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Abstract. Most one-dimensions models of Now within vegetation canopies are based on horizontaiIy 
averaged flow variables. This paper formalizes the horizontal averaging operation. Two averaging 
schemes are considered: pure horizontal averaging at a single instant, and time averaging followed by 
horizontal averaging. These schemes produce different forms for the mean and turbulent kinetic energy 
balances, and especially for the ‘wake production’ term describing the transfer of energy from large-scale 
motion to wake turbulence by form drag. The.differences are primarily due to the appearance, in the 
covariances produced by the second scheme, of dispersive components arising from the spatial corre- 
lation of time-averaged flow variables. The two schemes are shown to coincide if these dispersive fluxes 
vanish. 

1. Introduction 

The airflow within and just above a vegetation canopy is strongly three-dimensional, 
because it is mechanically and thermally influenced by the complex geometry of 
the canopy element array. Nevertheless, a one-dimensional framework is always 
used in both theoretical and experimental studies of the vegetation-atmosphere 
interaction. An operation of horizontal averaging is therefore implicit in all such 
theories. Experimentalists are usually forced to assume that flow properties 
measured at one point are equal to those of the horizontally averaged flow field. 

The horizontal averaging operation is important because it must account for the 
appearance, within a one-dimensional framework, of various inherently three- 
Dimensions canopy effects: form drag, viscous drag, property emission or absorp 
tion, and the generation of wake turbulence at length scales determined by the 
canopy elements. Wilson and Shaw (1977) pointed out that the last of these effects 
is incorrectly described by the traditional approach of introducing form drag as an 
extra body force term in the momentum equation: such a term suppresses turbulent 
kinetic energy (TKE) within the canopy, whereas the effect of form drag is to convert 
mean kinetic energy (MICE) and large-scale TKE to TKE at element scales. Part 
of the inertial eddy cascade process is thereby short-circuited. Wilson and Shaw 
suggested that ail these canopy effects can be correctly described, without recourse 
to additional appended terms, by properly horizontally averaging the conservation 
equations. They offered two horizontal averaging schemes: in the first, the instant- 
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aneous flow field is horizontally averaged over a plane large enough to eliminate 
variations due to both the canopy structure and the largest length scales of the 
turbulent flow. In the second scheme, the three-dimensional flow in the canopy is 
first time-averaged in the normal way, and then averaged horizontally over a plane 
large enough only to eliminate variations in canopy structure. We will call these 
schemes I and II, respectively. Under the usual assumption of a uniform, level 
canopy above which the flow is stationary and horizontally homogeneous, both 
schemes lead to well-defined, time-independent results. Wilson and Shaw asserted 
that the results are identical. 

This paper formalizes the horizontal averaging operator and its properties, and 
then considers the effect of both averaging schemes on the conservation equations 
for mean quantities and second moments in a canopy flow. The schemes are shown 
to produce different results at second order, in a way which makes explicit the 
assumptions involved in a one-dimensional theory, and which helps to clarify the 
nature of wake influence on canopy flow. 

2. Properties of the Horizontal Averaging Operator 

Let angle brackets denote the horizontal average of a flow variable, and double 
primes the departure therefrom; thus, the velocity field may be written LQ(X, t) = 
(ui) + u;‘(x, t). If the flow is stationary, (ui) is independent of t and depends only 
on the vertical coordinate z, provided the averaging area is large enough. Single- 
point time averages, and fluctuations therefrom will be respectively denoted by 
overbars and single primes, so that ui(x, t) = I&(X) + u;(x, t). [The position vector 
will be denoted according to convenience, by any of three representations: xi = 
x = (x, y, z). Similarly, the velocity vector is either ui or (u, u, w). The mean wind is 
aligned with the x-axis.] 

The formal definition of the horizontal average is 

(Y) = f, ‘I’(x) dx dy 
R 

(1) 
. 

where Y is a scalar field defined in the air but not at points occupied by canopy 
elements, and A is the area of a region R of the xy plane. Within a canopy, R is 
multiply connected because it is intersected by plant parts (see Figure 1). 

This operator satisfies all but one of the commutation properties required of a 
turbulence averaging operator (known as the Reynolds conditions; see Monin and 
Yaglom, 1971, p. 207). The exception concerns the commutation of the horizontal 
averaging and horizontal spatial differentiation operators, which is not always 
assured within the canopy. A general rule is: ij Y is constant at the air-element 
interjbces, then horizontal averaging and spatial differentiation commute, so that 
(dY/(?Xi) = (3(Y)/f3Xi cf or i = 1, 2). Otherwise, they do not commute; in particular, 
(i3y’/8xi) # 0. To demonstrate this, consider an averaging region R (part of a 
horizontal plane within the canopy) with a rectangular outer boundary C, which 
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Fig. 1. A horizontal plane within the canopy, showing the averaging region R 

intersects no plant parts, and a series of inner boundaries Ci at the air-element 
interfaces (see Figure 1). Without losing generality, we may examine only the 
horizontal average of aY”/ax. By Green’s theorem and Equation (1) 

(g) = ;ljgdxdy = -#I”’ dy + $5”’ dy]. 
R c- ci 

(4 

The integral around C, vanishes because of ihe overall homogeneity of the flow, 
but those around Ci vanish only if ‘3”’ is constant at the interfaces. 

Some simple examples may clarify this. First, consider the time-averaged pressure 
field for the flow over and about a series of impermeable fences lying across the wind 
(see Figure 2). A pressure differential exists across each fence because form drag 
takes place there; therefore, in the space between fences, +/ax = @“/ax > 0. 
A horizontal average (within the fluid only) gives (&Y/ax) > 0. However, 
a@‘)/ax = 0 by definition, so the operators are non-commutative. 

Wind - 

Height at which 

Fig. 2. Schematic pressure field about a series of impermeable fences lying across the wind. 
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A second opposite example is that of the first spatial derivative of the velocity 
field. Consider an ordinary plant canopy: the no-slip condition ensures that ui = 0 
at element interfaces, so u:’ = ui - (ui) is constant there. First-order spatial 
differentiation and horizontal averaging therefore commute for velocity (and, 
similarly, for higher velocity moments), so that 

i?uj & au; i3(Ui) au!’ au; 
(7Xi dXi i3Xi JX, ?Xj = q = O (3) 

by the continuity condition for an incompressible fluid. 
A third important case is the Laplacian of the velocity field, of which the term 

Z28/i?y2 is representative. By considering a typical element consisting of a vertical 
flat plate parallel to the mean flow. it is clear that 

because &lay is not constant at the element interface. (In this example &i/ay is 
oppositely signed on opposite sides of the plate; see Figure 3). Hence Laplacian 
and horizontal averaging operators do not commute for velocity. 
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Fig. 3. Schematic field of ii about a vertical flat plate parallel to the mean flow. 

3. The Equation of Motion 

In the absence of Coriolis forces and buoyancy effects, both of which we ignore 
for simplicity, the equation of motion for flow in and above the canopy is the 
Navier-Stokes equation 

PU. -2 + ai. zz --A + vv2Ui 
1 i?p 

at J axj p ax, 
(4) 

where p and v are the density and kinematic viscosity of air, respectively. We mix 
vector and tensor notation for convenience. Its form under averaging scheme I is 
found by inserting ui = (ui) + u; and p = (p} + p“, averaging spatially, and then 
using the rules given above. The result is 
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This equation has been discussed by Wilson and Shaw (1977), who pointed out in 
particular that the second and the fourth terms on the right-hand side (both of 
which arise through non-commutativity, as indicated above) represent the form 
and viscous drag forces imposed by the canopy. In stationary, horizontally homo- 
geneous conditions with negligible mean horizontal pressure gradient, Equation 
(5) simplifies to 

whemf, andf, are the forces per unit mass of air exerted by form and viscous drag, 
respectively. Both are negative in practice, since they are oppositely directed to the 
mean flow. 

To average Equation (4) under scheme II, first write the time-averaged equation 
of motion at a single point, and then substitute 7ii = (tri} + I$‘, and likewise for 
other time-averaged variables. This gives 

a<ai> -g- + (Gj) F 
1 wi 

+ g (iiyq + g (i&j> = j 1 
1 @” 

--__ - ; K + vv*(iii) + v(v*ii;‘> 
P axi 0 I 

which differs from Equation (5) only in the form of the Reynolds stress terms. The 
extra Reynolds stress (II@‘) is a dispersive covariance, meaning a covariance 
arising from the spatial correlation of quantities averaged in time but varying with 
position. It combines with the usual single-point time-averaged covar~an~ to 
produce a total, spatially averaged covariance: 

<uyu;> = (i4yiq) + <i&q>. (81 

For example, a dispersive contribution arises in the total momentum flux (u”w”) 
if points of time-averaged updraught or downdraught correlate spatially with 
departures of zi from its spatial mean. 

Although dispersive fluxes arise naturally from the superposition of two averaging 
processes, they have so far eluded direct measurement. Antonia and Luxton (1971) 
proposed that this contribution is responsible for observations of anomalous 
profiles of 1 U’W’ j close to rough surfaces in wind tunnels, where several studies using 
crossed hot-wire anemometry found a layer below the constant-strep region in 
which /u’w’/ decreased with decreasing height (e.g., Mulhea~ and Finnigan, 1978). 
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However, Mulhearn (1978) was unsuccessful at directly measuring the dispersive 
flux over two-dimensional bar roughness, and concluded that the anomaly must 
have another explanation. A similar conclusion was suggested by the measurements 
of Raupach et al. (1980) over several three-dimensional rough surfaces. 

4. Equations for Second Moments 

The equation for the single-point second central velocity moment z&i is usually 
written (Hinze, 1975) as 

.____ 
ali i?u’ 

2v -2 2 + vpt/.u’- 
axj (7xj 

L k (9) 

in which it is customary to identify terms representing advection, production, 
turbulent transport, pressure transport, pressure strain, dissipation and molecular 
transport. The analogous equations under averaging schemes I and II are best 
discussed by considering only the kinetic energy &ui, of which the single-point 
turbulent component, f&u;, is described by contracting Equation (9) over i and k. 

Under averaging scheme I, the total kinetic energy may be decomposed into a 
mean part (the MKE) and a turbulent part (the TKE) thus: 

$(UiUi) = f(Ui) (q) + ~(t.quy). (10) 

Budgets for each part may be derived by the usual technique of multiplying the 
equations for (ui) and $ by (ui) and G’, respectively, and then averaging. With 
due regard for commutation of operators, one obtains, for the MKE budget, 

and for the TKE budget* 

* To derive Equation (12), the pressure term is treated thus: 

The operators in the first term on the right commute because of the no-slip condition at element surfaces, 
which ensures that p”ui = 0. 
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The right-hand side of each equation contains four terms: (i) a shear production 
term which converts MKE to TKE and which therefore appears with opposite sign 
in each equation, (ii) a transport term with inertial and pressure components, 
(iii) a viscous term and (iv) a ‘wake production’ term. The first two terms are quite 
conventional. 

The third term represents the direct conversion of MKE or TKE to heat. In the 
MICE equation it would normally be negligible, but it is significant in the canopy 
because it represents the rate of working of the mean flow against viscous drag 
forces*. In the TKE equation, the viscous term incorporates not only the usual 
processes of molecular transport and viscous dissipation of TKE at high wave- 
numbers [cf. Equation (9)J but also the direct conversion of TKE to heat in the 
laminar boundary layers of individual canopy elements. 

The fourth term represents the rate of working of the mean flow against form 
drag, being a scalar product of mean velocity and form drag force. It may be called 
the ‘wake production’ term, since it converts MKE to TKE in the turbulent wakes 
of canopy elements. Like the shear production term it is oppositely signed in 
Equations (11) and (12), and so neither creates nor destroys total kinetic energy. 
Wake production generates TKE at length scales characteristic of the elements, 
which am much smaller than the typical length scales of the shear-generated eddies 
constituting the dominant turbulent motion in the canopy. Because of its small 
length scale, the wake energy is dissipated rapidly to heat by the eddy cascade 
process. 

In passing, it should be emphasised that although Equations (11) and (12) account 
explicitly for the effects of form and viscous drag forces on the MKE, they do not 
describe the effects of these forces on the TKE. Form drag transforms large-scale, 
shear-generated TKE into small-scale TKE in element wakes, thereby short- 
circuiting part of the normal eddy cascade and accelerating the dissipation rate for 
large-scale TKE in the canopy. This process cannot be represented in an equation 
like (12), which is averaged over all frequencies in the turbulent spectrum. Viscous 
drag provides a direct sink to heat for TKE which appears in Equation (12) as part 
of the horizontally averaged dissipation term. 

Under averaging scheme II, the decomposition of total kinetic energy into MKE 
and TKE is 

3(UiUi> = 4(tiFi) + 5(~). (13) 

The budgets for each part are derived by averaging the appropriate single-point 
equations; the resulting TKE budget is 

* The ratio of the rate of working against viscous drag forces to the total rate of working against drag 
is equal to the ratio of the viscous drag force to the total drag force. Measurements by Thorn (1968) on 
a model bean leaf showed that this ratio was between 0.2 and 0.4 for typical wind speeds and leaf angles. 
In canopies with smaller elements the ratio is expected to be higher; for example, Stewart and Thorn 
(1973) assumed it to be 0.5 in a pine forest. 
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-r 
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The four terms on the right are analogous to those in Equation (12). The first and 
third terms are essentially unchanged; the second (transport) term differs only in 
the appearance of a dispersive turbulent kinetic energy flux analogous to the 
dispersive Reynolds stress (U:‘tiy) in Equations (7) and (8). The main difference is 
in the form of the wake production term which here appears as a product of local 
Reynolds stress and velocity gradient perturbations (cf. Raupach and Thorn, 1981). 
These perturbations are the wake shadows of individual canopy elements, within 
which the fourth term in Equation (14) produces TKE in the same way as does the 
shear production term on a larger scale. 

Contrary to the assertion by Wilson and Shaw (1977), Equations (12) and (14) 
are not identical, because of the difference between the decompositions (10) and 
(13) of the total kinetic energy. By further decomposing (13), one obtains 

+(uiui) = f(q) (iii) + +(u:‘u:‘) + f(qq). (15) 

The first term on the right is the MKE under scheme I (since (zZi) = (uJ, provided 
that the horizontal averaging area is large enough) and the third term is the TKE 
under scheme II. The middle term &Q;), is the kinetic energy of the time- 
averaged spatial variations in the velocity field; it is seen as TKE by scheme I, but 
as MKE by scheme II. Equation (15) shows that a budget for this ‘dispersive kinetic 
energy’ can be constructed thus: 

(dispersive KE budget) = (MKE),, - (MKE), 
= (TKE), - (TKE),, 

where the terms represent budget equations found with averaging schemes specified 
by the subscripts. A lengthy but straightforward calculation, using either the MKB 
or the TKE budgets, yields, 

The live terms on the right are (i) a production term involving only the dispersive 
Reynolds stress (&‘u:); (ii) the wake production term under scheme II, here a sink 
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term; (iii) a transport term involving only dispersive fluxes of kinetic energy; (iv) a 
viscous term accounting for direct dissipation of &‘&:‘) to heat; and (v) the wake 
production term under scheme I, here a source term The viscous term will be 
negligible if the length scale of the canopy elements (and of their wakes) is much 
larger than the Kolmogorov microscale. If this is true, Equation (16) reduces in 
steady, advection-free conditions to the simple form 

(17) 

provided also that all dispersivefluxes are negligible. Only then is equality achieved 
between the wake production terms under averaging schemes I and II. 

Physically, this implies that the small-scale pressure gradient associated with each 
canopy element is responsible for the production of wake turbulence only at the 
level of that element. The possibility of wake production at levels above the top of 
the canopy, which is left open by the form of the wake production term in Equation 
(14), is thereby excluded. In practice, this condition may well be very nearly achieved. 
As already mentioned in Section 3, wind tunnel experiments have failed to find 
dispersive momentum fluxes even in situations where they should be significant. 
In the remainder of this paper, we assume that dispersive fluxes are negligible and 
that averaging schemes I and II coincide. 

5. Discussion 

Although the main use of these equations is in constructing physically based second- 
order closure models for canopy flow (Wilson and Shaw, 1977), it is instructive to 
use them to make some simple, order-of-magnitude estimates of the relative 
importance of the various mechanisms affecting kinetic energy within the canopy. 

First, consider the relative magnitude of the shear and wake production rates. 
In stationary, horizontally homogeneous conditions, the MKE budget can be 
written 

u”( 
Id’,“) 
aZ = UfD + Uf” (18) 

where fD = - (@“/8x)/p and fv = v(V2u”) are the averaged form and viscous 
forces, respectively (both negative), and where U is a convenient short notation 
for (u). This equation follows directly from Equation (6), or from Equation (11) 
after simplification. If 

P, = - (u’f,“) !K, P, = -ufD 

are the shear and wake production rates, respectively, then their ratio is 

w _ ua(dfWffyaZ fD P 

ps - +ffw”)au/az ( ) fD + fv 
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from Equation (18). To evaluate this expression, one can use the gradient-diffusion 
relationship (u”~“) = - KaU,Mz, with X: proportional to U. This should be 
understood here not as a model, but merely as a convenient semi-empirical relation- 
ship which is fairly well satisfied in most simple canopies (e.g., Raupach and Thorn, 
1981). It follows that 

where, for simplicity, we have also assumed that viscous drag is negligible 
in comparison with form drag. For the exponential wind profile U(z) = 
Wh)exp {a[z/h - 111, h w ere h is the canopy height, this becomes 

P 
“=2 
ps ’ 

independent of the coefficient c(. Although the last two steps in this argument are 
based on curve-fitting approximations, it is clear that wake production is at least 
of the same order as shear production within the canopy, and may be several times 
larger. 

Why, then, does not wake turbulence constitute a signilicant fraction of the total 
TKE inside the canopy? Spectral analyses of canopy turbulence (e.g., Shaw et al., 
1974; Finnigan, 1979) do not show significant high-frequency contributions at 
scales determined by canopy elements. The answer is twofold: first, most larger- 
scale turbulence present in the canopy is not generated locally, but is transported 
from above by inertial or pressure transport (e.g., Maitani, 19’78; Raupach, 1981). 
Second wake turbulence is dissipated much more rapidly than shear turbulent 
because of its small length scale. An estimate of the turbulence intensity due to 
wake turbulence alone can be made thus: suppose that, only for wake turbulence, 
local TKE balance applies. Then 

where swake is the dissipation rate for wake turbulence alone; it will be of order 
dakelL~ where hake is a velocity scale and L a length scale for the wake turbulence 
(Townsend, 1976, p. 61). The length scale L is of the order of that of the canopy 
elements. Hence, 

e 
dake 

wake 
=----= 

L 
lJh = c,aU3 

where cM is an effective drag coefficient for canopy elements and a the area density. 
Using the approximation a = A/h, where h is the canopy height and A the area 
index, it follows that the wake turbulence intensity is 

hake __ = (c,AL/h)“3. 
u 
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Typically (say, for forest), L/h w 10e3, cy z 0.2 and A z 5. Hence qwake/u z 0.1, 
which is much less than the typical overall turbulence intensity within a crop of 
unity or more (Raupach and Thorn, 1981). Clearly, the high dissipation rate for 
wake turbulence causes its intensity inside a canopy to be low, even though its 
production rate is several times the (local) shear production rate. 

6. Conclusions 

This work has clarified the consequences of the horizontal averaging assumptions 
inherent in one-dimensional models of canopy flows. These assumptions are 
important in determining the form of the wake-production terms in the second- 
moment equations. The analysis has shown that dispersive covariances, if significant 
within the canopy, complicate the second-moment equations considerably; there- 
fore, experimental estimates of their magnitude in real canopies are required to 
confirm the present assumption that they are negligible. 
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