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Abstract. Massively parallel processors have begun using commodity operating systems that support demand- 
paged virtual memory. To evaluate the utility of virtual memory, we measured the behavior of seven shared-memory 
parallel application programs on a simulated distributed-shared-memory machine. Our results (1) confirm the 
importance of gang CPU scheduling, (2) show that a page-faulting processor should spin rather than invoke a 
parallel context switch, (3) show that our parallel programs frequently touch most of their data, and (4) indicate 
that memory, notj ust CPUs, must be "gang scheduled." Overall, our experiments demonstrate that demand paging 
has limited value on current parallel machines because of the applications' synchronization and memory, reference 
patterns and the machines' high page-fault and parallel context-switch overheads. 
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1. Introduction 

Demand-paged  virtual memory  is a ubiqui tous feature of high-performance workstat ions 
but has been rarely supported on massively parallel supercomputers.  Tradit ional  paging 

systems "automatical ly" manage  both main  memory  and CPU util ization by (1) a l lowing a 
program to execute with only part of  its code and data in main  memory  and (2) executing 
other programs when the first mus t  fetch miss ing code or data from disk. Conversely, 

parallel supe rcompute r s - - fo r  example,  the Think ing  Machines  CM-5 and Intel Touchstone 
D e l t a - -have  generally required that programs fit in physical memory.  By e l iminat ing  the 

uncertain overhead of  demand  paging,  these systems maximize  processor uti l ization but  
require programmers  to explicit ly manage  memory.  

Recently, however, massively parallel supercomputers  have begun runn ing  modified 

workstat ion operating systems: the Intel Paragon and Convex SPP-1 run modified versions 

of  Mach OSF/1 AD and the Meiko CS-2 runs a modified version of Solaris. Furthermore,  

clusters of workstations are emerging  as increasingly popular  alternatives to dedicated par- 
allel supercomputers  [3, 19, 7]. Parallel applications on these systems must  coexist  with 
the operating system's  demand-paged  virtual memory.  

* This work is supported in part by NSF Presidential Young Investigator Award CCR-9157366; NSF Grants MIP- 
9225097, CCR-9100968, and CDA-9024618" Office of Naval Research Grant N000 ]L4-89-J- 1222; Department of 
Energy Grant DE-FG02-93ER25176; and donations from Thinking Machines Corporation, Xerox Corporation, 
and Digital Equipment Corporation. 
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In this paper we examine the performance of seven shared-memory scientific applications 
and argue that demand paging has limited value on distributed-shared-memory parallel com- 
puters. Running multiple programs that compete for memory on the same set of processor 
nodes is likely to result in unsatisfactory levels of performance. Furthermore, even when 
run by themselves, most of our applications show dismal performance unless nearly their 
entire data set resides in physical memory. The traditional benefits that paging provides 
on uniprocessors are diminished by the interactions between (1) the CPU scheduling disci- 
pline, (2) the synchronization patterns within the application programs, (3) the overheads 
of context switching and paging, and (4) the page reference patterns of these applications. 

Our results have specific implications for both CPU and memory scheduling policies: 

Our results confirm the importance of gang CPU scheduling for parallel programs, in 
which all tasks of a parallel job are scheduled and descheduled en masse. Without gang 
scheduling, the performance of five of seven applications degrades badly. 

A page fault should not cause a parallel context switch (i.e., a gang-scheduling opera- 
tion). The high parallel context-switch overhead on current massively parallel proces- 
sors (e.g, the CM-5) is greater than the cycles lost by spinning. This is especially true 
when paging to a memory server [10] or fast paging device rather than a traditional 
disk. 

The parallel programs we studied frequently access most of their data. All seven 
applications slow down by at least a factor of two--three of them slow down by more 
than a factor of eight--when we constrain the available physical memory to 90% of the 
data set size. 

Parallel computers require gang memory scheduling, not just gang CPU scheduling. 
Even a single memory-constrained node can degrade performance by more than a 
factor of two. 

The frequency of (blocking or spinning) synchronization is key to determining the appro- 
priate CPU and memory scheduling policies. Coarse-grained parallel applications--those 
with little synchronization--can be scheduled exactly as sequential tasks [12]. As syn- 
chronization grows more frequent, however, the impact of delaying any one node increases 
dramatically. A page fault on one node can cause cascading delays on other nodes. Our 
results suggest that operating systems for massively parallel machines can provide virtual 
memory, but should determinedly attempt to prevent fine-grained parallel applications from 
making use of it. 

In the next section we describe our simulation testbed, target system, and benchmarks, 
and in Section 3 we analyze the performance of three CPU scheduling disciplines. In 
Section 4 we evaluate the performance of demand paging as we constrain the available 
physical memory and examine the applications' page reference patterns to explain their 
poor performance. We discuss the implications of these results in Section 5 and summarize 
our results and conclusions in Section 6. 
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2. Methodology 

The performance studies in this paper are based on a hypothetical distributed-shared- 
memory (DSM) system running seven shared-memory programs. The benchmark pro- 
grams are scientific applications drawn from a variety of sources, including the Stanford 
SPLASH benchmarks [16], the NAS benchmarks [4], and the Schlumberger Corporation. 
We simulated the execution of these programs on our hypothetical DSM system using the 
Wisconsin Wind Tunnel [14]. 

2.1. A DSM Machine Model 

Our target hardware system contains 32 processing nodes, each with a 33-MHz SPARC 
CPU, 256-Kbyte cache (four-way associative, 32-byte blocks, random replacement), and 
the local portion of the distributed shared memory. The nodes are connected by a point-to- 
point network (100-cycle constant latency) and coherence is maintained through a full-map 
directory protocol (i.e., d i r n N B  [ 1]). The address space is globally shared, with 4-Kbyte 
shared pages assigned to nodes round-robin. 

On a page fault the target operating system selects a victim page using the Clock [5] 
algorithm. To maintain inclusion, the system invalidates all cached blocks from the victim 
page. The page-fault service time includes a fixed 1-ms overhead on the page's home 
node to model kernel overhead, the time to flush the victim's cache blocks, and the time to 
fetch the referenced page from the paging device. The home node resumes execution after 
initiating the page transfer and only processors that actually need the missing data stall or 
context-switch. 

2.2. Benchmarks 

Our experiments used a suite of seven benchmark applications, summarized in Table 1. Of 
the seven, Barnes, Locus, Mp3d, and Ocean are from the SPLASH benchmark suite [16]. 
Appbt is a locally parallelized version of one of the NAS Parallel Benchmarks [4]. Laplace 
was developed at Wisconsin [17], and Wave is a proprietary code from the Schlumberger 
Corporation. The last column in Table 1 contains the total number of data pages touched by 
the applications. All applications use a locally modified version of the PARMACS macro 
package and assume a process-per-processor computation model (i.e., processes are always 
scheduled on the same processing node). 

2.3. Simulation Environment 

The Wisconsin Wind Tunnel (WWT) [14] is a parallel, discrete-event simulator for cache- 
coherent, shared-memory multiprocessors that runs on a Thinking Machines CM-5. By 
exploiting similarities between the hypothetical target system and ~he CM-5 host, WWT 
permits simulation of large applications. 
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Table 1. Benchmark programs. 

Application Description Data 
Name (Input Data Set) Pages 

Appbt 

Barnes 

Laplace 

Locus 

Mp3d 

Ocean 

Wave 

Computational fluid dynamics 
(32 x 32 x 32, 3 iterations) 5861 
Hierarchical Barnes-Hut N-body 
(8192 bodies, 10 iterations) 477 
Boundary integral N-body problem 
(256 bodies, 20 elem./body, 10 iter.) 1735 
VLSI standard cell router 
(Primary 1 .grin) 671 
Monte Carlo rarefied fluid flow 
(32000 molecules, 50 iterations) 522 
Column-blocked 2D hydrodynamics 
(384 x 384, 1 day) 7613 
3D acoustic finite difference 
(48 • 48 x 48, 20 iterations) 2711 

To simulate a paging device, we partition the CM-5's  physical memory into two compo- 
nents: Logical Main Memory (LMM) and Logical Disk (LD). On a page fault the requested 
page is moved from LD to LMM and the victim page is moved from LMM to LD. 

3. Scheduling 

The goal of this study is to evaluate the utility of demand-paged virtual memory for parallel 
processors. In uniprocessors the two primary benefits are improved physical memory and 
CPU utilization. Paging improves the efficient use of memory by allowing processes to run 
with only a subset of  their code and data resident in main memory. Paging improves CPU 
utilization by permitting a higher degree of multiprogramming, achieved by switching 
to another process when one process incurs a page fault. In this section we evaluate 
the feasibility of the second "benefit"--context switching on page faults--for distributed- 
shared-memory multiprocessors. 

3.1. CPU Scheduling Policy 

The CPU scheduling policy is central to this evaluation. Synchronization between the indi- 
vidual processes that make up a parallel job can result in one processor's delay (e.g., a page 
fault), causing cascading delays on other processors. Scheduling processors independently 
can magnify these delays by descheduling a process involved in the synchronization. 

To address this problem, some previous studies have argued that parallel machines should 
employ gang scheduling, in which all processing nodes simultaneously switch to the same 
parallel job [9, 11, 13]. Others have argued for space-sharing [8], in which processing nodes 
are dedicated to a parallel program until it completes. Space sharing can also be thought 
of  as the limiting case of  gang scheduling, with the scheduling quantum set to infinity. 
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Figure I. Effects of serial task interference on parallel execution time. 

Our view is that future parallel systems must support time-sharing, albeit with large (e.g., 
1-second) scheduling quanta. 

To evaluate the need for gang scheduling in our environment, we used the WWT testbed 
to simulate the effect of sharing non-gang-scheduled CPUs with some other process. In 
this experiment, each CPU spent half of its time executing and half its time spinning (to 
approximate a sequential process's execution). Each node alternates periods of execution 
(randomly generated, exponentially distributed with a mean of 100 ms) with periods of 
spinning (100-ms fixed delay). These results are optimistic, since we ignore both context 
switching overhead and cache pollution. 

In Figure 1 we show the normalized completion times of the seven applications for this 
experiment. In the absence of synchronization, each program should take roughly twice 
as long to complete, as each node spins half the time (on average). Our results show that 
for most applications, performance degrades significantly: five of seven applications slow 
down by more than a factor of four, and three slow down by more than a factor of eight. 
The execution times of these application pro~ams--running on a real system without gang 
scheduling--will be even larger because of context-switch overhead and cache pollution. 

3.2. Page-fault Scheduling Policy 

The synchronous behavior that motivates gang scheduling also has ramifications for demand 
paging. When a page fault occurs, the operating system must determine whether to schedule 
another process or to simply spin waiting for the page transfer to complete. In this section 
we consider three policies that determine which action to take in the event of a fault: 
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SPIN: the faulting node spins until the page transfer completes. 

LUG: the faulting node switches to a nonparallel process. 

PCS: all nodes synchronously switch to another parallel program. 

Under the SPIN policy the faulting node incurs the full latency of the page transfer. Re- 
mote nodes may also be delayed if they attempt to synchronize with the faulting process. 
Nonetheless, this policy is best if our objective is to minimize the parallel job's total execu- 
tion time (i.e., its latency). The node's cache state is unperturbed, and the faulting process 
resumes immediately after the page transfer completes. However, because the faulting 
node's CPU is not used for the entire page-fault service time, this policy seems unlikely to 
provide the highest system throughput. 

The LUG (local-under-gang) policy attempts to improve system throughput by having 
only the faulting node context-switch to a local sequential job. LUG scheduling enables the 
faulting node to overlap useful computation with the page transfer. A local context switch 
on current microprocessors takes from 100 ps to 1 ms, leaving most of the service time 
free for computation. Although the LUG policy improves system throughput, it tends to 
increase the execution latency of the parallel job. The "local" process causes cache pollution 
by displacing entries from the node's cache and TLB (translation lookaside buffer). This 
results in a cold-start transient and degraded performance when the parallel process resumes. 

The PCS (parallel-context-switch) policy attempts to improve system throughput by hav- 
ing all processing nodes synchronously switch to a new parallel program when one node 
incurs a page fault. The scheduler does not attempt to resume any process in the parallel 
program until after the page transfer completes. The PCS policy is closest to the traditional 
uniprocessor policy and eliminates the synchronization delays that both the SPIN and LUG 
policies potentially incur. However, it has the drawback of incurring the high overhead of 
a parallel context switch on every page fault. 

In the remainder of this section, we focus on evaluating the tradeoffs between the SPIN 
and PCS policies. The efficacy of the LUG policy depends highly on its having a mix of 
parallel and sequential jobs and on the cache and TLB "footprint" [18] of the scheduled local 
process. While we believe such hybrid workloads may become common, characterizing 
their overheads is outside the scope of this paper. 

The relative throughputs of the PCS and SPIN policies hinge on two factors: (1) the 
average overhead of a parallel context switch (Tpcs) and (2) the average effective overhead 
of a page fault (Tepy) under the SPIN policy. The total execution time under the PCS policy 
TPCS ~ is simply 
- pag ~ng 

'TPCS = Tnopaging q- i~pfTpc s, ( l )  -pagzng 

where Tnopaging is the computation time in the absence of page faults. We assume that 
Tpcs includes the overhead of reloading the cache and TLB state after each parallel context 
switch and that page faults do not simultaneously occur on multiple nodes. 

Under the SPIN policy, the total execution time" (T/aging)SPIN IS" 

TpSPIN aging = Tnopaging + IVpfTepf" (2) 
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In a uniprocessor the effective page-fault overhead is simply the time ~o service a local page 
fault (Tps); the entire page-fault service time adds to the total execution time. On a parallel 
processor, however, the effective overhead depends upon the frequency of synchronization. 
In a completely synchronous system (e.g., the MasPar MP-2) each page fault would delay 
every node for the full page-fault service time (T~pf = Tpf). Conversely, if there were 
no synchronization and page faults were evenly distributed over all the processing nodes, 
then each page fault would increase execution time by roughly T~pf = TpS/P, where P is 
the number of processing nodes. Real programs on our target distributed-shared-memory 
system will fall somewhere in between these two extremes. 

We characterize the effective page-fault overhead by Fpf, the (average) fraction of page- 
fault service time that is added to a parallel program's execution time: 

Fps = Te~s/Tps. (3) 

Because Fpy depends upon the frequency and type of synchronization present in an appli- 
cation, we determine it experimentally using the WWT testbed. In this experiment, each 
simulated processing node periodically invalidates a virtual memory page, to approximate 
the effect of having that page frame assigned to another process. Pages are selected for 
invalidation using the Clock [5] algorithm; pages that have not been referenced recently 
(as calculated by Clock) are candidates for invalidation. Pages are invalidated at random 
times (exponential interarrival time distribution with a mean of 512 ms). We timed the 
execution of each program in two ways. First, we simulated the program without causing 
any page invalidations to m e a s u r e  Tnopaging. Then we simulated the program with page 

T S P I N  We calculate Fpf as invalidations (as above) using the SPIN policy to measure _ paging. 
follows: 

Fpf  ~ ( T  S P I N  ( 4 )  

where Npf is the number of page faults that occur during an execution. 
Figure 2 is a graph of the values of FpS for the seven applications. Fpf ranges from as 

low as 0.12 for Appbt and Ocean to 0.55 and 0.57 for Barnes and Mp3d, respectively. Fpf 
averages 0.30 over all applications, indicating that a page fault adds roughly one-third of 
its service time to the total execution time, on average. 

This estimate of Fpi helps us analyze the relative benefits of the SPIN and PCS policies. 
For the PCS policy to provide significant improvement over the SPIN policy, the round-trip 
overhead of the parallel context switch must be significantly less than Tepf: 

Tp. << FpsT~f. (5) 

Assuming average disk service times of 16 ms and using the mean measured Fpf (just 
under one-third), the parallel context-switch time must be less than approximately 5 ms. 
Unfortunately, current massively parallel processors incur substantial overhead for a full 
parallel context switch. For example, the Thinking Machines CM-5 incurs a minimum 
overhead of 4 ms, with typical times closer to 10 ms [15]. Under these assumptions, the 
SPIN policy is clearly superior--for both throughput and latency--to the PCS policy. 
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Figure 2. Mean values of Fpy under SPIN policy. 

4. Performance of Virtual Memory 

On a uniprocessor demand-paged virtual memory "automatically" manages physical mem- 
ory and allows processes to execute with only a subset of their code and data pages resident 
in memory. Paging both improves memory utilization and facilitates execution of pro- 
grams whose data sets are larger than the available physical memory. However, in this 
section we show that this latter "benefit" does not apply to distributed-shared-memory mul- 
tiprocessors. Specifically, the performance of our parallel applications degrades rapidly 
when physical memory is constrained. The poor performance results from two factors: (1) 
the high overhead of page faults caused by synchronization delays and (2) the pernicious 
reference patterns of these parallel applications. 

The first factor follows directly from our results in Section 3. The synchronization 
inherent in these parallel applications makes page faults ten times more expensive than on a 
uniprocessor, because, on average, each page fault effectively stalls all 32 processing nodes 
for one-third of its service time. 

In the remainder of this section we examine the second factor. First, we quantify the 
performance of these applications when we constrain the available physical memory. Then 
we analyze the working set behavior and memory access patterns of these applications to 
understand why paging performs so poorly. 
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Figure 3. Constrained-memory performance. 

4.1. Simulated Application Performance 

To evaluate the performance impact of demand paging, we simulated our benchmark appli- 
cations on W W T  using the Logical Main Memory (LMM) and Logical Disk (LD) exten- 
sions. These experiments assume the SPIN scheduling policy discussed above and vary the 
LMM size as a fraction, denoted c, of the total data set size. The data set size, denoted .,\r, is 
simply the number of unique 4-Kbyte data pages referenced by an application (summarized 
in Table 1). We assume physical memory is uniformly distributed across processing nodes, 
so the per-node LMM size is simply c x N/P, where P is the number of processing nodes. 
The metric of  interest is slowdown, the execution time with constrained memory normalized 
by the execution time with unconstrained memory (c = ec). 

Figure 3 shows the slowdown as c decreases from 1.0 to 0.75 for a page transfer time of 
16 ms (note that the y-axis uses a logarithmic scale). Our first observation is that programs 
running with c = 1.0 are noticeably slower than programs running with unconstrained 
physical memory. This occurs because while shared pages are distributed round-robin, 
private pages are allocated locally. Nodes with more private data will have morepages than 
physical frames and thus may incur numerous page faults. 

To quantify the memory imbalance, we measured the application performance for values 
of  c > 1.0. Local memory partitions of up to 2.5 times as large are needed to eliminate the 
imbalance effect. Mp3d and Wave showed little slowdown at c = 1.25, Laplace at c = 1.5, 
Locus at c = 2, and Barnes at c = 2.5. 

These results show that performance degrades rapidly when a parallel application lacks 
"sufficient" physical memory, that is, when c drops below an application-specific critical 
value. All seven applications slow down by at least a factor of two when physical memory 
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is constrained to 90% of their data set size (c = 0.9). Further decreasing c to 0.75 has only 
a moderate effect on five applications, but Barnes and Wave increase their slowdowns to 52 
and 32, respectively. 

We also performed a second experiment in which memory was constrained on only a single 
node, chosen at random. The remaining 31 processing nodes had essentially infinite physical 
memory. In Figure 4 we show that even a single memory-constrained node significantly 
degrades performance. Four of  the applications slow down by at least a factor of  two. 

4.2. Application Working Set Behavior 

In the next two sections we examine the memory reference patterns of  the applications to 
identify why demand paging performs poorly. We first analyze the applications using the 
Working Set model of  program behavior [6], which describes memory access patterns in 
terms of localities. A program's working set at time t with parameter ~- is defined as the 
set of  pages touched by the program during the last ~- time units (t - r, t). When applied 
to demand paging, the basic philosophy of Working Set is that "the past is a good predictor 
of  the future." In other words, pages that have been recently referenced (i.e., are in the 
working set) are likely to be referenced in the near future and should therefore be kept 
resident. Page replacement algorithms based on this philosophy model have been effective 
on workstations and small multiprocessors. 

To measure the working set behavior of  our benchmark applications, we used W W T  to 
collect page reference information. Each processing node tracks the set of pages referenced 
within the last v. At each multiple of  ~-, we take the union of these sets (eliminating 
duplicates) to compute the global working set. Figure 5 shows how the global working set 
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size varies over the programs '  executions for three values of ~- ('1- -- {32 ,128 ,512}  ms). 
The value T is usually a small  mult iple of the page-fault  service time; in these experiments  
r spans a much greater range. Figure 5. Figure 6, and Figure 7 are also plots of the number  
of pages referenced since the program began execution (infinite "/-) and the total number  of 
pages that will be referenced (dashed line). 
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With the graphs in Figure 5, Figure 6, and Figure 7, we show two important results: that 
the working set size of most applications grows rapidly as a function of ~- and that many 
of  the applications touch a large fraction of their total data set even for relatively small 
values of  r. If the rate of adding new pages to a program's working set is low, indicating 
high locality in its reference stream, we would expect the working size to grow to some 
reasonable value and then level off as 7- increases. The lack of temporal locality in our 
application programs causes the global working set size to steadily grow as the parameter 
v grows. Even when r is large (512 ms, which is small relative to the execution time of 
the program), the working set sizes have either reached the data set sizes or are still rapidly 
increasing. In most cases, working set sizes for large values of 7- follow the cumulative 
page curve closely. 

These results indicate that demand paging will not be effective for our parallel benchmarks. 
Our applications exhibit little locality and tend to frequently access large portions, if not 
all, of  their data. The Working Set model indicates that nearly all of the application's data 
must be kept resident in memory. 

4.3. Application Reference Behavior 

To further understand the poor paging behavior, we examined the memory reference pat- 
terns of these applications. Barnes, Wave, and Mp3d exhibit the worst performance under 
constrained memory. In Figure 5 we see that Barnes touches 70% of its data set every 32 
ms and its entire data set every 2 seconds. The latter corresponds to the iteration time for 
this input. In each iteration Barnes inserts "bodies" into an oct-tree that maintains their 
positions in three-space, then uses a hierarchical algorithm to compute the forces between 
the bodies. Thus each iteration references all bodies and all cells used to represent the 
oct-tree. Wave touches its entire data set even more frequently than Barnes: more than 
90% of its data pages are touched every 128 ms. This follows since Wave is essentially a 
three-dimensional stencil computation and touches its entire data set in each phase of every 
iteration. Mp3d iterates over its molecules, calculating their new positions and moving 
them to new space cells as needed. This results in its touching nearly half its data pages 
every 32 ms and more than 90% with a r of 128 ms. Furthermore, all three applications 
frequently use ban'iers to synchronize their internal phases. This fiequent synchronization 
explains the high values of Fpf observed in Section 3. 

Laplace and Locus have relatively long initialization phases that exhibit good locality, 
followed by less well-behaved compute phases. Laplace's working set remains less than 
20% during the initialization of  the primary matrix A (which dominates Laplace's data set). 
During the computation phase the algorithm iteratively solves the equation X = AX + B, 
touching most of the primary matrix in each iteration. Laplace also exhibits the most severe 
slowdown when there are just enough page frames to hold the data set (e = 1.0). The 
slowdown is caused by a highly unequal distribution of  private data across the nodes, which 
causes some nodes to fault. 

Locus exhibits similar two-phase behavior, but touches more of  its data set in the second 
(compute) phase. Locus searches a VLSI standard cell, trying to find the lowest cost route 
for each wire. It touches roughly half its pages every 32 ms, and 75% every 128 ms. 
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Furthermore, Locus has more synchronization than Laplace, resulting in a higher value of 
Fpf: Locus has an Fpf value of 0.31 versus 0.19 for Laplace. 

Appbt and Ocean behave similarly. Matrices are the major data structures in both ap- 
plications: 5 three-dimensional matrices in Appbt and 25 two-dimensional matrices in 
Ocean. Both applications touch essentially their entire data set in each iteration, yet exhibit 
reasonable short-term locality. Appbt touches less than 15% every 32 ms during the first 
phase of each iteration, during which it computes the block tridiagonal matrix. The second 
phase, Gaussian elimination, is less well behaved, yet still touches on~ly half the pages every 
128 ms. Ocean achieves its locality by referencing its matrices sequentially: each phase 
produces a matrix that is used as input to the next phase. This locality is one reason Appbt 
and Ocean exhibit relatively little slowdown due to constrained physical memory, despite 
touching their entire data sets each iteration. A second reason is minimal synchronization. 
Synchronization in these programs is dominated by barriers between phases within an itera- 
tion. When all processors have equally constrained memory, page faults on different nodes 
tend to overlap. The relatively low values of Fpf in Figure 2 corroborate this observation. 

5. Discussion 

The results of our experiments show that demand paging offers little benefit for distributed- 
shared-memory machines. The performance of our parallel shared-memory application 
pro~ams degrades rapidly at the onset of paging; synchronization dependences cause a 
page fault on one processing node to delay computation on other nodes. The obvious way 
to prevent propagation of these page-fault delays is to perform a parallel context switch 
on each fault. However, the overhead of this operation is so high on current parallel 
machines that it is actually more efficient to simply spin. Coupled with these applications' 
large working set requirements and the high overhead of servicing page faults, our results 
suggest that demand paging should be avoided for parallel applications. 

These results have important implications for the operating systems of parallel machines. 
Specifically, rather than managing each processor node as an independent workstation, 
the operating system should manage physical memory as a global resource. Furthermore, 
simple schemes that allocate fixed memory partitions on each node are unlikely to be 
effective, since many applications have unequal requirements for private pages. While 
there have been numerous proposals to manage processors globally [2], we believe these 
are the first results indicating the importance of doing so for physical memory. 

Demand paging becomes more attractive for parallel applications if either the page-fault 
service time (Tpf) or parallel context-switch overhead (Tpcs) decreases. A lower page- 
fault service time would reduce both the magnitude of any synchronization delays and the 
frequency of these delays. Tpf could be reduced using standard techniques such as faster 
disks or dedicated paging memory (e.g., "solid-state disks"). Alternatively, Iftode et al. 
[10] have proposed dedicating some processing nodes as "memory servers," which use 
their physical memories as fast paging stores. Such an approach could make use of the 
memory of idle or underutilized workstations in a network or cluster of workstations. 

In Figure 8 we present the results of an experiment we conducted to test this approach. 
The page transfer time was decreased to 400 #s, down from 16 ms used in the earlier 
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experiments. As expected, the slowdowns from constraining main memory size decreased 
dramatically. The worst slowdown, which resulted from running Barnes with c = 0.75, 
decreased from a factor of 52 to 4. Most of the applications slowed down by less than a 
factor of two. These results suggest that--for these applications--network memory servers 
reduce the paging overhead enough to make virtual memory practical for parallel machines. 

Faster parallel context switches would allow useful work to be overlapped with the page- 
fault service time. This would increase system throughput, at the expense of delaying 
the completion of the parallel job. Decreasing the overhead of parallel context switches 
requires hardware support to allow the faulting node to quickly interrupt all other processors 
and to virtualize the network. However, even the CM-5--which has support for both--is 
inefficient. 

Interestingly, these two improvements have opposite implications for the appropriate 
action to take on a page fault: lower service latencies support the SPIN (or LUG) policy, 
while lower parallel context-switch overheads support the use of the PCS policy. 

While this work studies shared-memory applications, the concepts are applicable to fine- 
grained message-passing systems as well. Message-passing versions of these parallel sci- 
entific applications will have similar synchronization and communication characteristics. 
Thus we believe our results apply, at least qualitatively, to these other systems. 

6. Conclusion 

Demand-paged virtual memory attempts to optimize both CPU and physical memory uti- 
lization. The tradeoffs, which are well known for uniprocessors, are not nearly so clear for 
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the next generation of parallel processors, which will be built of workstation-like nodes and 
run commodity operating systems. 

In this paper we evaluated the feasibility of demand paging for such systems. We first 
enumerated and evaluated several CPU scheduling policies. As expected, we found that the 
fine-grained synchronization in our parallel applications makes gang scheduling necessary. 
Furthermore, the obvious solution of context-switching all nodes to a new parallel job is 
ineffective because of the high overhead of parallel context switches on current machines. 
Instead, we found it more efficient to simply spin until the page fault completes. We also 
considered, but did not evaluate, a third policy (LUG) that executes a sequential job on the 
faulting node. This policy has significant potential if the workload consists of a mix of 
parallel and sequential jobs. 

Second, we analyzed the efficacy of demand paging for our applications as the available 
physical memory is constrained. All seven applications slow down by at least a factor of 
two--three of them by more than a factor of eight--when the available physical memory 
is reduced to 90% of the data set size. We show that this behavior results from the large 
working sets of these applications, which frequently touch their entire data sets, and fine- 
grained synchronization. 

We conclude from these results that operating systems for massively parallel machines 
can provide demand-paged virtual memory, but should schedule processors and memory 
to minimize paging. In short, operating systems should gang-schedule processors and 
memory. 
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