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1. The Hierarchy of Operator Structures
1.1. Preliminary Remarks

This paper studies pseudo-differential operators (pyDO’s) on manifolds with corners. The
analysis of operators on non-smooth spaces is necessary for many reasons. Concrete
problems in partial differential equations, differential geometry or applied sciences lead
to questions on the solvability in the sense of representing parametrices in suitable
algebras of operators and the regularity of solutions close to the singularities. It is
convenient to look at the singularities in terms of an iterative geometric procedure,
starting with a closed compact C* manifold X. Then we can form a cone
C = X xR./X x {0} with base X, and further a wedge W = C x R? with cone C and
edge RY These are the local models of spaces with conical singularities and edges,
respectively (with C*® structures outside the singularities). Below we shall recall the
precise definitions.

Now if B is a space with conical singularities, we can pass to a corner
K = Bx R, /B x {0}, further to a cone based on a manifold with edges, or to a wedge
of the form K x R’ In this way we can successively generate higher singularities.

This concept covers in particular situations that are interesting for applications such
as screen (or crack) problems, mixed elliptic problems, or of quarter plane type. Also
the case of standard boundary value problems is included, since the local model of a
domain Q with C® boundary is a wedge with cone R, and edge R%, dim Q = ¢ + 1.
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The program for the analysis is now, parallel to this geometric picture, to establish a
hierarchy of operator structures, beginning with the standard DO calculus over X. In
other wordson C, W, K, ... is required a pDO calculus, aimed at solving elliptic problems
for differential operators within the corresponding operator classes.

Operators on manifolds with conical singularities and edges have been studied by
many authors, cf, for instance, Kondrat’ev [K1], Plamenevskij [P1], RoBmann [R2],
Dauge [D1], Rempel/Schulze [R1], Schulze [S2], [S5], [S6], [S7], and the references given
there. Conical singularities can be treated in the context of totally characteristic operators
{or of Fuchs type) written as Mellin operators.

Edges require constructions analogous to boundary value problems with extra trace
and potential conditions along the edges, similarly to Boutet de Monvel [B1].

The case of corners K = BxR,/Bx {0} has to unify both aspects, the totally
characteristic one in direction to the corner axis R, and that of trace and potential
conditions along the one-dimensional edges emanating from the corners.

The present paper develops the Mellin operator conventions for wDO’s near corners.
In [S3] we shall add further elements on parameter-dependent cone operator families.
This will finally be used in [S4] for an algebra of corner »pDQO’s including the concept
of ellipticity, parametrix constructions and the asymptotics of solutions.

The main idea is to employ a Mellin yDO calculus on R, with meromorphic
operator-valued symbols acting on the base B of the corner. They will reflect a totally
characteristic structure close to the conical points of B as well as an edge degeneracy
in the Mellin covariable. In addition the complete corner algebra will contain operators
with meromorphic smoothing Mellin symbols and Green operators, induced by the
parametrix construction for simpler operators, e.g. differential operators.

The non-smoothing Mellin symbols are linked to an interior symbolic structure by
the Mellin operator convention. Analogous Mellin conventions exist on manifolds with
conical singularities and edges, and the constructions will show how to proceed for
higher singularities.

In this sense the present paper wants to emphasize aspects of a more axiomatic
approach in dealing with wDO’s on manifolds with higher singularities.

The operator conventions will lead to natural analogues of Sobolev spaces, defined
on the manifold with singularities, where the operators induce continuous actions,
similarly as in the classical case of closed compact C* manifolds (cf. [S1], [S3], [S4]).

Another aspect will be a symbolic structure consisting in a system of leading symbol
components, a part of them being operator-valued, where the bijectivity of every
component is by definition the ellipicity of a given operator. The interaction of the
various symbolic levels can be illustrated already for boundary value problems. In the
comparatively simple special case of Boutet de Monvel’s algebra we have the interior
and the boundary symbol, where the ellipticity of the latter one corresponds just to the
Shapiro-Lopatinskij condition, whereas the ellipticity of the interior symbol concerns
as usual the given pseudo-differential operator.

For conical singularities we have an interior and a Mellin symbol of leading interior
(usual) and conormal order, respectively. Edge singularities require an extra edge symbolic
level, and so on.
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The present paper is organized as follows. In 1.2. we establish Mellin operator
conventions on manifolds with conical singularities. 1.3. deals with manifolds with edges.
The constructions are close to the corresponding chapters of [S2]. The main difference
here is that we allow arbitrary cone bases and more general interior symbols. This causes
a larger class of yDO’s and extra contributions to the edge symbols from interior lower
order terms (restricted to the edge).

In 1.4. we shall briefly discuss polar coordinates in yDO’s that lead to totally
characteristic symbols. In 2.1. we will introduce the Mellin operator conventions for
corner singularities and obtain a representation of operators in terms of the Mellin
transform along the corner axis with cone operator-valued symbols. These are families
of cone operators with edge degeneracy at the parameter varying on a weight line. Such
families will be the starting point of [S3]. Finally in 2.2. we shall describe the system of
symbolic levels for corners with the compatibility conditions.

The operator conventions will often be formulated in terms of mappings between
spaces of amplitude functions. They are “non-canonical” but canonical up to elements
of order — co. The remainders that are systematically neglected will have no influence
to the final operator algebra of [S4], because of the additional smoothing Mellin and
Green operators. The latter ones will be briefly defined for the case of cones and wedges,
here based on the spaces with continuous conormal asymptotics (cf. [S5], [S6], [S2]). A
subclass is associated with the discrete asymptotics, which is defined along R, = r, for
r—0as

Ms

u@r) ~

Y LurPiloghr,
k=0

1]

]

with complex p;, Re p; - — o0 as j — oo, and integers m;. The analogous objects for
corners will be introduced in [S4].

1.2. Pseudo-Differential Operators on Manifolds With Conical Singularities

This section will formulate a Mellin operator convention on manifolds with conical
singularities. Let X be a closed compact C® manifold, n = dim X, and set

X" = XxR,. 0]

(1) will be interpreted as the (open stretched) cone with base X. A compact C* manifold
B with boundary 0B = X is called the stretched manifold belonging to a space B with
conical singularity if for a given tubular neighbourhood U of 8B there is fixed a
diffeomorphism 6: X~ — int U. The R, action on X~, given by (x,7) — (x, ir), A R,,
corresponds to an R, action on U. On U it is needed only in the local form for points
close to OB and small A. Then B/OB = B is the corresponding space with conical
singularity, where the local R, action is canonically defined close to the vertex. Note
that X may have several connection components. We might distinguish between several
conical points belonging to the connection components. For simplicity we shall neglect
the aspect of different conical points. Clearly Bis no C manifold unless X is not a sphere.
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We adopt here the standard notations of the pD (pseudo-differential) calculus. If
2 < R"is open, we denote by $*(Q2 x R™) the space of all a(x, &) e C* (2 x R™)satisfying

IDzDRa(x, &) < c(1 + g~ @

for all (x, £) € K x R™ and arbitrary K € @, « € N, § € N™, with constants ¢ = c(a, f, K).
Further S%(Q x R™) denotes the subclass of classical amplitude functions, i.e. with
asymptotic expansions

M8

a(x, &) ~

j

au—j(x’ é) s

0

a,_;€C*(QxR™, a,_j(x, i) = A*7Ja,_(x, &) for all A = 1, |¢| Z const, x € Q.

The best constants in (2) form a semi-norm system on S*(€ x R™) under which this
space is Fréchet. $%(Q x R™) will be equipped with the topology of the projective limit with
respect to the canonical mappings

h;: S%(Qx R™ — C*(Q2x (R \ {0})),

Fe: SE(Qx R™) — S*~*HD(Q x R™)
for j, k e N, where hj(a) = a,_; with a(uk_ ; being the unique homogeneous function that
equals a,_; for large ||, and r,(a) = i;() x(&) ag,—y(x, &) for an excision function y in

R™ (ie. ye C*(R™), y = 0 in a neighbourhood of £ = 0, y = 1 for |¢| > const). Then
“ (2 x R™ is a Fréchet space and the topology is independent of the choice of z.
L*(Q) is defined as the class of all pDO’s 4 in Q,ie. 4 = A, + A,, with

Agu(x) = op,, (@ u= [[ "¢ a(x, & u(x) dx’ &, 3)

dé = (2r)7"d¢, a(x, &) € S*(£2 x R"), and A, being an operator with kernel in C*(2 x Q).
The space L% (Q) of classical wDO’s is defined by a(x, &) € $5(£2 x R").

Analogous notations will be used for wDO’s on C* manifolds. In particular we can
talk about L*(int B), L% (int B).

The spaces L#(...), L¥(...) are Fréchet in a natural way (cf. [S2], Section 2.1.4.).

Now if B is interpreted as the (stretched) manifold with conical singularities we look
at special subclasses of L*(int B), called yDO’s on the manifold with conical singularities.
In the set-up of operator algebras filtered by orders it is convenient to deal with classical
operators. They will mainly be discussed from now on.

Let V be a coordinate neighbourhood on X (= the base of the cone) with local
coordinates x € R”. Set V" = V x R, 3(x, 7). Then S$%(cV" x R** ') denotes the subspace
of all a(x,r, £ 0) e S4(V" x R*"1) with a = a,ly- xgn+: for some a; € S4(Vx Rx R**1).
Moreover we define

StV xR"*Y) = {a(x,r, & ro): a(x, r, & g) € S4(cV™ x R* 1)} . 4)

The elements of (4) are called totally characteristic.
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We say that a(x, 1, &, g) € S%4(cV" x R"* 1) satisfies the exit condition if there exists a
sequence e;(x, &, g) € S%(cV" x R"*1) such that

10 alx 1. &)~ 20) 3 r e &0 ®

for any excision function y (ie. ye C®, y = Oclose tor = 0, y = 1 for r > const). The
asymptotics (5) mean that

N
DEDEDE x(r) {a - r"ej}
j=o

foraltke N,ae N*, B N"*!, with a constant ¢ = c(k, o, §, K)forallxe K € V,reR,,
(&, 0eR"L

Remember that more general “exit conditions” have been studied by Parenti [P3],
[P4], and Cordes [C1], Schrohe [S8]. $4(cV" x R"*1), will denote the subspace of all
a(x,r, & 0)e S4(cV" x R"*1) satisfying the exit condition, and we set

StV x R™ Y, = {a(x,r, & ro): alx, 1, & @) € S4(cV " x R**Y),} . (6)

For de §%(cV" x R**1), we shall also say that it satisfies the exit condition.

The yDQO’s on int B that refer to the conical singularities will have (complete) symbols
in (4) close to r = 0 (possibly up to a weight factor). In order to get a precise control
near r = 0 we shall employ a Mellin operator convention along R, ar.

Remember that the Mellin transform M is defined by

< ce(l + ¢, QDM—IIII (1 + r)—(N+1)-k

Mu(w) = j?rw‘lu(r) dr,
0

where first ue C¥(R,), we C. Then

1
M~'g) () = I j rg(w) dw
Tp

with
Iy ={weC:Rew =},

B € R arbitrary. f G = C is open, we denote by ./ (G) the space of holomorphic functions
in G in the topology of uniform convergence on compact subsets. Analogously </ (G, E)
denotes the space of holomorphic E-valued functions in G, with E being a Fréchet space.
Moreover for any open 2 < R" we use notations such as C*(£, E) (C$ (L, E)) for the
spaces of C* (C§’) functions on Q2 with values in E. The Mellin transform can be applied
also to ue C3(R,, E) with respect to r. The result is then in &/ (C, E). It is well known
that M extends by continuity to natural classes of spaces, for instance,

M:r*L*(R.) - L*(Ty/2-4) s
B e R, cf. [S2], Section 1.1.1.

18 Annals Bd. 8, Heft 3 (1990)
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For A(r,w) = h(r,1/2 + i0)e S*(R. xR), (r,0)€ R, xR, we can form the Mellin
pDO
opy () ulr) = My’ h(r, w) M, _u(r)
ue CF(R.). Set
opiy (1) = rf opy (T PW)r~*, O

(T ?h) (r, w) :== h(r, w — B). If we impose smoothness of h in r up to r = 0 and, for
instance, bounded support in r, then (7) extends by continuity to an action between
weighted (totally characteristic) Sobolev spaces

oply (k): H*H(R.) > #* IR,

(cf. [S2], 1.2.3. Proposition 16). Analogous relations hold in the vector-valued case.
Let

SE@EV” X R"x 'y p) ®)
denote the space of all h(x, r, £, w), defined for we I';,_4, such that

h(x,r, £1/2 — B + ig) e Sh(cV" x R:LY). ©)
Moreover,

S5V xR*x C)yor (10)

denotes the space of all h(x,r, & w)e #(C,, C°(V x R, x R") such that (9) holds
uniformly inc, £ f < ¢, forall ¢,, ¢, € R. Here and in the sequel a relation for elements
in a Fréchet space uniformly in a parameter interval means that the semi-norms on the
corresponding parameter dependent elements are uniformly bounded in the interval.

The following lemma is quite elementary. We shall give a proof, since assertions of
this sort will be employed below in many variants, where we then drop the analogous
kernel cut-off arguments.

1. Lemma. For every he St(cV" xR"xI'(,,_g) there exists an h_,eS ®(cV" xR"
XTIy, g) such that h — h_ , extends to an element in (10).

Proof: Let us show the assertion in the version for S4(R} x R,) where ¢V" disappears
and I'y;;_, is replaced by R, Then the result in general follows by an obvious
modification. For a(¢é, ¢) € S% (FI’l x R) we write

K(a) ({, %) = fe“* ™ g(f, g)dl do.

Let w(x} be a cut-off function, ie., w e C*(R), w = 1 close to 0, w = 0 for |»| > const.
Then we form

b(&, @) = fe ™™™ w(x) K(a) ([, ) d{ dx . (11)

The symbol estimates for a imply that (1 — w(x)) K(a) ({, ) € Z(R.,) (¥(...) denotes
the Schwartz space). Thus a(¢, ¢) — b(&, @) € S™°(RELY).
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If we replace (11) by
b&, o) = [ e ™ () K(a) (¢, ) d{ dx

for any y(x) € C3(R), then we get b(¢, o) € S%(R™ x R). If 1(2) is flat at » = O of order
N, then it follows even b € % ¥(R" x R). All this holds uniformly in ,¢, £ 8 < Cy If
we replace y by a function tp(x B)e C*(R?), p = 0for || > const. The latter properties
follow by siinple calculations in terms of the symbol spaces and are left to the reader.
Since supp w is compact, b(¢, g) extends to an element in o/ (C, C*(R") in the complex
variable ¢ + if. Let us show that for every f this belongs again to S%(R" x R).
We have

b(é,o+ip) = Jle‘i“'i"" e*f w(x) K(a) (¢, %) d¢ dx

= Je‘i“‘i"" {Z @ + Ry(x, ﬁ)} w(x) K(a) ((, ») d¢ dx

=0 j!
with % IRy (x, f) € C*(R?) for 0 £ j < N. Now standard manipulations with Fourier
integrals show that ®'K(a) ({, ») = (— 1Y K(Dia) ({, ), i.e.

J‘e“‘“ i i %B)J w(x) K(a) (£, ) df da

= je‘i“'“‘“ w(x) i @ K(Dia) ({, ®)d{ dx .
j=o j!

This belongs certainly to S%(R" x R) for every p, since Dia e S%™7 and the summands
have the same structure as the right-hand side of (11). This holds obviously uniformly
inc, <P < ey

Finally we can apply the above remarks to ywy(x, f) = Ry(%, B) w(3). Thus

j‘ e 4y (%, B) K(a) ({, ) d{ dx e S%,"¥(R"x R). (12)

It was also mentioned that (12) is true uniformly in ¢; £ f < ¢, (it would be needed
here only in the sense of S*"¥(R"x R)). [

The amplitude functions in (8) give rise to Mellin-Fourier pDO’s
ophy op,, » (W u(x,r) :=rPM 2, F (T Ph) (x, 1, &, W) Fy o M, (r) P u(x', 1), (13)

with F being the Fourier transform in the x-space. A standard consideration on
equivalence of phase functions yields

op}; op,,.x (h) e Ly(V").
With h we can also associate the family of yDQO’s on V
opw.x (h) (r, W) U(x) = F;——»lxh(X, r, éa W) Fx'—»{”(xl) s

18
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dependent on the parameters re R, we I';, _5. Then
op,.x (h) (r,w)e C*(R.,, L&(V; Lip_g). 14

Here Iy, _; is identified with R = g, and L%(V; R) is the space of parameter-dependent
wDO’s A(g) = 4,(g) + Ao(0), where A,(g) is of the form (3), where we have to insert
a(x, ¢, 0y e S5 (V. x Rz x Ry, and Ay(0) € #(R,, C*(V x V)) with the Schwartz space of
C>(V x V)-valued functions. In (14) we have employed a natural Fréchet topology of
LE(V; R), cf. [S2], Section 2.3.1. (Below in 1.3. we shall employ analogously parameter-
dependent pDO’s of the classes L%(V; RY) in the corresponding Fréchet topology.)

On the other hand let

a(x,r, & 0) = alx,r, & rg)e Sh(cV™ x R™1). (15)

Then we can form op,, (.., (@) € L%(V"), where op,, (,,, refers to the Fourier transform
in R% x R}.

2. Theorem. For every B € R there exists a non-canonical mapping

mP: St (cV” x R1%Y) — S4(cV” X REX C o (16)
such that for h = m?(a) and a being defined by (15)

OPy,x.n (@) ~ OPhy 0Py, (), (17
where ~ means equivalence mod operators with C*® kernels.

Here and in the sequel a mapping between spaces of amplitude functions is called
non-canonical if it is linear and unique mod elements of order — co. In the present case
it means that (16) induces a linear mapping

SEeV” x R"™1)/87 2@V x R"*1) = S4(cV” x R"x C)oi/S ™ *(cV”™ x R x Clyr
Clearly instead of (16) we might also talk about

wif: Sh(eV™ x RILY) — SE(cV” x REX C)hot (18)
with (@) .= mP(a).

Proof of Theorem 2: The dependence of symbols on x, & is not the specific point. So for
simplicity we will consider a in the form a(r, ¢). Then d(r, ¢) = af(r, rg). Let us start with
B = 1/2.Choose an h(r, w) € S%,(R , x I'y). Then the associated Mellin p DO is of the form

oPif? () ulr) = | ™ %h(r. i) | (¥Yeulr) drr' do 19
- J'j‘ e—ie(logr—logr') b(r’ Q) u(r’) dr’/r’ dQ N

b(r, @) := h(r, —ig). Now we set y = logr, y’ = logr’. Then
opy” () u(e) = [f 77 b(e’, @) u(e”) dy de .
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For the difffomorphism »: R - R, x(y) = ¢’, we have (x*v) (y) = v(e’). Thus

opi” (hyu = (c*)~' op,,,(f) #*u for .f(y,n) = b(e’n).

In other words, opi/? (h) is the push-forward of a DO on R with the amplitude function
Sf(y,n) under x. If in general x: Q, — Q is a diffeomorphism, then the push-forward
e L*(Q) > L #(@Q)is given on the level of corresponding complete symbols £ (v, n), £ (7, #)
(1 e. in the sense x, op,, ,(f) ~ op,, 90)) by the asymptotic formula

u 1
JG Dlymsi ~ X o SO, Cde) ) - 0,0, ) (20)

where f@(y, n) = (03f) (v, 1),
@y, H) = D200 _, (21

for 6(y, z) = x(z) — »(y) — dx(y) (z — y). In the present case we have j = r, j = o, and
@.(y, 1) = P,(rg), where P, is a polynomial in r¢ of degree 2/2, a€ N, and P, = 1.
Moreover dx is in this case the multiplication by r. Thus %, op,, ,(f) ~ op,, . (f) with

00

. 1
fr,o~ Y ;f‘“’(y, ro) P(ro), y=logr.

a=0

Since remainders of order — oo are accepted, we can first form a convergent sum

0

1 T

g0 =X — [P0 9P (—)
a=0 ! Co

with an excision function x and constants c,, increasing sufficiently fast as « — oo, and

then define f(r, ¢) = g(log r, rg). It is clear that then f(r, ¢) € §%(R, x R,). Moreover,

f(n Q) - h(r’ *lrQ) € 52‘1_1(R+ X R) .

In other words, for hq(r, ig) == a(r, —g) it follows an f,(r, ¢) == f(r, ¢) € §%(R. x R) such
that

1/2

opM (hO) = Oplp.r (iO) = Opw,r (d) - opw,r (dl)

with d, (r, 0) == fo(r, 0) — d(r, 0) € $ (R, x R). By applying Ehe procedure again to 4,
we get for h,(r,ig) == a,(r, —g) € S%7 *(R, x I'y) an f,(r, 0) € §* ' (R, x R) such that

1/2

opif? (h,) = op,,, (fi) = op,., (@) — op,,, (d)

with @, = f; — d, € % 2(R, x R). This can be continued successively, and we get a

sequence h, € 84 (R, xI'y), ke N. If we form ' ~ Y. h, in the class S4(R, x I'y), we
obtain k=0

1/2

opy* (R) ~ op,,, (@) .
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Applying Lemma 10 we may replace b’ by h e S (R, x C, ), It is now obvious that an
analogous construction applies in the case with (x, &) dependence. Thus Theorem 2 is
completely proved for § = 1/2. .

For general § we apply the following

3. Lemma. Ler h(x,r, &, w) € Shi(cV " x RE x I'y) be arbitrary and B € R. Then there exists
an hg(x,r, &, w) e SH(cV " x Ry x Ty, _4) such that

opllw/z opw,x (h) ~ opg‘l oplp,x (hﬂ) .
Proof: For simplicity let us look again at the (x, £)-independent case. By definition we have
opx’ () = r''? opy (fo) ()12, oph (hy) = rf opy (f) (1)

with fo = T~ 2h, f; = T~ %h,. Thus it suffices to find f; € S4(R, x I'y,) in such a way
that

r27F opy (fo) ()12 *F ~ opy (f) - (22)

The left-hand side is a Mellin pyDO with r,7-dependent amplitude function
fGr, v, w) = ri2=8f (r, w) ()~ 12*#. Applying the standard Mellin operator calculus (cf.
[L1], [S1]) from f(r, ¥, w) we can pass to an equivalent r'-independent amplitude function
f1(r, w) by

0 1 a k
fikw~ ¥ —(~r' —/> Dif(r ' W=
k=0 k! or

w = 1/2 + ig. Every summand belongs to S *(R, xI'y;,) and hence the asymptotic
sum can be carried out in S%(R, x I' ;). Thus we find f, as desired. [

By this we have also finished the proof of Theorem 2. [J

4. Remark. Let V|, V, = R" be open, and y: V; — V, be a diffeomorphism, y(x) = y. Then
there exists a non-canonical mapping

8: 88(cV x R" 1y — §¥(cV; x R"HY)
such that for d, = 6(a,)
(x x id)* OPy, (x,n @) ~ Py, (3.7 (dl)

with (yxid), being the push-forward of yDO’s under the diffeomorphism
yxid: Vi xR, - V, xR,.

Note that there is another non-canonical mapping

%: S4(cVy X R" x C)yo = SHi(cVy x R"x C)yyy
such that for f = x(h)

(x x i), oph; op,, . (h) ~ op}, op,, (f).
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Moreover, if if are the mappings (18) with respect to V, i = 1,2, then the procedure
commutes in the sense

it ~ s,

~ being equivalence mod elements of order — co.
Now let 8 = {V;};-,, . be an open covering of X by coordinate neighbourhoods.
Then a system {r™*p;}; <;<y With

p;eS&(cV, xR™Y), j=1,..,N, (23)

is called a complete symbol on X" (with respect to B~ = {V;"};_,, ) if

Ok P j|V;nV,: ~ kaer\V;Q (24)

for the transition diffeomorphisms V; n ¥, - V; n ¥, and the associated mappings 9,;
from Remark 4, for all j, k = 1, ..., N. The weight factor r™* in front of the symbols is
natural for several reasons, as we shall see below. For the moment, of course, it is
unessential. For unifying notations we take it into consideration from the very beginning.

Let {y;};_, ..,y be a partition of unity belonging to B and ;€ C3(V)) with yp; = y;
forj = 1, ..., N. Choose a complete symbol (23) and set

N
4, = '21 ;1 ¥ oDy, x,n (PJ) P, (25
j=
N
AM = 'Zl wj opﬁl opw,x (hj) wj s (26)
j=

where h; = rﬁ”(pj), j=1,...,N. For abbreviation the local coordinates on V; are all
denoted by x; clearly they depend on j. By Theorem 2 we have

A, —r7PAye L™*(X").

5. Definition. Let {r™*p;},.;<x be a complete symbol belonging to B". Then the
(non-canonical) mapping {r #p;}, <;<y — 7~ *Ay (for a fixed choice of y;, ; and of local
coordinates on V) is called a Mellin operator convention for the cone X~ .

6. Definition. M{(X) denotes the space of all h(w)e o/ (C, L%(X)) such that
h(6 + ig) e L5(X; R,), uniformly in every strip c¢; £ 6 £ ¢,,¢,,¢c, € R. The latter
condition means that the semi-norms of the Fréchet topology of L% (X; R,) are uniformly
bounded in 6 € [c,, ¢,] (cf. also [S2]).

Now M4(X) is a Fréchet space in a natural way, and we can form the functions
h(r, w)e C*(R,, M&(X)).

The system of h; in (26) gives rise to

N
h(r, w):= Y. v;0p,,, (1) ;e C*(R.,, M§(X)), 27)

j=1
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cf. (14).' Thus the Mellin operator convention can be viewed as a mapping
{pls LR pN} i COO(R+, M‘é(X))

such that the associated operator equals opf, (k).

Outside the conical singularity we will preserve the standard operator conventions,
based on the Fourier transform. This means that the wDQO’s are written as

A=or Ao, + (1 — w)4,(1 — w,). (28)
Here w(r), w;(r) e CP(R.) are cut-off functions, i.e. = 1 close to r = 0, and we assume
0w, = o, -0 —-—w)=1~-w. 29)

The latter condition ensures that A ~ A4 and A4 ~ A,. (28) represents also an operator
convention. By changing w, w; under the condition (29) we get errors in form of Green
operators (cf. the notations below) if the symbols p; satisfy the exit condition. Otherwise
we get Green operators only after localizing at r = 0.
Let us recall the definition of totally characteristic Sobolev spaces over X”. Fors, fe R
we denote by #%#(X" ) the completion of C (X" ) with respect to the norm
1/2
1
Py J 15°(w) (M) (x, W)l oy dwp (30)

Tin+1y2-8

Here b*((n + 1)/2 — B + ig) denotes a parameter-dependent family in L%(X; R,), such
that b*(w): H*(X) o H*"*(X) for all se R, we I'(,4 1), Further we define the space

A=#(X") by the conditions
o) X X") = o) #H(X"),
(1 — @) (X)) = (1 - @) H*(X")

for any cut-off function w.

The space H*(X ") is defined by the conditions H*(X")|,, = H*(Vy) for every coordinate
neighbourhood V on X and V, < V open, dV, of class C® V, = V, where
H:(Vy) == (m,), H(Vy) for any diffeomorphism n,: ¥* — V* with a conic subset V"
c R" 1\ {0}, 7 (4%) = (x, Ar) for all 1 > O, n,Vy = Vy, and H*(Vy) = H*(R"* !)|ps.
Finally s#%#(B) is defined as the subspace of H; (int B) with w#*#(B) = w#**(X")
for a cut-off function w supported by the tubular neighbourhood U, mentioned in the
beginning of this section, where U and X~ are identified via é.

Under the exit condition for the p; in the global complete symbol of (28) we get
continuous operators

A (XYY > A m B (X 31

for all se R.
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The main topic of this paper is the Mellin convention for the non-smoothing part.
There will occur also smoothing Mellin and Green operators. Let us briefly give the
definition for the cone.

Let ¥~ be the system of closed subsets of C introduced in [S1], Section 1.2.2., and fix
a Ve which is quasi-discrete, i.e. I';, "'V = (¥ for all je Z for a system J; € R with
6; > * oo asj - +o00. Then My ©(X) denotes the space of all A(w)e #(C \ V, L ~ (X))
such that (xh) (6 + ig)e #(R, C*(X x X)) uniformly in every strip ¢; £ £ c,,
¢y, ¢; € R, for every V-excision function y, i.e. y€ C*(C), y =0 closeto V,0 £ y £ 1,
x = 1 outside a neighbourhood of V. The space M, ©(X) is Fréchet in a natural way.
Every V e ¥ can be written as V = V| + V, for quasi-discrete V; (cf. [S1], 1.1.5.) and
we then define

My;=(X) = My2(X) + My 2(X) " (32)

in the Fréchet topology of the sum (cf. {S1], 1.1.2.), which is independent of the choice
of V,, V,. Set

M_*(X) = lm M, *(X).
vey
Thus the gaps of V; can be chosen in a convenient way, according to weights, involved
in the action.
If fe R and he M, (X) are given, we define for every fixed j€ N an analogue of

opf (k) by
opfy’ (h) = r*{op} (T ~*hy) + opji (T ~*hy)} r™*

for an arbitrary fixed decomposition h = h; + h, such that T ~#h, is holomorphic close
to I'yp_, and 4,20, j— 4,20, i=1,2. For j=0 we have necessarily
op4® (h) = oph, (W), Iy, NV = &, whereas for j > 0 there always exist h;, 4; as
required. A result of the Mellin operator calculus is that w, op%;’ (h) w, is independent
of the concrete choice of decomposition data h,, 4, modulo a Green operator, ®,, w,
being arbitrary cut-off functions (cf. [S2], 2.1.5., Theorem 13).

Now the mentioned smoothing Mellin operators have the form

k—1
M=o, ) roph " (h) w, (33)
i=0
for a fixed weight interval 6 = (—k, 0] (relative to f), and arbitrary h;e M *(X),
j=0,...,k—1;n=dimX.
Parallel to the spaces of Mellin symbols there are defined the subspaces of 5#%#(B) with
(continuous) asymptotics. Fix a weight interval § = (—k, 0], ke N \ {0}, which corre-
sponds in the complex Mellin plane to the strip

m+1)2—B—k<Rew<(n+1)2—8. (34)

Let 5 #(B) denote the subspace of all ue #*#(B) for which r *u = #*#(B) for
all x with 0 £ x < k (as above w#*#(B) is identified with w#>#(X")). Remember
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that in [S2] we have used the notation 5 #(B), instead and gave another equivalent
definition.

Now let Ve ¥, V < {Rew < (n + 1)/2 — B} be quasi-discrete. Then M#°-4(X")
consists of all h(w) e &/ (C \ V, H*(X)) such that

1
— '[ 15°(w) (xh) (W)l|F2x, dw < o0
2w

for all se R and every V-excision function y, uniformly in every strip ¢; £ 8 < ¢,
¢, ¢; € R. Here b%(w) is of analogous structure as the order reducing family of (30) above,
now in the interpretation that it is shifted for any given 6 to the corresponding weight
line in an obvious manner.

Denote by J,°'#(X") the preimage under the inverse weighted Mellin transform (with
respect to the weight line I'y, . ), z). The space #7°°#(X") is Fréchet in a natural way.
For arbitrary Ve ¥,V < {Rew < (n + 1)/2 — 8}, V = V, + V,, and ¥, quasi-discrete,
we set

HPHXT) = AKX + ASHXT).

This is independent of the concrete choice of Vi, ¥V, with V as sum.

It is well known that every u € #,° #(X") for quasi-discrete V represents a sequence
of C*(X)-valued analytic functionals {; on the components V; of V, ie.
(i e 'V, C*(X)). They determine the (continuous) asymptotics for u as r — 0 (cf. [S2]).
If Mu is meromorphic, we get the special case of the discrete asymptotics. If we are
interested in the asymptotic information only in the strip (34) of the complex Mellin
plane, we form the sum of Fréchet spaces

HFHX) = HFPXT) + AP,

where V:=V n{(n+ 1)/2 — B — k < Rew < (n + 1)/2 — B}. The asymptotic infor-
mation for a concrete u € 3#,°'#(X") is represented by the system of data

C={V=UVy X 'V C*(X)); 5,6}

For V in general the asymptotic information is given by an equivalence class of pairs
of this type. We denote by As (X; g) for g = (8, 6) the set of (continuous) asymptotic
data in this sense. In other words every C e As (X; @) can be represented by a pair
(C,, C,) where C; is associated with V; as mentioned, j = 1, 2. We then set

HP X)) = PP XT) + 2P X)) + A2FX).
For arbitrary s € R we define

HPIX") = H3PX7) + H7P(X0)
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and set
HpP(B) = {ue #*(B): wue Hp(X")},
HPIX) = {ue AP(X"): oue H3H (X)) .

In [S2] we have used the notations #5#(X"),, H#5%(B)y and X3 #(X"),, respectively,
where the definitions are equivalent to the present ones. Intuitively C € As (X; g) can be
associated with theset V=V n {(n + 1/2 — f — k < Rew < (n + 1)/2 — B}. The sets
¥V will be called carriers of asymptotics of asymptotic types in As (X; g). Our notation
indicates X as the base of the cone, since analogous notations apply to corners with B
instead of X. Then the analytic functionals are 4¢°'#(B)-valued.

Finally the Green operators G are characterized by the mapping properties

G: #%5(B) - #F# *B),
G*: >~ 1(B) » HF ~#(B)

for arbitrary s e R with
V=Vn{n+1)/2—p+u—k<Rew},
W=Wni{n+1)/2+8—k<Rew}

forcertain V, We B,V c {Rew<(n+ 1))2 — B+ u}, W {Rew < (n + 1)/2 + B},
dependent on G. Here the * refers to a fixed scalar product (.,.), in 5 °(B) and the duality

(., )o: H*F(B)x # > #B) - C.

The class C*(B, g) of cone operators over B for the weight data g = (8, 0) is altogether
defined as the set of all

r*Ayw, + (1 — @) P(1 —w) + M + G (35)

for arbitrary 4, = op%; ™2 (h), h(r, w)e C*(R,, M4(X)) and P € L*(int B) with cut-off
functions w, w,, and M being a smoothing Mellin operator of the form (33), G a Green
operator of the described sort. ®

Since C*(B, g) = L% (int B), we have for every A € C*(B, g) a homogeneous principal
symbol

o%(4) € C*(T*(int B) \ 0), (36)

which is close to OB in the coordinates (x, 7, ¢, @), x € ¥, of the form r™*p,(x, 1, £, ro)
for a function pg(x,7,&0eC(VxR, x(R*™ 1\ {0})), with pg(x,r, A& d)
= Mp,(x,r, & @) for all (x,r, & 0)e VxR, x(R"*\ {0}) and A > 0.

The Mellin symbol of A of conormal order y is defined as

oy (4) W) = h(0,w) + ho(w) (37
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with the mentioned h(r, w) e C*(R ,, M4(X)) and hy(w) from (33). We do not recall here
anything from the algebra properties and the symbolic rules that are elaborated in detail
in [S2], Chapter 2, cf. also [S5]. Let us only remember that

o(4) =0, oh(4)=0=>4eC"'(B,g).

1.3. Pseudo-Differential Operators on Manifolds with Edges

As mentioned in the beginning the corner calculus contains operators near the outgoing
edges. This section studies operators away from the corner vertex. We allow the edge
to be of arbitrary dimension q. Below for the corner we then have g = 1.

Similarly as for the cone we study the interior of the stretched wedge

X" xQ=XxR,xQ3(x,r,y)

with X being a closed compact C® manifold of dimension n, @ £ R? open.
In the previous section we have defined S%(cV" x RE%'). Analogously we obtain the
space S4(cV" x @ x RE%' x RY) for open Q £ R% Then we define

Su(cV” x 2 x R, x wRY)
= {a(x,r,y, & ro, ) a(x, 1, 3, & 0. n) € S(cV” x 2 x R*™* 1 x Ry} .

The notation wR? indicates the wedge degenerate behaviour in 7 consisting of the
combination rn. The tilda indicates rg, the totally characteristic behaviour nearr = 0. By

Sh(cV" xQxRix Ty, _gxRY M
we denote the space of all h(x, r, y, &, w, n), defined for we I';,_4, such that
h(x,r, 3, & 1/2 — B + ig, ) € S(cV™ x 2 x RIL! x RY). 2

Further $%(cV™ x @x RExTy;,_,x wRY) is defined as the set of all h(x, r, y, £, w, rn) for
which h(x, r, y, &, w, ) belongs to (1). Then

S5V x Q2 x R"x Cx RY,, 3)

consists of all h(x,r,y, & w,n) e L(C,, C*(V xR, xQxR,9) such that (2) holds
uniformly in ¢, £ B £ ¢, for all ¢;,c; €R, and S4(cV” x 2 x R" x C x wR9),,, is the
space of all k(x, r, y, & w, rq) with h(x, r, y, &, w, %) in (3).

1. Remark. For every heShcV xQxR"xI'y,_gxRY) there exists an
h_ €S 2@V xQxR"xXI'y,_gx R)suchthath — h_, extends to an element in (3).

This follows by a kernel excision argument, analogously to 1.2, Lemma 1.
With A € (1) we form parameter-dependent operators

oDt 0Py, x (h) (v, 1)
- rﬂMw—brFﬁ (T ﬂh) (xa r, y’ 5’ w, ”7) Fx —->§Mr —»w(r,) ﬂ
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(v, 1) € 2 x R? being the parameters (T "#h) (..., w,...) = h(...,w — B, ...). (4) is ana-
logous to 1.2, (13) but here we insert ry instead of #. This is indicated by M. It is clear
that opf, op,, . (1) (y,7) is a (y, n) dependent operator family in L5,(V") and

OD,., 0Pk 0D, (W} € LE(V" x Q).
Now let
pix,r.y, & 0,m) = alx,r,y, 8, ro, rn) € Sh(eV x2x Rg;l xwRY).

Then op,, (., (p) (v, 7) is an operator family in L%,(V"), dependent on (y, 77), and we want
to pass to a representation of the form (4).

2. Theorem. For every B € R there exists a non-canonical mapping
mP: S4(cV” x @ x RELLT9) — St(cV” x 2 x R x C,, x Ry (5)

such that

OPy.cx.r) (P) (9, 1) ~ OPR 0Py, (h) (¥, 7)
for h = mP(a) and

p(x,r,y, & 0n) = alx,r,y, ¢, re,m).

The equivalence holds for all (y, n) in the sense of L% (V") but also in the sense of L%4(V" x )
after applying op,, , on both sides.

Incidentally it is convenient to use instead of (5) the mapping
b S:(cV” x 2 x R" 1 x wR%) - S4(cV” x 2x R"x C x Ry,
defined as f = m# o 4,
1: 88V x2x R x wR%) — S4(cV" x Qx R*"*1%9),
ialx,r,y, &, re,rn) = a(x,r, y, ¢, 0, 1) -

The proof of Theorem 2 follows by a straightforward modification of the arguments for
1.2., Theorem 2. In a more special situation it is contained in [S2], Chapter 3.

3. Proposition. Let V,, V, < R", Q,,Q, = R? be open, and y:Vy = V,, ¢:Q2; - Q, be
diffeomorphisms, y(x) = X, @(y) = J. Then there exists a non-canonical mapping

5: Sh(cVy x 2, x R"* 1 x wR%) — §4(cVy x 2, x R"*1 x wRY)
such that

(X xid x (P)* opw.(x,r.y) (pl) ~ Opw.(i.r,i) (pl)
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Jorp, = 6(p,) with (x x id x @), being the push-forward of wDQ’s under the diffeomorphism
xxidxe@: V; xR, xQ, - V, xR, xQ,.
4. Proposition. There is a non-canonical mapping
x: Sh(cly x 21 x R" x C x Ry, — S4(cVy x 2, x R"x C x RY),,
such that
(x xid X ¢}, O,.., ODfs Py, (1) ~ 0Py, 5 0D 0Py, ¢ ()
Jor hy, = w(h,) and
writl ~ mbé
with ~ being equivalence mod elements of order — 0.

Propositions 3, 4 are easy consequences of the ypD substitution rule for yDO’s on
complete symbolic level.

Let Y be a closed compact C* manifold, ¢ = dim Y, which plays the role of an edge
globally.

Let B = {Vi}o<isu be as in Section 1.2, and I = {Q,},,<» be an open covering
of Y by coordinate neighbourhoods, with local coordinates y € R? = Q,. Then a system
{r™"bu}e.i=o....m With by € S4(cV," x @ x R"*t x wR9), k, 1 = 0, ..., M, is called a com-
plete symbol on X~ xY (with respect to 8", M), if

5k't'.klbj1|vk‘ XV xQp ™~ bk'r|y,; X Vi x

for the transition diffeomorphisms V, x 2, N V. x Q. = V, x Q; n Vi x Q- and the asso-
ciated mappings 6, ; from Proposition 3, for all k, [, k', I' = O, ..., M. For the moment
we only need global symbols over X* x Q with respect to ¥ and a coordinate
neighbourhood Q on Y. These are tuples

{r""bitosism 6)
with
b e StV x2xR"*1xwR?), k=0,..,M (N

satisfying the corresponding equivalences over V" x Q n V" x Q. Let b, ,,(x, 1, y, &, ro, 1)
denote the homogeneous principal part of b, of order u. Then the system {b, (,}i=0,. .M
consists of the local representatives of a global function

b € C=(T*(X™ x2)\ 0), ®)

where T*(...) \ 0 means the cotangent bundle of the manifold in the brackets minus
the zero section. Similarly {b,, .} gives rise to an element

by € C*(T*(X™ xY)\ 0). ©)



Mellin Representations of Pseudo-Differential Operators on Manifolds with Corners 279

For given (6) we now form the operator families

M

bw(y’ ") = kZ‘O r_“wk opw,(x.r) (bk) (Y’ '1) lﬁk ’ (10)
M

bM(y’ r’) = e Wi Op& opw.x (hk) (y’ '7) ka (11)

where h, = mf(by), k = 0, ..., M (cf. the analogous expressions 1.2. (25), (26)). Then it
follows

b,(y,n) ~ r™"bul(y, n) in LL(X") forall y,n,
op,.,(b,) ~r *op, by in LHE(X" xQ).

5. Definition. Let {r™*b,},<,<y be a complete symbol over X~ x Q belonging to B".
Then the (non-canonical) mapping {r *bi}o<i<u — r *bum(y, n) is called a Mellin
operator convention for the wedge X~ x  (on edge symbolic level).

6. Definition. M%(X; R?) denotes the space of all h(w, n) € o/ (C, L*(X; RY) such that
h(d + ig, 1) € L4(X; RZx R}), uniformly in every strip ¢; < 6 < ¢, ¢;,c, € R.
The space M§(X; RY) has a natural Fréchet structure. Thus it makes sense to define
C>(R, x Q, M4(X; RY).
For g = 1, z varying on I'y, _,, we set
MG(X;Ty-)9h(w,2) <> h(w, 1/2 — y + it)e M4(X; R).

From the system of h; of (11) we can pass to the operator family
M
h(r, y, w,n) = kZ Vi 0Py, x (1) (1, y, w, ) Py, (12)
=0

acting globally along X. Then

h(r, y,w,n) e C* (R, x Q, M4(X; RY). 13)
Thus the Mellin operator convention leads to a mapping

{bifosism = C*(R, x Q, M4(X; RY) (14

and bu(y, 1) = op () (v, 1) -

Let n — [y] denote a strictly positive C* function on R? with [5] = |y| for |4} = const.
Choose cut-off functions w(r), w;(r), i = 1, 2, satisfying the conditions 1.2. (29). Then we
form the operator family

b(y, 1) = r™*o(rln]) bm(y, n) @, (r[1])
+ (1 — o) by, m) (1 — @, () (15)

which is again equivalent to b (y, n) and r ~*by(y, 1), both with respect to L4(V") for all
¥, n and with respect to L (V" x Q) after applying op,, ,.
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The operator family (15) will be interpreted in the edge D calculus as a (complete)
operator-valued symbol. It has again a symbolic structure that we want to analyze. First
we have the homogeneous principal interior symbol of order u

a(b) (x,r, v, & 0.1) = r b, (x, 1, v, & re, ), (16)
cf. (8). Further
che(b) (y, w) = ho(y, w) := h(0, y, w, 0) a7

is the Mellin symbol of (15) of conormal order u (cf. (13)). It is an operator-valued
function on @ x I';;, _, Another operator-valued symbol is the homogeneous principal
edge symbol of (15) of order u, namely

a4 (b) (v, ) = @(r |nl) r~* opfa (ho) (v, 1) @ (r Inl)
+ (1 — o)) by, oy, ) (1 — w,(r 7)) . (18)
Here

M
bw,O(y, '1) = Z rhuwk Opw,(x,r) (bk,O) (y’ ’1) lﬁk
k=0

with b, o(x, y, &, 1o, rn) == b (x, 0, y, &, ro, ry), (v, 1) € 2 x R? (cf. analogously (10)).

Note that here, in contrast to the calculus of [S1], Chapter 3, there are not only involved
the homogeneous principal parts of b,. In [S1] we have used a smaller class of interior
symbols, and it was assumed X = $". Nevertheless, the leading edge symbol satisfies
the analogous homogeneity condition, namely

7. Proposition.

aki(b) (v, An) = A% () (v, ) 23! (19)
SforallyeQ,ne R\ {0}, Ac R,. Here
(5¢,1) (x, r) = A%u(x, Ar) (20)

for arbitrary fixed o. € R.

This follows by a straightforward calculation.

The choice of o in the given calculus depends onn = dim X. Here weseta = (n + 1)/2.

We say that a(x,r, y, £, 0, 5) € S4(cV" x Q x R"* 1 ¥9) satisfies the exit condition if there
exists a sequence e;(x, y, &, g, 1) € $4(cV" x @ x R**1*9) such that

1) a(x, 3.1, & 0) ~ 2() 3 rlex, v, £ o, 1) @1

j=0

for any r-excision function y. More precisely we demand

Sc + 1 en) (1 + WDk

N
DDz D% , .x() {a - _20 r_’ej}
=
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forall ke N, xe N**4 Be N"*1*4 with a constant ¢ = c(k,a, B, K) for all xe K € V,
reR,,ye®, (&0, n)eR" 1,
SE(cV” x Q2 x R**1*9), will denote the subspace of all

a(x,r,y,&0,n)eS4(cV x QxR 1)
satisfying the exit condition, and we set
StV x QxR 1*e)
= {a(x,r, & rg,rm): a(x,1, &, 0,m) € S4(cV" x QxR 149 3
If the symbols (7) that are involved in (15) satisfy the exit condition, then
by, n): H=H(X") —» H*7HE7HXT)
is continuous for every y, #, and all s € R. This is true in particular of ¢%(b). Thus

o4 (b)e C® (T*Y, N LX), %“”’”‘”(X“))).

seR
In compositions and parametrix constructions for the operator families of the type (15)
there will occur also smoothing Mellin and Green operator families, similarly as for the

cone in the previous section. For describing the smoothing Mellin families it is adequate
to choose a conormal order v with 4 — ve N. Then we consider

k—1

m(y,n) = o (rfa) r" _ZO r HZ n* ophe "> (hy) () w2 (rlm)) - (23)
Jj= al < j

Here ke N\ {0} is the length of the given weight interval (cf. 1.2. (22)), and

h;, € C*(Q, My 2 (X)) for certain V}, € ¥". In the definition of (23) a parameter-dependent

analogue of 1.2., (32) is used, namely

C*(Q, My *(X)) = C*(2, My (X)) + C*(2, My,*(X)),
cf. [S1].
If we set

oa(m) O, m) = o (rinh r=” i PoY ntoph " () () wa(r 1) (24)

k=1
j=0  lal=j

then we have obviously

al(m) (v, An) = Lu;0%(m) (v, ) 3 (29

forall ye 2, neRI\ {0}, e R,.

Changing of the cut-off functions ; in (23) or of the decomposition data of
the Mellin symbols leads to remainders of Green type. They are defined as follows.
First introduce for every B=Wn{n+1)/2 -8 —k <Rew} for We7?,
Wc {Rew < (n+ 1)/2 — B}, 8 = (—k, 0], the subspace of all ue X*#(X") with
wu e H5#(X") for any cut-off function w(r).

19 Annals Bd. 8, Heft 3 (1990)
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The Schwartz space ¥£(X") on X~ with weight § and asymptotics near r = 0 is
defined by

oFPX") = wA 5P (X),
1-)FAX)=010- ) F(XxR)y,

with (X x R) = C*(X) ®, & (R)and #(R)being the standard Schwartz space on R.
Note that there exists a sequence of Hilbert spaces #5(X")Y, j e N, such that

LX) = lim XD (26)

JjeN

These spaces can be chosen in such a way that they are closed under the action of %,
for all Ae R,. An analogous statement holds for s8(X") for all s, § and B.

Let E be a Banach space and {x,};.r, € C(R., %,(E)) be a group of isomorphisms
(3% = %30, %5 1 = x;_, for all 4, X' € R,) with Z,(...) being the space Z(...) in the
strong topology. Write (1) = x,;. For a second Banach space E we fix analogously a
group C(R;, Z,(E)). For Q = R? open, u€R,

$*(2x R%; E, E) 27
denotes the space of all a(y, #) € C*(2 x R, Z(E, E)) such that

1% () (D2DEa(y, m) x| e, 2y < el ™

for all multi-indices aeN?, feN? and yeK € 2, neR? with a constant
¢ = c(a, B, K) > 0.

The operator-valued functions in (27) will be used as the amplitude functions of a yD
calculus with operator-valued symbols, where in particular p = g or p = 2¢q (and
Q2 := Q x Q in the latter case for open Q = R9. In [S1], Chapter 3, the standard elements
of the calculus were proved.

In particular we have the notion of homogeneity and of classical amplitude functions.

~

S®(Q x RY; E, E) denotes the space of all a(y, n) € C*(2 x R, Z(E, E)) with
a(y! ir’) = Anﬁla(ys r’) %; ! (28)

for all ye @, |yl = const, 4 = 1. Further $%(Q x R% E, E) is defined as the subclass of
all a(y, n) € (27) with

a~ ) a,; forasequence a, ;€ S« )@ xR%E, E).
j=o0

For every a(y,n)e 8%4(Qx R%E, E) there is a unique ag,(y,n) e C*(2x (RT\ {0}),
L(E, E)) satisfying (28) for all yeQ, n+0, AieR,, and a(y,n) — x () agy(ysn)
e S4 12 x RY; E, E), x(n) being any excision function (i.e. x € C*(R%), x = 0 close to
n =0,y =1 for ] > const). As in the scalar calculus it is called the homogeneous
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principal part of a(y, ) of order u. Analogous definitions make sense for E = lim E© for a
«—

sequence £ of Banach spaces. The symbol estimates are then required fojré';ll jeN.
8. Definition. Let 4, v, fe R, u —veN, /=8 — u, 0 = (—k,0], ke N\ {0}.
Agy,y,ne () C(R*x R, L(H*P(X"), #=F (X)) is called a Green edge symbol of
the class SRVG(;;; x RY, g) for g = (u; B, 6), with the carriers of asymptotics

B =W, n{(n+1)/2—p —k < Rew},

B, =W,n{(n+1)/2+ -k <Rew}
for Wie v, W, c {Rew < (n+ 1))2 - g}, W, = {Rew < (n + 1)/2 + B} if

g, ¥, m) e Sy(@* x R, =H(X"), #5(X"),

g* (v, ¥, m) € Su(@* x R% o> ~F(X"), £5,°(X7)

for all se R.
The operator families

p(yv, Y, n) = by, n) + my,n) + g0, y,n

with b being given by (15) for v instead of y, 4 — ve N (and under the exit condition
for the b,), m by (23) and g by the latter definition form a subspace of

() $¥(Q* x R o =#(X"), = "F (X))

seR

that we call R*(2? x R4, g). This space has a rich internal structure with respect to algebra
properties that are compatible with the symbolic rules, analogously as in the more special
case of [S2], Chapter 3. R¥(22 x RY, g) is the space of cone operator-valued symbols that
give rise to the class

Y'(X" xQ,q) (29

of wedge yDO’s by applying op,, , and adding negligible Green operators (of analogous
structure as those of [S2]). For A€ Y'(X~ x Q, g) we have the interior symbol

o,(A) = a,(b), (30)
o4(4) = a4(b) + aly(m) + o}(g), G31)

where ¢ (g) is the homogeneous principal part of g(y, y', #) of order v in the sense of
the homogeneity (28).
Moreover, we can define

aa(A) (W) = 03¢(b) (W) + a3,(m) (W), (32)

where a},(b) was given by (17) with u instead of v, and a},(m) = hg, (cf. (23)). The symbolic
level (32) is subordinate to (31) in the sense that it is uniquely determined by (31).

19*
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It is not our aim here to formulate a complete generalization of the wedge operator
calculus from [S2] to the class (29). This will be subject of a separate paper, devoted to
the problem of branching asymptotics. Let us only mention that for A e Y* (X" xQ, g)

oA =0,04A) =0 = AeY (X xQg). (33)

The role of (29) for the corner is that the localization of the corner class outside the
vertex along the outgoing edge R, coincides with Y*(X" x R, g). Let us finally note
that the highest order 4 = v refers to the ellipticity whereasv < p, 4 — v € N, is generated
by symbol relations like (33). If B is a stretched manifold with conical singularities that
corresponds to X~ close to 0B, then the class

Y'(BxQ,g) < L¥(int Bx Q) (34)

is defined as the subspace of operators A + G with @,A4@, € Y (X~ x 2, g) for every
Po> Bo € C*(B), ¢g, o = 1 close to OB, supported by a small tubular neighbourhood
of 0B, and G being a global negligible Green operator (cf. [S2]). On Y (B x Q, g) we
have the symbolic levels oy, 0¥, o}, analogously as above (¢}, o}, depend only on the
restriction of the operator to a neighbourhood of 9B).

1.4. Polar Coordinates in Pseudo-Differential Operators

A motivation for studying the symbol classes 1.2.(4) may be the behaviour of yDO’s in
R"*! 3 x under introducing polar coordinates (x,r), x = %/|%|, r = |%|. We will give a
formulation in terms of non-canonical symbol mappings. By substituting polar coordi-
nates several times we then obtain the corner symbol classes. They will be in Chapter 2
the starting point for the repeated Mellin conventions.

Let V be a coordinate neighbourhood on the unit sphere $” of R"*! with local
coordinates x € R". Set

V" = {feR"1\ {0}: %/|%| e V}.
Denote by
Sh(cV* x R**1) 0y

the subspace of all a(% &eS4(V" xR"™ 1) with a = a,|pxpn+: for some
a, € S4(R}"! x R}"1). The mapping

V-V Fo(xr) V)]
gives rise to a push-forward of yDO’s

(m)a: L4(7") — L4().
1. Proposition, There exists a non-canonical mapping

0. S4(cVy x R ) > SE(cV;, x R:G
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such that for b = a (a), b = b(x,r, &, 0), and b(x, 7, &, 0) = b(x, 1, & r0)
(ﬂc)* opw.i (a) ~rH opw.(x.r) (5) . (3)

Proof: The proof is a simple consequence of the substitution rule on complete symbolic
level, cf. 1.2. (20). In the present case we have (X, =0, (x,1. &0 = (5, /), n. = ».
Then ‘dz.(%) = r 'R™(x) (E, ® rE,) with E, being the n x n-unit matrix and R™1(x)
an (n + 1)x (n+ 1)-matrix with C® coefficients. The function 1.2. (21) follows in the
form =12 P, (&, rg) with a polynomial P, in (&, rg) of degree < |«|/2. Thus the resulting
symbol has the asymptotic expansion

1
> = a® <7Tc_1(x, ), r 'R (x) ( ¢ )) r7P (& ro). )
= ol ro
Let a®(%, &) e C*(7" x (R"*1 \ {0})) be the unique homogeneous component of a® (%, &)
of order y — |o] — j. Then

aP(%, r IR = roetletig® (%, R71Y)

foreveryr > 0,{ = (é>
re
There exists a sequence of constants c,;, increasing sufficiently fast as |a| + j — oo,
such that (4) is equivalent to

1 .
rey, ;x((/ca,-) raP(ns ! (x,r), R™1(x) {) Po(0) (5)

in the sense of $¥(V"~ x R"*1), y being an excision function in {. In fact, this is certainly
true for 1 2 r > 27* for every k with constants c,;(k). But then a diagonal argument
yields appropriate constants for all ke N. For r > const > 0 the sum can be carried
out in the standard way without extra precautions. The sum in (5) can be made convergent
also in $%(cV" x R; ') by enlarging (if necessary) the constants c,;, where now { plays
the role of a formal covariable. This yields just b(x, r, {) as desired. [

We can also talk about the mapping
6,084V x R"™ 1) - §k(cV" x R"*Y) (6)

such that (3) holds for b = &,(a).

Note that (6) is not surjective modulo elements of order — co. The cone calculus of
operators 1.2. (35) with interior symbols being in the image under (6) (close to the conical
singularities) corresponds to a subalgebra of the class with symbolsin r™# Sh@cV" xRt
in general. It is also closed under parametrix construction for elliptic operators.

Now let U be a coordinate neighbourhood on $**! = {j e R"*2:|j] = 1}, and

U = {5eR""2\ {0}: §/Ijl e U}.
Let

.U > U =UxR, 7

e

1
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denote the diffeomorphism, induced by polar coordinates. On U we fix local coordinates
% e R"*! = U such that a prescribed point i, € U corresponds to the origin # = 0. For
the above V we can identify 7" with a subset of U. Let

V2" = {Fe R 2\ {0}: y/lsle 7"}
Then

v cU. (8)
(7), (2) induce a diffeomorphism

¥V -V .=VxR,xR,,
defined as the composition

P2 5 VxR, » V2, J-&E)-(xnt),

where t =1y, r =|X|. Again we can look at the push-forward of ywDO’s
e LA(V?") > L4(V?"). Denote by

SE(cV?" x R**?)

the subspace of all a(j,#)eS4(V2"xR"*2) with a = a}pz-xpe+z for some
a, € S4(R3* 2 x R} 2). Moreover, define

S4(cP2" x R"*?)

as the subspace of all b(x, r, t, & 0,7) € S4(V2" x R**2) with b = b,|y2- xgn+2 fOr some
b, € S%(V x R?x R**?), R? = R, x R,. Analogously to 1.2. (4) we introduce
SE(cV?* x R**?) = {b(x, 1,1, & ro, rtr):
b(x,r,t, & 0,7)€ S,V x R"*2)}. ©)

2. Proposition. There exists a non-canonical mapping

a:S4(cV?" x R"*2) - §%(cV?" x R"*?) (10)
such that for b = a(a), b = b(x,r,t,& 0,17) and b(x, 1,1, &, 0,7) = b(x, 1,1, £, ro, rt7)

Ty ODy,5 (@) ~ t717# 0Dy, x.pp) (). (11)

Proof: The assertion follows by iterated application of Proposition 1. The substitu-
tion j - (%,t) gives rise to a mapping a(f,#) —t %c(%t,E tr) with
c(%,t, & 1)e S4(cV" x R%%2). For % = (x,7) we have to apply a parameter-dependent
variant of Proposition 1, where the given symbol contains extra variables ¢t and
covariables 7 that are untouched by the diffeomorphism. This leads in the corresponding
terms of (4) to a dependence on the covariables in the combination { = (¢, rg, rtt). The
other elements of the proof are analogous as above. []
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We can also define a mapping
G:84(cV? x R**2) > S8 (cV?" x R**?) (12)

such that (11) holds for b = é(a). Similarly as above the image under (12) defines an
interesting subclass of the final algebra of corner yDO’s.

It is now clear how to introduce the interior symbols for higher corners which are
locally close to the highest vertex of the form V7" := V'x (R,)? for some pe N, V= R"
open. Lett = (ty,...,t,)€ (R,)? and t = (1,, ..., 7,) be the associated covariable. Then
the adequate structure is

700 PR S 16 A N 7% 708 71 73 ZYSNNNE SELINORY .

for b(x, t, & 1) € S¥(cV?" x R"*?) with obvious notations. In the present paper we content
ourselves with p = 2. The complex symbolic effects make it necessary to study separately
the singularities of small orders. For arbitrary p > 2 it seems to be advisable to establish
a more axiomatic approach.

2. Corner Mellin Operators

2.1. Mellin Conventions Near Corners

1. Definition. Let 8, y € R, and denote by
4V xR"xTyp_gxTyy-y)

the space of all h(x,r,t, ¢, w, z), defined for we I'y;, 4, z€ 'y, _,, such that

h(x,r,t,6,1/2 — B +1ip,1/2 — y + i1) e SH(cV?" x Rg;)’, . 1)
Moreover,
S4(cV?" xR*x C x Clyyy 2

denotes the space of all h(x,r,t,{,w,z)e L(CZ ,, C*(V x R, x R, x R)) such that (1)
holds uniformly in ¢; £ f £ ¢5,d;, £y <d,forallc,d;eR,i =12 By

S4(cV2" x R"x C X Clyr
we denote the set of all h(x, r, t, &, w, rz) such that h(x, r, t, &, w, z) belongs to (2).

2. Lemma. For every heS4(cV?* " xR"xXTy,_4xTy,_,) there exists an
h_ €S (V2 xR"XTy,_gxTy,;_,) such that h — h_, extends to an element in
S5(cV2" x R*x C x C)yor-

The proof is completely analogous to 1.2., Lemma 1, and will be dropped. For

h(x,r,t, & w,z) = h(x,1,t, & w,r2),



288 B.-W. Schulze

with he S4(cV?" xR*"xCx C),, and (T, AT, N h(x,r,t, & w,2) = h(x,r,t, & w — B,
z — ), we define
(0D}, OPfa,» 0Py, x (B) ) (x, 7 £)
= MM F (TP TR (xr, 1, W, 2)
X Fx’—'éMr"-¢wMt‘—¢z(r,)_‘i (t,)_y M(X,, rla t’) ’
ue Ce(V?3").
3. Theorem. For every f3,7 € R there exists a non-canonical mapping

mP?: S4(cV2" x R:Y2) — S¥4(cV2" x R"x C x Clyyy 3)

YA

such that
opw,(x,r,t) (d’) ~ OP}Vu,t opl‘\?ll,r opw,x (h)
for h = mP*(a) and G defined by a(x,r,t, &, 0,7) = a(x, 1, t, £, rg, rtv).

Proof: Let us assume first § = y = 1/2. The method of proving 1.2., Theorem 2, can be
applied separately with respect to r¢ and tr. For simplicity we shall neglect again the
dependence on x, & If h(r, t, w, z) is given with A(r, t, i, it) € S4((R,)? x I'?), then the
associated Mellin DO has the form

A

OBIF, OB () u(,

— j'eio(logr—logr’)+it(logt—logt’) b(r, t, o 7'1.') u(r/, t/) drr/r/ dQ dt//tl d‘[
with b(r, t, 0, 77) = h(r,t, —ig, —irt). For the difffomorphism »: R% — (R.)? x(y, )
= (e’ &%) = (r, 1) it follows

Au = (x*) "' op,, .5 () 2*u

for f(y, ,n, %) = b(e’, €, n, €’ 7). Similarly as in 1.2. we obtain an f(r, t, rg, rtr) with
%y ODy. 55 () ~ ODy .0y (fo), Wwhere now

1
folr, tyre, 1) ~ ¥, — f@(y, 7, 7e, rt7) Qu(r, re, rec)

for y = logr, j = logt. Here o = (2, a,) € N2, Q,(r, {) is a polynomial in { = ({,{;)
of order < |a}/2, with coefficients in C®(R ),
Q.(r, ro, rt7) = P, (r) 1**P,,(t7)

with polynomials P, (rg), P,,(t7) of analogous sort asin 1.2. With { = (rg, rtt), interpreted
as a covariable, we can form the convergent sum

1
80.3.0 = = 1901 5.0 2. 0 x (3) ,

4

r =¢’. Now we define fo(r,t,{) = g(logr, logt,{). Then fo(r,t,{)e S4L((R.)* xR}
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Moreover
fO(r’ t’ Q: T) - h(r, t’ "IQ, _":) € S‘:l—l((n+)2 X RZ) .

Set fo(r, t, 0, 7) = folr, t, ro, rt7). Inserting hq(r, t, i, irt) = a(r, t, — o, —r1) for the above
h it follows

Oplltl/,zt opl\lll/,zr (ho) ~ OPy.¢rn fo) = 0Py, r,0 (@) — ODy, ¢y (d1)

with a (r, 1, 0,7) = fo(r.t,0,7) — a(r, t, 0, 7) € §% (R ,)* x R?). This procedure can be
continued analogously as in 1.2. It yields a sequence hy, ke N, ord h, = p — k, such

that for ¥’ ~ Y, h,
k=0

opy’ opmz () ~ 0D, 4.0 (@) .

Now Lemma 2 allows to replace h' by h e S¥((R1)? x C?)y,,. For finishing the proof we
show the following.

4. Lemma. Let h(x,r, 1, ¢, w, z) € S4(cV" x R} x I'}) be arbitrary, and B, y € R. Then there
exists an hg,(x, 1,1, {, w,2) € S5(cV" x REx Ty )y _gx Ty, ) such that

ODis’; OPw+ OPy,x (H) ~ 0P}y, P, 0Py,  (hg,) -

Proof: For simplicity we consider the (x, £) independent case. By definition we have
opi/? opif? (k) = r'/2 12 opy, opw (fo) ()12 (1) 172,
op}s oph (hg,) = 1’1" opy opm (1) ()7 ()77,

with fo = T,7'2T,7'?h, f; = T,7°T,”"hy,. Thusit suffices to find an f; € S%(R+)> x I'3),)
such that

rH2=8¢1277 opyy opm (fo) (1) TV2HE ()27 ~ opyy opm () -
The left-hand side is a Mellin DO with the r, ¥, t, t'-dependent amplitude function
S vt worz) = r278 27 f (et w, rz) (F) T VREE (1) 12

Applying the Mellin operator calculus (cf. {S1]; 2.2. Theorem 5), we can pass to an
equivalent r, '-independent amplitude function. The corresponding formula is

1 o \* 0\
Z—(—r’ —) (—t’ —) DEDEf(r, 7y t, s W, P2y gy ©

% o) or or

The dependence on z in the combination rz makes no extra problem. The summands
are of the form g,(r, t, w, rz) with g,(r, t, w, z) € S¥7¥((R ,)> x I'} ). After carrying out
the asymptoticsumg ~ Y g,inS4((R,)? x I'? ;) wecanset f,(r, t, w, 2) = g(r, t, w, ). []

Applying once again Lemma 2 to f;, we can complete the proof of Theorem 3. []
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Instead of (3) we can also talk about

if?: SE(cV 2" x RE42) — 84(cP2" x REx C,, x Cyo) e\

ot

with ##?(@) == mP*(a).
As an analogue of 1.2., Remark 4, we obtain for every diffeomorphism y: V; = V,,
%(x) = y, a non-canonical mapping

&8 SH(cV2" x R1t2) - §#(cV2" x R™*2 ()

& et ner

such that for 4, = §'(d,)

(x xid)y OPy, x.r.0y (@1) ~ OPy,3,r.ny (d2) 5
xxid: V; x Ry x Ry — ¥, x R, x R,. Moreover there is a non-canonical mapping
W S5V x Rpx €, X Colpot = Sti(cVy " X Ryx C,, x C )y
such that forf = »'(h)
(x xid),, op}y,. 0Pk, OPy,x (h) ~ 0D}y, 0P, OPy,, () -
Then
w'WE ~ Wby
in the sense of equivalence modulo elements of order — oo, rif” being the mappings (3)
belonging to Vi =1, 2.
Let U « ¥V x R, be open, and (x,r) € U = r > 0. Then we have a natural restriction
mapping
St (cV2" x R"*?) - §4(cU” x R"*2),

By introducing local coordinates £ in U we can pass (non-canonically) to the transformed
symbol spaces, according to 1.2., Remark 4. If V2" is interpreted as a piece of a corner
and U" as a piece of a cone (where in general we only assume U" n V2" #+ § but not
necessarily U™ < V27), then we can talk about a diffeomorphism V" n U - V" U from
the (x, r)-coordinates of V'~ to the %-coordinates of U. This corresponds to an equivalence

r gly2enpr ~ Ply2enr (6)

of given g e S¥(cV?" x R"*2), pe §¥(cU" x R"*2). The weight factor r™* is motivated
by polar coordinates X — (x, r), though r > 0 over the intersection.

We will have to employ a variant of 1.2., Theorem 2, for symbols in S%(cV,%, , x R1%2)
with respect to t, where r remains untouched. Let

SH(VxR,. xR, xR1L2)

be the space of all a(x, 7, t, &, 0, 7)€ S4(Vx Ry x Ry x R**2) with @ = a,]y «n, xR, xpn+2
for an a,(x,7,t, ¢, 0, 7)€ S4(Vx R, x Rx R"*2). If

§L‘l(VX R+ X R+ X Rg,-:p,zt = {a(x’ r, t: 5: o, tT):
a(x9 r, t’ é’ Qa T) € Slc‘l(I/>< R+ X R+ X RE,;,Z:)}
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then we get a natural embedding

5&(CK?2; x R1%2) - S4(V xR, xR, xRE42). (™

st gt

Define
S4(VxR, xR, xRS %Iy, )
by the usual scheme as the space of all h(x, r, t. .. g, z) such that

h(x,r,t,&,0,1/2 —y +it)e S4(Vx R, xRx R:*2), (8)

ot

Moreover,
S{:‘I(Vx R+ X R+ X Rg.-zl X cz)hol

is the space of all h(x,r,t, ¢, 0, 2) € #(C, C*(Vx R, x R, x R}t")) such that (8) holds
uniformly ind, £y £ d, for all d,,d, e R.

)
5. Theorem. For every y € R there exists a non-canonical mapping

mil: SB(V xRy x R, x RI%E2) - S5(V xRy x Ry x RELI X C oy

g0t

such that for h = nm}{(4)

opw,(x,r,t) (d) ~ opKl,t opw,(x,r) (h) B (9)
a=dx,rt &, ro,rtr) for
a(x,rt,¢ 0, t1)e S4(VxR, xR, x R"*2),

Proof: The assertion is a simple modification of 1.2., Theorem 2. It is to be applied here
with respect to the ¢ variable, and the role of V of 1.2., Theorem 2, now plays
VxR,a(xr. O

According to (7) we get by restriction also

i Sh(cV2" x R"*2) » $4(V xRy x Ry x R"* 1 x C)yy (10)

such that (9) holds for h = m}(4).

Now let us look at the stretched corner globally close to the vertex. B will denote
(as in 1.2.) the stretched manifold with conical singularities which is the base of the
stretched corner B* = B x R, . The components of 8B correspond to the conical points.
Every point of OB has a tubular neighbourhood =~ X x [0, 1) with X being the base of
a corresponding cone. Let us assume for simplicity that 0B only consists of one connection
component. The generalization to several connection components is completely trivial
and will be dropped.

Choose a finite covering U = {U,, ..., Uy} of int B by open sets where Uy = X xR,
U; 0B = F for all j > 0. Then the sets U = U;x R, form an open covering U~ of
int B x R, (the interior of the stretched corner), where U, x R, is the local model along
the outgoing edge.
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Moreover, let B = {V,, ..., V3,} be an open covering of X. Then the sets ¥, x R, form
an open covering B* of Uy, and B2" = {V;?"}<, < is an open covering of U;. The
pair {82", U"} will always be understood in this meaning.

For simplifying notations the local coordinates in ¥, (U;) will be denoted by x € R
(X € R"*1). Clearly they are different for different k(j).

6. Definition. A system {{t ™*r " “q;}o<x<m {t *P;}1 <j<n} With
glx.r.t, Ero,rn) e S xRELY),  0<ks=M, (11)
pi% 8 e Si(UxRE), 1SjSN 12

is called a global complete symbol over int B* with respect to {B*", W} if

Qk|V§‘an" ~ ‘I1|V,Z(“nv,2‘ for 0skl=M, (13)
Pilvinu; ~ Pilviau; for 12iL,j<N, (14)
"-"‘Ik|v,§‘nu}? ~ Pj|V,f”nv; for 0Sk<MI1Zj<N. (15)

(13) refers to the transition diffeomorphisms V; n V; > ¥, n V; and the associated
mappings (5), further (14) is to be interpreted analogously to 1.2. (12), and (15) according
to (6).

Let {¢;}0<;<n denote a partition of unity belonging to the covering [ of B, formed
by Ugand U, j = 1, ..., N. In other words, ¢, € C¥(Uy), ;€ C(U)),j + 0,Y ¢, = 1.
Further let {¢,}o<;<y be a system of functions, @, € CF (U,), ¢;€ C¥(U,) for j + 0, and
@j¢; = ¢, for all j. For notational convenience we shall interprete ¢, @; also as functions
on Ug, U/, and denote by the same letters the pull-backs under various coordinate
diffeomorphisms.

Further {y,}o<x<u denotes a partition of unity on X, belonging to B, and {{,}o<i<a
a system of functions ¢, € CJ (V) with w,p, = , for all k. For convenience we shall
interprete yy, 1, also as functions on V", V;2" as well as on diffeomorphic images of
these sets.

With the symbols of Definition 6 we can form the operators

By = t7T* 17 0Dy, ey (@) € LA(VEY), (16)
J=1" 0Dy, x.) (D) E Ly(Uu;), (17)

0<k=M,1<j<N,and set

A

M N
A = ¢ { Zo kaku?k} Go + 2, ¢;A;6;€ L*(int B").
k= j=1
It is then clear that

Alyz- ~ By, Aly; ~ A; forall k,j.
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Now we apply the mappings
nif7: S (V2" x RiL2) — S%(cV2” x REx C,, X C )pt s
i’ S4(cU; x REL?) - 84U x REY X C )t »
cf. (4) and 1.2. (18), and
m: S4(cV2" x R1L2E) - S5(Vx Ry x Ry x RIL! X C ot s

§ et

cf. (10). Moreover, we choose cut-off functions w(r), w,(r),i = 1, 2, satisfying 1.2. (29). Set

hl,k = 'ﬁﬂy(‘h) > hyx = mil(qy), f, = ’ﬁy(Pj) .

Then we can form the (¢, z) dependent operator family
M
h(t, z) = @o {'Z,o wir " o(r[t]) oph 0P, « (11 1) (¢ 2) @4 (r[7])
+ (1 = @(r[t)) 0Py, (x, (h2,1) (¢ 2) (1 — @, (r[z])] tﬁk} Po

+ _;1 ®;0p,.: (f)) (t, 2) &;, (18)

t = Im z. An immediate consequence of 1.2., Theorem 2, and Theorems 3, 5 is that
A ~ t™* op} (h) (19)

in the sense of LY (int B™).
Similarly to 1.3. (13) we can form the operator-valued Mellin symbols

hl(r’ t9 w, Z)Ecw(n+,rxn+,t, M’é(X; F1/2—y)) (20)
by
M
hl(r, t’ w, Z) = A Vi opw.x (hl.k) (ra ta w, Z) d”k
k=
and
h2(r’ t: o, Z) € COO(R-f-,r X R+,n Lgl(X; Rq X F1/2—y)) (21)
by

M
hZ(ra ts Q’ Z) = kZO lpk opw,x (h2,k) (r5 t, Q, Z) lﬁk .
Note that h,, h, are holomorphic in z and that (20), (21) hold for all y, uniformly in

every strip parallel to the imaginary z axis. Set

e(t, 2) = r "o (r{z]) opta (hy) (¢, 2) @4 (r[7])
+r7*(1 — o(rlz)) op,,, (ko) (t,2) (1 — @, (r[z])) . (22)
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Then (18) takes the form

h(t,2) = poelt,2) o + Z 9;0Py.2 () (6:2) ;. (23)
=1
Note that (18) as well as @qe(t, z) $, are families of operators in C*(B, g), g = (ﬂ 9),
B=p+n/2 0= (k0] for every k (cf. the notations at the end of 1.2.), and the
leading Mellin symbol 1.2. (37)

ohe(h) (t, w) = ohy(@oed,) (1, W) 24
is independent of z.

7. Proposition. The operator family (22) satisfies

op}s (poedo) € Y(X™ xR,, g)
g = (u; B + n/2, 0). The leading Mellin symbol in the sense of 1.3. (32) coincides with (24).
Moreover, op}y (poedo) has a complete symbol {r™#b}o <, < in the sense of 1.3. (6), with
b, = t™*q, and q; being again of the sort (11).

Proof: This result follows by analogous arguments as for 1.2., Theorem 2, now applied
to operator-valued symbols, acting as operators along X~ . A relation of leading symbols
modulo lower order terms, expressed by the replacement —z — itz, follows also in the
operator-valued set-up. Then the leading Mellin symbols remain untouched. [

It would be a nice analogue of 1.2. (27), here for the corner, to have holomorphy of
(23) in z.

This is, of course, not the case, since the w(r[t]), w,(r{t]) factors are not holomorphic.
On the other hand, in [S3] we shall see that holomorphy can be achieved modulo a
C¢(B, g)-valued error g(t, z). Thus the choice of (18) for the operator (19) (or equivalently
for the given complete symbol of Definition 6) is a first important step of an operator-
valued Mellin operator convention for the corner theory which plays a completely
analogous role as 1.2. (27), with B being the base of the cone.

In the present paper we do not construct anyway the complete algebra of corner
pDO’s containing the full asymptotic information. This will be done in [S4]. So for the
moment we may disregard the non-holomorphy of h(t, z) and complete the operator
convention by something along the outgoing edge far from the vertex as a counterpart
of the second item on the right of 1.2. (28). To this end we apply the definitions of 1.3.
for @ = R, ,, choose a system {t™*r “q;}o <x<» With g; of analogous sort as (11), and
setbh, =t"*q,k=0,...,.M

Then by € S%(cV," x R, x R"*1 x wR), and {r *b,}o<i<y iS global complete symbol
over X~ x R, in the edge sense, cf. 1.3. (7). The variables (t, 7) play here the role of (y, 1)
from Section 1.3. According to 1.3. (15) we obtain the operator family b(¢, 7). In view of
Proposition 7 the symbols g; can be chosen in such a way that

t™* opjy (@oe@o) ~ Op,,, (b) in L{H(X™ xR.).

In an analogous manner we can proceed with the interior parts {t *p;}, c;<y of the
complete symbols and switch the Mellin action along t to an op, ,action, cf. 1.2,



Mellin Representations of Pseudo-Differential Operators on Manifolds with Corners 295

Theorem 2. It follows altogether that a sum like
w(t) {operator in opy, ~convention} o (t)
+ (1 — (t)) {operator in op,, ,-convention} (1 — w,(t))

is independent of w, w; modulo smoothing operators, provided 1.2. (29) holds. The more
precise analysis of [S3], [S4] will show that the errors are even in the class of Green
corner operators. If

{t7"r "qlosksm {tT"Pit 1N}

is a complete symbol as in Definition 6 we form A ~ A4 by

A = o) t™* opjy (B) @,(1)
N
+ (I — (@) {9o op,,: (b) Bo + _; @40} (1 — (1) (25)

Here h is given by (18), A; by (17). The cut-off functions w, w; are assumed to satisfy
1.2. (29). As emphasized above the final operator convention for the corner will contain
a (smoothing) correction of h in order to achieve holomorphy in z. In addition we will
allow extra smoothing Mellin operators and Green operators, similarly as for the cone
with smooth base (cf. 1.2. and [S3], [S4]).

Note that h depends on B,y and b on . In the final calculus we will replace y by
y — (n + 1)/2, and B by  — n/2 for n = dim X.

2.2. Symbolic Levels of Corner Operators

This section will have a look at the symbolic structure of the operators of the form 2.1. (25).
First we have the homogeneous principal interior symbol of order u

gt (A)e C(T*(int B) \ 0) (1)
which is defined by
o’:::(A)lT‘V,z‘A AN t_ur_uqk,(u)(x’ r, t, éa @, T) s 0 é k é M ’

(Al rep;no0 =t Pj e B L &1, 1Zj=N,

with g, (p;. () being the homogeneous principal part of g, (p;) of order p.
Furthermore, there is the corner Mellin symbol of highest conormal order u

oh(A) (2) = h(0, 2), )
h(t, z) being defined by 2.1. (18) and z varying on I, _,. (2) is an operator family
Th(R) (2): H>P2(B) — P2 3

for all s € R and belongs to the parameter-dependent class (with the parameterze I'y,_,)
of cone operators C*(B, g; wl'y;,_,), that will be studied in detail in [S3], g = (B, 0),
0 = (—k, 0]. As a family of cone operators it has a leading Mellin symbol with respect
to the base X of the cone which is independent of z. Let us talk about the subordinate
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Mellin symbol
oMo (A) (W): H(X) - H*"*(X), 4

se R,withwvaryingonIy;, _, Fora(z) e C*(B,g; wR),R = I'};,_,, we have canonically
a parameter-dependent homogeneous principal symbol g(a) e C*((T* int B) xR, \ 0)
(0 corresponds to (&, 1) = 0 with £ being the fibre variable in T* int B) and then

tat(A)l—o = ohoi(A), 3)

where g%, on the right is used in the latter meaning and on the left as in (1).
The operator family b(t, 1) of the preceding section and the definition of 1.3. (18) give
rise to the homogeneous principal edge symbol of order u

%4 (A) (¢, 7) = a%(b) (1, 7). 6
It satisfies
a4(A) (t, it) = Au,0%(A) (¢, T) % !

forallte R,,7e R\ {0}, Ae R, where (x,u) (x,r) = A"V 2y(x, Ar), ue A F(X") (cf.
1.3. Proposition 7).
The edge symbol (6) is an operator family

THA) (&, 1): A BHIX) o oS HBENIH(Y)

for all s € R, parametrized by T*R, \ {0} > (¢, ©). Remember that by 1.3. (17) we have
a subordinate Mellin symbol of (6)

o0 (A) (&, w) = ho(t, w) ™

which is the image of {t "#g,}o <, <» under the mapping 1.3. (14), restricted to r = 0. It
is a family of operators

o4 (A) (t, w): H*(X) - H*7¥(X),

s € R, smoothly dependingon t € R, we I'},, _ 5, which can be interpreted as an element
in C*(R,, LL(X; Iy, _p)- Clearly t* a0 (A) (t, w) is C* up to t = 0. Then

oo (A) [t W)l o = ol (A) (W), ®

of. (4).
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