singular point 0 along some sequence of paths. Clear- 
ly, all the points in C are connected to each other 
through 0. Suppose that this set is not the complete 
set of all singular points. Then the remaining singular 
points form a set N none of which is connected to any 
point of C. Define the set C to consist of all points in 
the image connected to the singular points C. Similar- 
ly, define I? to be the set of all points in the image con- 

nected to the singular points N. Every point in the im- ^ ^ 
age is either in C or N, since all points connect to some 
singular point. C contains the union U of a number of 
open sets consisting of those points in the image inter- 
ior lying on gradient curves connecting to the sources 
and sinks in C. Exactly the same argument as above 
shows that the boundary of U can contain no point con- 
nected to a singular point in N. (If not, then some point 
n in N is on the boundary of U. As before, n must be 
a saddle, since otherwise it connects to an elliptical 
point in V, and there is a sequence on the boundary 
of connected saddles in N which eventually connects 
to the limb. This gives a contradiction, since gradient 
curves at the limb exit only.) 

The closure 6 of U therefore contains, besides points 
on the image boundary, only the saddle points in C and 
gradient curves connecting to these saddle points. 
Moreover, it must contain all the curves connecting to 
saddle points in C. For, if it does not contain one of 
these curves, then there is a neighborhood of a point 
s on the curve entirely disconnected from the sources 
and sinks of C. Thus, there are points infinitesimally 
close to s connected to the sources and sinks of N, that 
is, s is a boundary point for the (un)stable manifold 
of one of these points. Again, by the arguments above, 
this is ruled out. Therefore fr = C. 

A similar argument applies to l?. Define W to be the 
union of all points connected to the sources and sinks of 
N. Then l? = fi. The compact connected image region 
has thus been shown to be the union of two disjoint clos- 
ures of open sets. But this is impossible, and our original 
assumption is contradicted. This proves the lemma. 

Finally, it is shown that the relative depths of all the 
singular points are determined. When an elliptical point 
is connected to a second singular point, the relative 
depth of the two points is uniquely determined, since, 
from Bruss’s theorem, z is uniquely determined along 
the gradient curve connecting them. 

Consider the remaining case of a gradient curve G 
connecting two saddle points, as shown in figure 17. 
Let T be a line of constant z intersecting this curve at 
g. In a neighborhood of g, every point on T lies on a 
different gradient curve. Since there are only a finite 
number of gradient curves connecting to saddles, there 
is a neighborhood of g which just contains (besides G) 
gradient curves connecting to elliptical points. By con- 
tinuity of the flow, there are thus gradient curves con- 
necting to elliptical points arbitrarily close to G, and 
to the saddle points at either end of G. The relative 
depths of any two points on a gradient curve connecting 
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Fig. 1% Two saddle points connected by a gradient curve G. Their 
relative depth is determined. 

to an elliptical point are determined. Thus, by continui- 
ty, the relative depth of the two saddle points connected 
by G is determined. 

It has been shown that the relative depth of any two 
singular points connected by a gradient curve is deter- 
mined. Since by the lemma all singular points are con- 
nected by sequences of gradient curves, the relative 
depths of all singular points are determined, and the 
surface is uniquely determined. 

8 Proof of Uniqueness: II 

The previous section demonstrated that if the nature 
of the surface at the singular points is known (whether 
concave, convex, or saddle-shaped), then the surface 
solution is uniquely determined up to an overall additive 
constant, assuming it exists. In this section it is shown 
that the nature of the surface at the singular points is 
also uniquely determined. This implies that the solu- 
tion, if it exists, is determined completely uniquely. 

81 lhe Saddle Points Are Uniquely Determined 

First, it is shown that the singular saddle points are 
uniquely identifiable as such. Suppose that there are 
two solutions in which some number m of the saddle 
points in solution A become elliptical in solution B. 
Because of the topological formula, 

Ni + Nf - N, = 1 (21) 

the total number of saddle points is fixed. Thus m ellip- 
tical points in solution A must also become saddles in 
solution B. 

Divide the singular points in the image into two 
classes: Y, containing the points that change from ellip- 
tical to saddle, or vice versa, between A and B, and N, 

containing those that do not. By assumption, Y is non- 
empty and, from the above, contains an even number 
of singular points. Since the total number is odd, N is 
also nonempty. Moreover, N must contain at least one 
elliptical point, since the contribution of Y to the sum 
in the topological formula above is zero. The sets Y and 
N are connected by gradient curves in both solutions 
A and B, from the arguments in the previous section. 

The plan of the following proof is to first characterize 
the region of all points connected to the singular points 
of Y and, more specifically, the boundary of this region. 
(This can be done for either of the possible solutions. 
For convenience, we focus on one of them, e.g., A.) 
Then, essentially by counting the different types of sin- 
gular points, we demonstrate that regions with the estab- 
lished properties are not consistent. Thus, Y must be 
empty, and the saddle points are uniquely determined. 

82 Characterization of the Region Connected to Y 

Let U be the open region of all points in the image in- 
terior lying on gradient curves connecting to the ellip- 
tical points of Y As discussed in section 7, the boundary 
of U consists of gradient curves joining singular points 
(and possibly segments of the limb). These singular 
points cannot be elliptical. If they were they would be 
in N, and also connected to the elliptical points in Y 
by the arguments of section 7. However, we claim that 
elliptical points in N do not connect to the singular 
points of Y Therefore, all singularpoints in the boun- 
dary of U are saddles. 

Proof of Claim: This result is just the one quoted in 
section 5: an elliptical point that is connected to a sec- 
ond singular point determines the character of that 
point. 

Suppose that an elliptical point n in N connects to 
a singular pointy in Y n will connect toy in both solu- 
tions A and B, since the assumption that it is elliptical 
determines the gradient curves connected to n uniquely. 
(It is easy to see from equation (2) that the gradient 
curves connecting to an elliptical point are exactly the 
same image curves independent of whether the point 
is a source or a sink-however, the direction of the 
curves alters between the two possibilities.) Now y is 
elliptical in one of the two solutions (say A), and in 
that case there is an open region around y such that 
every point contained in it connects to y. Consider the 
intersection of this open region with the open set of 
all points connected to n. The intersection is nonempty 
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by assumption, and must be open. Thus there are infi- 
nitely many gradient curves connecting to n, which also 
connect to y; and these gradient curves are determined 
purely by the image intensity and the stipulation that 
n is elliptical. In B, y switches to a saddle, but the char- 
acter of n and the image intensity are unchanged; and 
therefore there will continue to be an infinite number 
of gradient curves connecting y and n, which violates 
the assumption that y is now a saddle. Q.E.D. 

This argument is illustrated in figure 18. 

fig. 18. An elliptical point connected by an infinite number of char- 
acteristic strips to a second singular point. The second point is deter- 

mined to be elliptical as well. 

The following lemma is also needed: 

LEMMA. For any quadrant of a saddle point s, there 
is a neighborhood of the saddle such that its intersec- 
tion with the quadrant consists of gradient curves all 
connecting to the same elliptical point. 

A quadrant as defined here refers to the region 
bounded between neighboring arms of s-that is, be- 
tween two of the gradient curves connected to s. It does 
not indude the bounding gradient curves themselves. 

Proof: The boundary of a region connected to some 
elliptical point consists of gradient curves joining 
singular points (apart from limb segments). We claim 
that all the gradient curves in this boundary must con- 
nect at one end to a saddle. 

Proof of Claim: For a source, for instance, the boun- 
dary can contain no sources, by the arguments of sec- 
tion 7 (figure 14). Therefore, a bounding gradient curve 
terminating at a sink at one end must originate at a 
saddle-it cannot originate on the limb since the direc- 
tion of all gradient curves there is outward. For a sink, 
the region connected to the sink is isolated from the 
limb, so again gradient curves on the boundary 

originating at a source must terminate at a saddle. 
Q.E.D. 

There are an infinite number of different gradient 
curves passing arbitrarily close to s without connec- 
ting to it-consider for instance the curves intersecting 
some line of constant z beginning at s. Since there are 
only a finite number of curves connected to saddles, 
there is a neighborhood of s containing no gradient 
curves connected to saddles (apart from the four grad- 
ient curves connected to s). Consider the intersection 
of a quadrant with this neighborhood. This entire region 
must connect to the same elliptical point, since other- 
wise it would have to contain a boundary between the 
curves connecting to different elliptical points, which 
we have just shown is not the case. Q.E.D. 

Fig. 19. An elliptical point connected by a single characteristic strip 
to a second singular point. The second point is determined to be a 

saddle point. 

Now let s be a saddle point from Y. We claim that 
there is a neighborhood of s which contains no gra- 
dient curves connecting to elliptical points of N. Other- 
wise there would be an infinite number of such curves 
passing arbitrarily close to s without connecting to it, 
in both solutions A and B. But this contradicts the 
assumption that s becomes an elliptical point in the 
alternate solution (see figure 19). Therefore, from the 
above, there is a neighborhood of s containing just 
points from U, apart from the gradient curves connec- 
ting to s. By continuity of the flow, s, and the gradient 
curves connecting to s. are contained in the boundary 
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of U. Moreover, s and its connecting curves are con- 
mined in the interior of  the closure of  U (see figure 20). 

Fig. 20. A neighborhood of a saddle point with all quadrants con- 
tained in the set U. The saddle is therefore contained in the interior 
of the closure of U. 

Next consider a saddle point s from N on the boun- 
dary of U. It is possible that, as before, there exists a 
neighborhood ofs containing only points from U (figure 
20) in addition to s itself and its connecting gradient 
curves. In this case, s and these curves are again con- 
tained in the interior of the closure of U. The other 
possibility is that at least one of the quadrants of s is 
filled up by gradient curves connecting to an elliptical 
point of N (in some neighborhood of s). In this case, s 
is on the boundary of the closure of U. There are var- 
ious possibilities depending on which quadrants connect 
to N, and which to Y; these are illustrated in figure 21. 

Denote the closure of U by Y, and let 8Y denote its 
boundary. Since 8Yis contained in the boundary of U, 
it consists of gradient curves joining saddles. It was 
shown above that all saddles in Y are contained in the 
interior of I?.. Thus, all the saddles on the boundary of 

are in N. 
The remainder of the proof shows that configurations 

with/~ surrounded by saddles from N are impossible. 
Essentially, we use the winding number to count 
singular points in Y, and show that the number of sad- 
dles and elliptical points in Y cannot be equal--a 
contradiction. 

3 The Configurations ~" Are not Consistent 

We consider first the simplest case: a connected com- 
ponent I7"c of Y that is isolated from the limb, and 
simply connected. Since ITc is simply connected, its 
boundary is a single closed circuit of gradient curves 
connecting saddle points from N. Inside this boundary 
there are no holes--no regions connected to elliptical 
points of N, which would require internal boundaries. 
We must compute the winding number of this region. 

Consider the circuit C around l~c illustrated in 
figure 22. The segments of this curve fall into two 
categories: either (1) they lie on gradient curves, or else 
(2) they lie on curves of constant depth (level contours) 
which run perpendicular to the gradient curves. The 
sharp corners between segments should be thought of 
as representing infinitesimal smooth joining curves. C 
runs along gradient curves paralleling the bounding 
curves connecting saddle points. In the vicinity of the 
saddle points themselves, C crosses the external strips 
connecting to these saddles by means of the level con- 
tour segments. 

The winding number will be computed on C by keep- 
ing track of the relative orientation of the vector field 
Vz to the curve tangent. The curve tangent makes ex- 
actly one revolution as C is traversed, equivalent to a 
winding number +1. We measure orientation of vec- 
tors using an angle that increases in the counter- 
clockwise direction, that is, 0 = tan-l(Vy/Vx) for a 
vector if" We also take C to be traversed in the left-hand 
or clockwise sense, so that the vector normal to the 
curve and pointing outward is rotated by +90 ° with 
respect to the tangent vector on C, which points in the 
direction of motion along C. 

Along the segments in category 1, the vector field 
Vz and the tangent to C are parallel or antiparallel. 
Therefore, along these segments the vector field and 
tangent rotate through the same angle. Also, along the 
level contour segments of category 2, the tangent vec- 
tor and vector field are perpendicular, and again rotate 
through the same angle. Therefore, the tangent direc- 
tion and the vector field rotate by different amounts only 
at the joins (corners) between the gradient curve and 
level contour segments. We assume that the joining 
curves are sufficiently small so that the vector field is 
essentially constant along these curves. Since the grad- 
ient curves are perpendicular to the level contours, the 
tangent direction changes along these joins by approx- 
imately +90 o. The total relative rotation along C of the 
tangent direction with respect to the vector field is 
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Fig. 21. The various possibilities for a saddle point s on the boundary of the closure of the set U. See text. 

therefore given by summing the 90 ° relative rotations 
over all the joins. Essentially, we must compute the 
relative rotation induced by the passage around each 
saddle point on the boundary. 

First, the case of a saddle with a single external con- 
necting gradient curve is considered, such as one of 
the saddles labeled s~ in figure 22. The saddle, and 
part of its connecting gradient curve, are inside C. Thus, 
the first 90 ° turn is toward the inside direction, since 
C immediately intersects this curve. The tangent direc- 

tion rotates by - 9 0  ° with respect to the vector field, 
which remains approximately constant in direction dur- 
ing the turn. After the next turn, the tangent direction 
has clearly rotated by -180 ° with respect to the vector 
field. 

Next we consider a saddle with two external lines, 
for example, s2 in figure 22. Clearly, the rotation here 
is just twice as much as for the previous case--two cuts 
to the inside are necessary. Thus, the relative rotation 
is - 3 6 0  ° . 
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Fig. 22. A connected region Yc containing image strips connected 
to elliptical singular points in Y. Its boundary consists of saddle points 
from N connected by characteristic strips. The winding number  of 
this region is computed on a contour C. The dashed segments of  C 
lie on characteristic strips, and the thick solid lines represent level 
contour segments running perpendicular to the characteristic strip 

flow. 

Finally, it is clear that when the saddle has no exter- 
nal connecting curves, like So in figure 22, one can 
choose C to lie on the gradient curve bypassing the sad- 
dle, and there is no relative rotation. 

Let the number of saddle points on the boundary of 
I~c with one external line be denoted $1, and let $2 be 
the number with two. For figure 22, clearly S1 = 2, 
and $2 = So = 1. A saddle point with one external 
connection represents an extremum of z along the boun- 
dary, while for the other two possibilities the depth in- 
creases monotonically through the saddle point in the 
flow along the boundary. Since the depth on the boun- 
dary has a maximum and a minimum, there are at least 
two saddle points with one external connection, that 
is, S1 > 2. Also, between any two maxima there must 
be a minima, and vice versa, so that $1 is even. 

From the above: 

0~n = --360° = 0v= -- 180° $1 - 360°$2 (22) 

where 0tan is the total rotation of the tangent direction 
along C, and 0vcc is similarly the total rotation of the 
vector field. Expressing this relation in terms of the wind- 
ing number W of Yc, with W -= 0tan/(-360°), gives 

W = 1 S1 $2 < 0 (23) 
2 

Note that we can choose C to lie along gradient curves 
connecting to elliptical points of N, and also along level 
contour segments perpendicular to these curves. Thus 
the value of W is the same for both solutions A and B. 

From section 4, W is also equal to the sum of the 
indexes of all singular points contained within C. Thus 

S1 S 2 = - S 1 - S 2 - S O - Sin t - S '  + E '  
2 

(24) 

where So is the number of  saddles from N on the 
boundary with zero external connections; Si~t is the 
number of saddles from N in the interior of  Yc; S' is 
the number of saddles from Y in I~c, and E '  is the 
number of  elliptical points from Y in Yc. Therefore 

E '  - S '  = 1 +_St  + So + Sint > 0  (25) 
2 

However, in the alternate solution, we have: 

S '  - E '  = 1 + - -  S1 -')- S O -'1- Sin t (26) 
2 

since the saddles in Ybecome elliptical points, and vice 
versa, while the character of the singular points in N 
is unchanged. But this implies S '  - E '  = E '  - S ', 
which could only be satisfied if the difference were 
zero, which we have shown is not the case. Therefore, 
the configuration l~c is impossible. 

It remains to show that the other possibilities for Y, 
for instance with ~'bounded partly by the limb or with 
islands of N-connected points contained in/?,, can also 
be ruled out. The additional complications will be dealt 
with one by one. First, we consider an isolated region 
YB which is similar to l~c except that it is bounded in 
part by the limb. This is illustrated in figure 23. The 
winding number of ~'B will be computed on a circuit 
Cext defined similarly to the circuit C above. Since ~'B 
is bordered by the limb, however, we must consider how 
to define the segments of Cext that run along the limb. 

In both of the solutions A and B, the flow of gradient 
curves is outward on the limb. By a slight extension 
of an argument in section 6.3, it is possible to find a 
curve segment 6D just inside the limb such that in both 
solutions the flow is outward on this segment. At every 
point along /SD, therefore, 
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fig. 23. A connected region fB of ? bounded in part by the limb. The winding number is computed on the indicated contour. 

tan < kc < 4an + 180 ’ (27) 

where, for example, eta,, gives the orientation of the 
tangent direction. 

Near a point where it joins onto a gradient curve out- 
side Ya, AD clearly can be chosen to lie on a level con- 
tour. Around such a point of juncture, one can assume 
that all gradient curves connect to a single elliptical 
point of N, and therefore the level contours near this 
point are the same in both solutions A and B. Thus the 
turns from the initial gradient curve segment to SD, and 
then from 6D to the succeeding gradient curve, are both 
turns of -90” to the inside. Also, at the beginning and 
end of SD, the tangent direction is at the same angle 
(-90”) with respect to the vector field direction. The 
tangent direction must therefore have rotated through 
a total angle 360% with respect to the vector field, for 
some integer n. However, by the inequality in equation 
(27), the tangent direction is bounded to be within a 
range of the vector field, and it therefore could not have 
achieved a complete rotation relative to this field. Con- 
sequently, n is zero. In traversing through SD, the total 
rotation of the tangent direction with respect to the 
vector field is therefore -1809 

The generalization of equation (23) can now be writ- 
ten as 

where B counts the number of segments running close 
to the limb. Using the same reasoning as before, 

E ’ - S ’ = 1 + 2 + Sa + Si, - 4 (29) 

We claim that St 1 B. The reason for this is that the 
direction of gradient curves is outward at the limb, so 
that the direction of flow along C,,, must reverse at 
least once between limb segments. This reversal oc- 
curs only at a saddle point with a single exterior con- 
nection, giving the inequality. As a result, it is again 
true that E ’ - S ’ > 0, which as before is impossible, 
so that the configuration Ya is ruled out. 

Next, the stipulation that the region of Y be without 
holes is relaxed. We consider a region Y;J which con- 
tains within its external boundary elliptical points from 
N. The regions spanned by gradient curves connecting 
to these elliptical points constitute the holes within YH. 
This is illustrated in figure 24. 
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We focus on one of the holes fii. Its boundary con- 
sists of saddles from N connected by gradient curves, 
since it is also part of the boundary of 2 We can assume 
that it is isolated from the limb, since otherwise it is 
not contained within fBB, and a contour surrounding fB 
can be found which excludes this region, such as the 
one shown in figure 23. We can also assume that there 
are no regions from ? contained in &-otherwise we 
can simply apply our argument to these smaller regions 
of f 

The singular points in pi can be counted as before 
by computing the winding number as shown in figure 
24: 

w. = 1 - 5 - soi 5 0 I (30) 
2 

Note that gradient curves that are exterior to fii are in- 
terior to p-this is why Se appears in the above equa- 

+ C Wi - S’ + E’ 

tion rather than &. (SO, as before, counts the saddles 
such that none of their connecting gradient curves is 
exterior to F.) 

Wi can also be computed in a different way. The 
winding number can be computed on a curve just inside 
the boundary of fiiy along the gradient curves which 
are the same for both solutions A and B. Wj is then 
given by the sum of this winding number, minus the 
number of saddle points on the boundary of fii. This 
method makes it clear that Wi is the same in both solu- 
tions. This must be the case, since Wi counts the in- 
dexes of points contained in N; the indexes of these 
points are the same in both solutions. 

Calculating as before, 

1 - 3 - s2 - !! = - & - s, - so - sin, 
2 2 (31) 

Fig. 24. A non-simply connected region pH of f containing a region fii connected to elliptical points in N. The winding number of the hole 
& is computed using the indicated contour. 
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Since the W/ _ 0, an argument identical to that follow- 
ing equation (29) shows that the configuration I7" n is 
also ruled out. 

Lastly, the effects of saddle points with four connec- 
ting gradient curves on the boundary of Y, as in figure 
21d, are considered. We claim that saddle points of this 
type introduce nothing qualitatively new. At such a sad- 
dle point, two regions of Y touch "accidentally." We 
will imagine separating these two regions as shown in 
figure 25, which simultaneously joins together the two 
regions in the complement of Y, consisting of gradient 
curves connecting to N. The saddle point itself will be 
included as part of this complementary region, as il- 
lustrated in the figure. If this separation can be im- 
plemented consistently, then the counting of singular 
points is essentially the same as for the previous cases. 

Fig. 26 A region of ~" containing a saddle point of the type shown 
in figure 21d. The winding numbers of the separate regions are com- 
puted on the contours shown, avoiding the saddle point. 

m 

. . . . . .  

Fig. 25. Imaginary separation of two regions of 1 ~ accidentally touching 
at a saddle point of the type shown in figure 21d. 

In figure 26, it is shown how to draw external contours 
Cext so that a saddle point of this type is avoided. 
Clearly, there is no relative rotation of the tangent direc- 
tion with respect to the vector field along the portion of 
C~xt indented away from the saddle. Thus, for contours 
so defined, the winding number is the same as if there 
were no saddle point and the two regions in figure 26 
were separated. 

If both of the non-I ~ regions are holes--that is, con- 
mined in a larger region of Y---then it is necessary to 

Fig. 27. A hole--containing image strips connected to elliptical points 
in N--in a region of I 3 containing a saddle point as shown in figure 
21d. The winding number of the hole region is computed on the indi- 
cated contour. The saddle is counted as if contained in the hole region. 
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compute the sum of the indexes of the points contained 
in these. One can compute the winding number on a 
contour containing both holes as indicated in figure 27. 
Near the saddle, this contour falls on gradient curves that 
simply bypass the saddle point. Since the saddle has no 
external connecting curves, it induces no rotation of the 
tangent direction relative to the vector field. The IVi 
for the combined hole region is therefore unmodified: 

(32) 

Actually, we now have S,i 1 4 since there are at least 
two separate closed loops on the boundary of the com- 
bined hole, and for each loop 5’ti 2 2. Thus Wi is 
strictly less than zero for combination holes of this type. 
These arguments justify our assertion that saddles as 
in figure 21d can be taken into account as in the previous 
cases. 

The final, generally valid, version of equations (23) 
and (29) is therefore 

E’-S’=l+~+S,+S,,-~-CW, (33) 
i 

The same argument as before applies. Therefore fcan- 
not consistently exist, and the saddle points of the solu- 
tion are uniquely determined. Recall that the gradient 
curves connected to an elliptical point are the same im- 
age curves, apart from the direction of flow, regardless 
of whether the point is a source or a sink. The result 
derived in this section therefore implies that the gra- 
dient curves are uniquely determined as curves in the 
image. 

8.4 Sources and Sinks Are Uniquely Determined 

It remains to demonstrate that the source and sink 
singular points are also uniquely assigned. From the 
above, the gradient curves are uniquely determined as 
image curves. Also, it has been shown that every 
singular point is connected by a sequence of gradient 
curves to every other singular point. Finally, there are 
clearly singular points connected to the limb, and the 
flow direction of the connecting curves is determined 
to be outward. Thus, every singular point is connected 
to the limb by a sequence of gradient curves. 

At an elliptical point, the flow direction of all gra- 
dient curves connected to the point is the same. At a 
saddle point, the relative directions of the gradient 
curves connecting to the saddle are also determined- 

adjacent strips flow in opposite directions. Thus the 
flow direction is determined along any sequence of gra- 
dient curves, assuming the direction is determined on 
one of them. Since all singular points are connected 
by such a sequence to the limb, and since the flow direc- 
tion is determined there, it is determined at every 
singular point. Sources and sinks therefore can be 
uniquely assigned. This concludes the proof. 

The results obtained here can be partially extended to 
the case of more general light source direction (Olien- 
sis 1990). 

9 Impossibility of Solutions 

By definition, an impossible image is one for which there 
exists no corresponding smooth, non-self-occluding 
surface of which it can be the image, at least for the 
given reflectance function. Recently, it has been shown 
that such images do exist (Horn et al. 1990); however, 
the image examples proved to be impossible by Horn 
et al. (1990a) are rather special, See also the argument 
at the end of section 6.2 

An argument is presented here that indicates that im- 
ages are effectively impossible genetically (but see Note 
1). An image is defined to be effectively impossible if 
the only possible corresponding surfaces are physically 
unreasonable and nongeneric (in a sense made precise 
below). For the class of images considered here, it is 
shown that any image can be modified by a small per- 
turbation of its intensities so that the perturbed image 
is impossible, or at best has a nongeneric surface solu- 
tion. Also, it is suggested that essentially every image 
(i.e., intensity function I@, y) of this class is effec- 
tively impossible. Our argument applies explicitly to 
reflectance functions that are approximately Bruss func- 
tions, with the illumination assumed symmetric around 
the viewing direction. However, an analogous result is 
very probably true for arbitrary reflectance functions. 
We also present a concrete example illustrating that a 
small intensity perturbation can render an image effec- 
tively impossible. Our arguments in this section are not 
at the level of proofs; a rigorous discussion will be pre- 
sented in future work. 

As stated in section 6, every point on a smooth surface 
clearly lies on a unique curve of steepest ascent. Corre- 
spondingly, for a consistent smooth surface solution 
corresponding to an image, every image point lies on 
a unique characteristic strip. i’hus image strips cannot 
intersect in the image plane. (This argument is also 
valid for illumination from a general direction (Oliensis 
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1990) .) Another way to show this is as follows: a char- 
acteristic strip, since it is the solution of the first-order 
differential equation (8)) is uniquely determined through 
a point ifp and q are known at the point. In fact, (p, q) 
is just the tangent to the image strip at the point, as 
noted in section 2. This implies that two different image 
strips can intersect at an image point only if they have 
different tangents. But this cannot happen either. The 
surface normal at a point is also specified by the values 
ofp, q. Two tangents at one point means that the surface 
normal simultaneously has two different directions at 
the point, which is impossible for a smooth, non-self- 
occluding surface. Below, it is argued that an image 
can be perturbed in such a way that characteristic strips 
effectively must intersect in the image plane. The per- 
turbed image is then an effectively impossible one. 

As stated in section 2, the ensemble of image strips 
tilling out the image plane determines, and is equivalent 
to, a surface solution (figure 1). Thus, in a consistent 
solution, all image strips have neighboring, infinites- 
imally close strips with which they are never allowed 
to intersect. However, for general solutions of the char- 
acteristic strip equations (3), there is no reason why 
different characteristic trajectories should not intersect 
when projected into the image plane. These statements 
are valid for arbitrary illumination, and, for this reason, 
our impossibility results probably extend to general illu- 
mination. Below, for Bruss reflectance functions, we 
show that it is in fact easy to perturb an image so that 
neighboring trajectories do intersect. 

The Hamiltonian viewpoint, as discussed earlier in 
section 2, equates the trajectory of a characteristic strip 
with the motion of a point ‘particle’ in a potential, that 
is, a ‘particle’ moving in the image plane acted on by 
position-dependent but not time-dependent forces. The 
potential V represents nothing more than an encoding 
of the space-dependent forces acting on the ‘particles’ 
tracing out these trajectories. To cause two neighbor- 
ing trajectories to cross, one simply adds forces over 
some region along the trajectories pushing them toward 
each other. This can be done by introducing a local 
valley in the potential in a region of the image that lies 
in the path of the two neighboring trajectories. The 
valley should be oriented so that its long axis is parallel 
to the trajectories, with the valley floor in between the 
two trajectories. From equation (8)) the perturbation 
introduces an acceleration in the negative gradient 
direction, that is, in the downhill direction, of the per- 
turbation. Effectively, like marbles rolling along the op- 
posite slopes of a valley, the trajectories will feel the 

force of gravity, move downhill toward the valley floor, 
and therefore toward each other. If the valley walls are 
steep enough, both trajectories will reach the valley 
floor, and cross. 

If the original trajectories are chosen very close 
together in the image plane, the valley that induces them 
to cross can be very narrow. Also, the valley need not 
be deep, nor long, as long as it is steep over the actual 
path of the trajectories. This is so since the forces on 
the ‘particles’ tracing out the trajectories are given by 
the derivatives of the potential. Also, if the original tra- 
jectories are very close, not much of a perturbation is 
necessary to cause them to cross. Thus, the perturba- 
tion of the intensities necessary to induce crossing can 
be quite small, and restricted to a small image region. 
Probably, crossing can be induced by an arbitrarily 
small perturbation. 

The uniqueness results can be used to show that one 
can choose perturbations such that characteristic strips 
must cross in the image plane (at least in the generic 
case). Suppose that one of the singular points in the 
image is taken to be elliptical. As discussed in section 
7, the image strips connected to the point are uniquely 
determined as curves in the image plane, by Bruss’s 
theorem. (Only their direction alters depending on 
whether the singular point is a source or a sink.) Con- 
sider integrating the characteristic strips outward from 
the singular point, in the positive time direction if the 
point is a source, and in the negative time direction if 
it is a sink. This integration is uniquely determined. By 
introducing an intensity perturbation in the path of some 
of these strips, as described above, the strips can be 
induced to cross in the image plane. The intensity per- 
turbation can be confined to a small region at some dis- 
tance from the singular point, and the same perturba- 
tion will induce crossing regardless of whether the ellip- 
tical point is a source or a sink. Since the characteristic 
strips connected to an elliptical point are uniquely deter- 
mined, this crossing of trajectories cannot be avoided: 
the perturbed elliptical solution is not consistent. 

This procedure can be repeated for every singular 
point in the image. (We assume as before that the 
singular points are finite in number, and nondegenerate, 
as is generically the case.) For each singular point, the 
intensities can be perturbed in a different, small image 
region, such that for the elliptical solution around this 
point, the characteristic trajectories connected to it in- 
tersect in the image plane. Thus, for the perturbed im- 
age, since image strips are not allowed to cross in a con- 
sistent solution, no singular point can be consistently 
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interpreted as elliptical. In other words, any image 
containing a finite number of nondegenerate singular 
points can be modified by a small perturbation so that 
the surface solution can contain no elliptical singular 
points. 

As before, let us focus on images generated from ob- 
jects completely within the field of view. Then a sur- 
face solution which is closed, or in general position, 
is convex at the occluding boundary, and the surface 
point closest to the camera projects to a singular point 
in the interior of the image. This singular point must 
be a source. If the surface is taken to be concave all 
along the occluding boundary, so that its pose is ac- 
cidental, there must similarly be a sink in the image 
interior. Then, from the above, the perturbed image 
cannot correspond to any suface solution which is con- 
cave at the occluding boundary, or is in general posi- 
tion, or corresponds to a closed surjke. However, it 
does remain possible that a nongeneric solution exists, 
with all singular points saddles, and for which the sur- 
face must change from concave to convex at points 
along the occluding boundary. Whether these solutions 
can also be ruled out is not investigated further here. 
A surface that changes from convex to concave at the 
occluding boundary is a physically unreasonable solu- 
tion. The perturbed image is effectively impossible in 
the sense that these unreasonable solutions are the only 
ones possible. 

Characteristic trajectories depend continuously on the 
image intensities. The elliptical solutions around a 
singular point do as well (Palis & de Melo 1982). Thus, 
it is clear that if two image strips connected to an ellip- 
tical point cross, then slightly perturbing the image in- 
tensities will not affect this fact. Thus, a sufficiently 
small perturbation of an effectively impossible image 
will yield one that is also effectively impossible. Also, 
the characteristic trajectories depend continuously on 
the reflectance function. This is also true for the ellip- 
tical solutions around a singular point (Palis & de Melo 
1982). Again, sufficiently small modifications of the 
reflectance function will not uncross intersecting tra- 
jectories. Thus an effectively impossible image remains 
so under perturbations of the assumed reflectance 
function. 

Suppose that our conjecture above is valid, so that 
an infinitesimal perturbation is sufficient to induce tra- 
jectory crossing in any image flow of characteristic 
strips. Then, from the above, the class of effectively 
impossible images with crossed trajectories is stable 
under perturbation, while the images not contained in 

this class-the ‘possible’ images-can be perturbed 
infinitesimally so that the result is contained in this 
class. This implies that almost all images containing 
the complete limb are effectively impossible: the ef- 
fectively impossible images are a generic class among 
these images. 

These arguments are now illustrated with an explicit 
example. We consider the simple surface, 

z = x2 + lSy2 (34) 

The viewing and illumination directions are along the 
z-axis, and the surface is taken to be Lambertian. The 
point closest to the camera occurs at z = x = y = 0, 
and gives rise to a singular point in the image. This 
singular point is a source for the given solution. 

We will show that, assuming the singular point is 
elliptical, the characteristic trajectories connected to it, 
and uniquely determined by it, can be induced to cross 
in the image plane by a small, local perturbation of the 
intensity. The perturbation is chosen arbitrarily to be 
centered at (x, y) = (2.6, 2.6), at some distance from 
the singular point. Various sizes of the perturbation 
were tried; all induced crossing of the image strips. At 
the chosen center point, the image-strip tangent for the 
exact solution is parallel to (2, 3). Thus, the perturba- 
tion is chosen to be a valley whose long axis is parallel 
to this tangent direction. 

The unperturbed potential is 

v=; [d) (35) 

where I is the intensity. At the chosen center point, the 
unperturbed potential is approximately V = -44. The 
perturbation is of the form 

(36) 

Here xPar measures the displacement from the center 
point (2.6, 2.6) projected onto the long axis of the per- 
turbation, namely the (2, 3) direction. xPev measures 
the displacement projected onto the perpendicular 
direction. Explicitly, 

Xpar = 
2(x - 2.6) + 30, - 2.6) 

131’2 

x perp = 
-3(x - 2.6) + 20, - 2.6) 

13”2 
(37) 



Uniqueness in Shape from Shading 103 

Also, S gives the scale of the perturbation, and rPor 

and r,,, determine the size of the perturbation in the 
long axis and perpendicular directions, respectively. 
Note that the perturbation, and all of its derivatives, 
go to zero on the ellipse (from the inside): 

The perturbation is assumed to be zero outside this 
ellipse as well. Therefore, it is a local perturbation. This 
form of the perturbation was chosen since it is a C” 
function, with all derivatives vanishing on a bounding 
ellipse. As a result, the perturbed potential I/ + Al/can 
be differentiated as many times as the original poten- 
tial I! 

If the singular point at x = y = 0 is assumed to be 
elliptical, this uniquely determines the surface solution 
in a local neighborhood of the point, by Bruss’s theor- 
em. (Note: elliptical singular points should not be con- 
fused with the arbitrarily chosen elliptical region in- 
side which the perturbation is nonzero.) Then the char- 
acteristic strips can be uniquely extended from start- 
ing points near the elliptical point. The extension of 
a strip will differ from the exact solution only if it enters 
the perturbation region. Our strategy is therefore as fol- 
lows: we begin integrating the characteristic strip at a 
point prior to its entry into the perturbation region. 
More precisely, the starting point is chosen so that the 
characteristic strip connecting it to the singular point 
never enters the perturbation region. Therefore, the sur- 
face and its slope are uniquely determined at the start- 
ing point. They are the same as for the exact solution if 
the singular point is a source, and the negative of the 
exact solution if it is a sink. This provides the initial 
conditions necessary to begin integrating at this point. 

We find starting points as above such that the extended 
strip passes through the perturbation region. The influ- 
ence of the perturbation is as expected: the characteris- 
tic trajectories move toward the floor of the valley, which 
is located along the line passing through (2.6,2.6) in the 
direction (2, 3). Integrating several strips from different 
starting points, we verify that the perturbation does in 
fact cause these strips to cross. Again, since all these 
strips originated at the elliptical point, they are unique- 
ly determined, and their crossing can be avoided only 
if the singular point is assumed to be a saddle. 

Our results are illustrated in figures 28 and 29. In 
figure 28, characteristic strips integrated from a vari- 
ety of starting points are shown for the exact, unper- 

turbed solution. The integration accuracy is better than 
one part in 10”. In figure 29, the strips integrated from 
the same starting points are shown. The perturbation 
region is indicated by the darker lines, which repre- 
sent the long and short axes of the elliptical perturba- 
tion region. Before their entry into this region, the strips 
in figure 29 agree with those in figure 28. However, 
the effect of the perturbation is clearly to attract the 
trajectories toward the center of the perturbation region. 
As a result, the trajectories cross shortly after exiting 
this region. In this figure, S = 5, so that the maximum 
size of the perturbation is 1.8, much less than the unper- 
turbed potential magnitude of 44. The dimensions of 
the perturbation are r,,, = 0.4 and r,, = 0.1. The 
smallest perturbation tried had S = 0.5, rpar = 0.04, 

and r,,, = 0.01. This also produced trajectory cross- 
ing, although on a finer scale. These experimental 
results support our conjecture than trajectory crossing 
can be achieved using an infinitesimal perturbation. 
Note also that a differently shaped perturbation, tailored 
so that the gradients are steepest precisely along the 
paths of some characteristic trajectories, could be more 
efficient in inducing trajectory crossing. 

L 
Fig. 28 Characteristic strips in the image plane derived by numerical 
integration, for the unperturbed image described in the text. The star- 

ting points are at the lower-left, at y = 1.84, and x = 1.95,2.0, 2.5, 
2.1, 2.15. The integration is halted when y > 4. 
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fig. 29 Characteristic strips in the image plane derived by numerical 

integration, for the perturbed image described in the text. The en- 
hanced crossed lines specify the position and extent of the intensity 

perturbation. Starting points for the strips and the scale of the display 
are the same as for the previous figure. Because of the crossing of 

the image strips, the singular point in the perturbed image cannot 
be interpreted consistently as elliptical. 
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Note 

1. That is, no twice-differentiable solution exists. A generalized sur- 

face solution-the viscosity solution-always exists, but is not 
necessarily differentiable everywhere (Elliot 1987). 
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