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1. The Hierarchy of Operator Structures

1.1. Preliminary Remarks

This paper studies pseudo-differential operators (pDO's) on manifolds with corners. The
analysis of operators on non-smooth spaces is necessary for many reasons. Concrete
problems in partial differential equations, differential geometry or applied sciences lead
to questions on the solvability in the sense of representing parametrices in suitable
algebras of operators and the regularity of solutions close to the singularities. It is
convenient to look at the singularities in terms of an iterative geometric procedure,
starting with a closed compact C manifold X. Then we can form a cone
C = X x A +/X x {O} with base X, and further a wedge W = C x R4 with cone C and
edge R . These are the local models of spaces with conical singularities and edges,
respectively (with C structures outside the singularities). Below we shall recall the
precise definitions.

Now if B is a space with conical singularities, we can pass to a corner
K = B x A +/B x {O}, further to a cone based on a manifold with edges, or to a wedge
of the form K x R4. In this way we can successively generate higher singularities.

This concept covers in particular situations that are interesting for applications such
as screen (or crack) problems, mixed elliptic problems, or of quarter plane type. Also
the case of standard boundary value problems is included, since the local model of a
domain 2 with C ® boundary is a wedge with cone A, and edge Rq, dim 2 = q + 1.
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The program for the analysis is now, parallel to this geometric picture, to establish a
hierarchy of operator structures, beginning with the standard pDO calculus over X. In
other words on C, W, K, ... is required a pDO calculus, aimed at solving elliptic problems
for differential operators within the corresponding operator classes.

Operators on manifolds with conical singularities and edges have been studied by
many authors, cf, for instance, Kondrat'ev [K1], Plamenevskij [P1], RoBmann [R2],
Dauge [D1], Rempel/Schulze [R1], Schulze [S2], [S5], [S6], [S7], and the references given
there. Conical singularities can be treated in the context of totally characteristic operators
(or of Fuchs type) written as Mellin operators.

Edges require constructions analogous to boundary value problems with extra trace
and potential conditions along the edges, similarly to Boutet de Monvel [B1].

The case of corners K = B x R+/B x {O} has to unify both aspects, the totally
characteristic one in direction to the corner axis R + and that of trace and potential
conditions along the one-dimensional edges emanating from the corners.

The present paper develops the Mellin operator conventions for pDO's near corners.
In [S3] we shall add further elements on parameter-dependent cone operator families.
This will finally be used in [S4] for an algebra of corner pDO's including the concept
of ellipticity, parametrix constructions and the asymptotics of solutions.

The main idea is to employ a Mellin pDO calculus on R+ with meromorphic
operator-valued symbols acting on the base B of the corner. They will reflect a totally
characteristic structure close to the conical points of B as well as an edge degeneracy
in the Mellin covariable. In addition the complete corner algebra will contain operators
with meromorphic smoothing Mellin symbols and Green operators, induced by the
parametrix construction for simpler operators, e.g. differential operators.

The non-smoothing Mellin symbols are linked to an interior symbolic structure by
the Mellin operator convention. Analogous Mellin conventions exist on manifolds with
conical singularities and edges, and the constructions will show how to proceed for
higher singularities.

In this sense the present paper wants to emphasize aspects of a more axiomatic
approach in dealing with pDO's on manifolds with higher singularities.

The operator conventions will lead to natural analogues of Sobolev spaces, defined
on the manifold with singularities, where the operators induce continuous actions,
similarly as in the classical case of closed compact C' manifolds (cf. [S1], [S3], [S4]).

Another aspect will be a symbolic structure consisting in a system of leading symbol
components, a part of them being operator-valued, where the bijectivity of every
component is by definition the ellipicity of a given operator. The interaction of the
various symbolic levels can be illustrated already for boundary value problems. In the
comparatively simple special case of Boutet de Monvel's algebra we have the interior
and the boundary symbol, where the ellipticity of the latter one corresponds just to the
Shapiro-Lopatinskij condition, whereas the ellipticity of the interior symbol concerns
as usual the given pseudo-differential operator.

For conical singularities we have an interior and a Mellin symbol of leading interior
(usual) and conormal order, respectively. Edge singularities require an extra edge symbolic
level, and so on.
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The present paper is organized as follows. In 1.2. we establish Mellin operator
conventions on manifolds with conical singularities. 1.3. deals with manifolds with edges.
The constructions are close to the corresponding chapters of [S2]. The main difference
here is that we allow arbitrary cone bases and more general interior symbols. This causes
a larger class of WDO's and extra contributions to the edge symbols from interior lower
order terms (restricted to the edge).

In 1.4. we shall briefly discuss polar coordinates in pDO's that lead to totally
characteristic symbols. In 2.1. we will introduce the Mellin operator conventions for
corner singularities and obtain a representation of operators in terms of the Mellin
transform along the corner axis with cone operator-valued symbols. These are families
of cone operators with edge degeneracy at the parameter varying on a weight line. Such
families will be the starting point of [S3]. Finally in 2.2. we shall describe the system of
symbolic levels for corners with the compatibility conditions.

The operator conventions will often be formulated in terms of mappings between
spaces of amplitude functions. They are "non-canonical" but canonical up to elements
of order - o. The remainders that are systematically neglected will have no influence
to the final operator algebra of [S4], because of the additional smoothing Mellin and
Green operators. The latter ones will be briefly defined for the case of cones and wedges,
here based on the spaces with continuous conormal asymptotics (cf. [S5], [S6], [S2]). A
subclass is associated with the discrete asymptotics, which is defined along R + r, for
r 0 as

u(r) E jk r- Pi logkr,
j=O k=O

with complex pj, Re pj- - as j - coo, and integers mj. The analogous objects for
corners will be introduced in [S4].

1.2. Pseudo-Differential Operators on Manifolds With Conical Singularities

This section will formulate a Mellin operator convention on manifolds with conical
singularities. Let X be a closed compact C ® manifold, n = dim X, and set

X^ = X x R+ . (1)

(1) will be interpreted as the (open stretched) cone with base X. A compact C ® manifold
B with boundary B = X is called the stretched manifold belonging to a space B with
conical singularity if for a given tubular neighbourhood U of B there is fixed a
diffeomorphism 6: X -- int U. The R + action on X^, given by (x, r) -* (x, r), E R +,
corresponds to an R + action on U. On U it is needed only in the local form for points
close to B and small . Then B/aB = B is the corresponding space with conical
singularity, where the local R + action is canonically defined close to the vertex. Note
that X may have several connection components. We might distinguish between several
conical points belonging to the connection components. For simplicity we shall neglect
the aspect of different conical points. Clearly B is no C manifold unless X is not a sphere.
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We adopt here the standard notations of the tpD (pseudo-differential) calculus. If
c R" is open, we denote by Su(2 x Rm) the space of all a(x, ) E C° (12 x Rm) satisfying

ID'Da(x, )1 < c(1 + )"- A1 (2)

for all (x, ) E K x Rm and arbitrary K C Q, a E N", f E N", with constants c = c(a, p, K).
Further S(2 x Rm) denotes the subclass of classical amplitude functions, i.e. with
asymptotic expansions

a(x, ) , a_j(x, ),
j=o

a,_j C (Q x R"), a,_j(x, 2g) = "-a,._j(x, ) for all > 1, Ill > const, x E Q.
The best constants in (2) form a semi-norm system on S(Q2 x R") under which this

space is Frechet. S((Q x Rm) will be equipped with the topology of the projective limit with
respect to the canonical mappings

hj: S,( x R ) -* C(Q x (R" \ {0})),

rk: Sl(Q x R ) Su - (k+ )( x Rm)

forj, k E N, where hj(a) = a(,_,) with a(,_j) being the unique homogeneous function that

equals a,_j for large I1I, and rk(a) = X(i) a(,_i)(x, l) for an excision function in
i=O

Rm (i.e. XE C®(Rm ), = 0 in a neighbourhood of = , X = 1 for 11 > const). Then
S( x R' ) is a Frechet space and the topology is independent of the choice of Z.

L"'(Q) is defined as the class of all pDO's A in Q, i.e. A = A + A, with

Alu(x) = op.,. (a) u := ei(X-x')4 a(x, ) u(x') dx' dl, (3)

dl = (2n)-" dl, a(x, ) E S"(Q2 x R"), and Ao being an operator with kernel in C(Q2 x Q).
The space L(2(Q) of classical pDO's is defined by a(x, ) c SI1(Q2 x R").

Analogous notations will be used for pDO's on C ® manifolds. In particular we can
talk about LI(int B), LI'(int B).

The spaces L(...), L'(...) are Fr6chet in a natural way (cf. [S2], Section 2.1.4.).
Now if B is interpreted as the (stretched) manifold with conical singularities we look

at special subclasses of LO(int B), called WpDO's on the manifold with conical singularities.
In the set-up of operator algebras filtered by orders it is convenient to deal with classical
operators. They will mainly be discussed from now on.

Let V be a coordinate neighbourhood on X (= the base of the cone) with local
coordinates x E R". Set V^ = V x R + 3 (x, r). Then S",(cV^ x R"+

1) denotes the subspace
of all a(x, r, , ) S(V x R"+ ') with a = allv- xR.+ for some a S(V X R x Rn+l).
Moreover we define

SI(CcV ^ x R"+ ) = {a(x, r, ¢, re): a(x, r, l, e) S(cV x R"n+ 1)} . (4)

The elements of (4) are called totally characteristic.
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We say that a(x, r, , ) E S^I(cV A x R"+ ') satisfies the exit condition if there exists a
sequence ej(x, 5, Q) Sl'(cV ^ x R" + ) such that

x(r) a(x, r, , ) x(r) r-jej(x, , ) (5)
j=o

for any excision function X (i.e. X E C', X - 0 close to r = 0, X = 1 for r > const). The
asymptotics (5) mean that

DkDxDl 0e(r) {a- E r iej}| c(1 + , qI)uIPl (1 + r) (N+1) k

for all k N,a c E N",Bfe N" + , with a constant c = c(k, oa,, K) for all x K C V, r R+,
(, ) R" + l .

Remember that more general "exit conditions" have been studied by Parenti [P3],
[P4], and Cordes [C1], Schrohe [S8]. S(cV^ x R"+')e will denote the subspace of all
a(x, r, , e) E Si((CV' x R" + 1) satisfying the exit condition, and we set

§P(CV^ x R"+l)e = {a(x, r, , re): a(x, r, 5, Q) e SIl(cV x R"+l)e} . (6)

For a E Sl(CV^ X Rn+ 'l) we shall also say that it satisfies the exit condition.
The pDO's on int B that refer to the conical singularities will have (complete) symbols

in (4) close to r = 0 (possibly up to a weight factor). In order to get a precise control
near r = 0 we shall employ a Mellin operator convention along R + r.

Remember that the Mellin transform M is defined by

Mu(w) = r - u(r) dr,
0

where first u E C(R +), E C. Then

(M- lg) (r) = i r-g(w) dw

rp

with

F = {wEC:Rew= f},
fi E R arbitrary. If G c C is open, we denote by d(G) the space of holomorphic functions
in G in the topology of uniform convergence on compact subsets. Analogously sd(G, E)
denotes the space of holomorphic E-valued functions in G, with E being a Frechet space.
Moreover for any open Q c R" we use notations such as C(2(Q, E) (C'(Q2, E)) for the
spaces of C' (C) functions on Q2 with values in E. The Mellin transform can be applied
also to u e Co(R+, E) with respect to r. The result is then in .d(C, E). It is well known
that M extends by continuity to natural classes of spaces, for instance,

M: rL 2(R+) 2(Fr/2_),

/E R, cf. [S2], Section 1.1.1.

18 Annals Bd. 8, Heft 3 (1990)
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For h(r, w) = h(r, 1/2 + i ) E S'(R x R), (r, e) e R + x R, we can form the Mellin
pDO

opM (h) u(r) = Ml,2h(r, w) M,.,,u(r'),

ue Co(R +). Set

opt (h) = r oP (T -h)r - , (7)

(T-Oh) (r, w)= h(r, w - ). If we impose smoothness of h in r up to r = 0 and, for
instance, bounded support in r, then (7) extends by continuity to an action between
weighted (totally characteristic) Sobolev spaces

opmP (h): ~'s.°(R+) -, '-1,fi(R +)

(cf. [S2], 1.2.3. Proposition 16). Analogous relations hold in the vector-valued case.
Let

Si(cV^ x RFx F1/2-) (8)

denote the space of all h(x, r, ,, w), defined for w E TF/2-p, such that

h(x, r, , 1/2 - + i) e SIl(cV ^ x R'). (9)

Moreover,

S,(CV^ X R" x C)h,,, (10)

denotes the space of all h(x, r, 4, w) e (C, Co(Vx A+ x R)) such that (9) holds
uniformly in cl < < C c2 for all cl, c2 e R. Here and in the sequel a relation for elements
in a Fr6chet space uniformly in a parameter interval means that the semi-norms on the
corresponding parameter dependent elements are uniformly bounded in the interval.

The following lemma is quite elementary. We shall give a proof, since assertions of
this sort will be employed below in many variants, where we then drop the analogous
kernel cut-off arguments.

1. Lemma. For every he S(cV̂ x rx1/2_-) there exists an h_ eS- (cV x R
X F1 12 -) such that h - h _ extends to an element in (10).

Proof: Let us show the assertion in the version for SI(R' x RQ) where cV ^ disappears
and F1/2-_ is replaced by RQ. Then the result in general follows by an obvious
modification. For a(~, e) SI(R' x R) we write

K(a) (, x) = 5 ei +iXQ a(, e) d de.

Let co(x) be a cut-off function, i.e., o E C°(R), o _ 1 close to 0, wo 0 for Ixl > const.
Then we form

b(,, e) = e-i -iX O(x) K(a) (, x) d; dx. (11)

The symbol estimates for a imply that (1 - co(x)) K(a) (, x) e Y(Rj.'1) (Y(...) denotes
the Schwartz space). Thus a(~, e) - b(, e) E S- (R"',).- S (R,:,,~).,
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If we replace (11) by

b(5, Q) = -S e - '5 - ix P W(x) K(a) (, x) dC dx

for any (x) e Co(R), then we get (,, e) e S'(R" x R). If Wt(x) is flat at x = 0 of order
N, then it follows even b e S-(R" x R). All this holds uniformly in , cl <_ B < c2, if
we replace hW by a function Wp(x, f) e C'(R2 ), p O0 for Ixl > const. The latter properties
follow by simple calculations in terms of the symbol spaces and are left to the reader.

Since supp co is compact, b(,, e) extends to an element in .d(C, C®(R")) in the complex
variable + i. Let us show that for every /3 this belongs again to S(R" x R).

We have

b(,, e + i ) = e- iix ex# )l(X) K(a) (, x) dC dx

= e X {iE ( + RN(X, a)} (x) K(a) (, x) d; dx

with x-RN(x, ) e C'(R2 ) for 0 < j < N. Now standard manipulations with Fourier
integrals show that xiK(a) (C, x) = (-ly 1)K(Da) (, x), i.e.

_ ii, -xe E (zlY) co(x) K(a) (, x) d dxj= 0a![-'-=

= {e- i ; -i x Q co(x) E (-wY-fl K(D~a) (S. x)dC d.

This belongs certainly to S(R" x R) for every f/, since Dia E SI'-i and the summands
have the same structure as the right-hand side of (11). This holds obviously uniformly
in c < / _ c2.

Finally we can apply the above remarks to WPN(x, fl) = RN(X, /) co(X). Thus

e-'5-ix WPN(X, fl) K(a) (, x) dC dx E S-JN(R x R). (12)

It was also mentioned that (12) is true uniformly in c < _ c2 (it would be needed
here only in the sense of S -N(Rn x R)). [

The amplitude functions in (8) give rise to Mellin-Fourier opDO's

op op,, (h) u(x, r) := rM- ,F- 1 (T-h) (x, r, , w) F_M,._.(r')- 1 u(x', r'), (13)

with F being the Fourier transform in the x-space. A standard consideration on
equivalence of phase functions yields

opp op,,. (h) LO(V) .

With h we can also associate the family of pDO's on V

op,.x (h) (r, w) v(x) = F4-2Xh(x, r, , w) Fx_5_v(x'),

18'
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dependent on the parameters r e R+, w e rl 1 /2 . Then

op, x (h) (r, w) e C(R+, Li'(V; Frl/2-)) . (14)

Here rF'/2 - is identified with R e, and LI'(V; R) is the space of parameter-dependent
ipDO's A(g) = A1(e) + Ao(e), where A(e) is of the form (3), where we have to insert
a(x, ,, O) e S(V x x R ), and Ao() e Y(RQ, Co(Vx V)) with the Schwartz space of
Co(V x V)-valued functions. In (14) we have employed a natural Frechet topology of
L,(V; R), cf. [S2], Section 2.3.1. (Below in 1.3. we shall employ analogously parameter-
dependent pDO's of the classes LI'(V; Rq) in the corresponding Fr6chet topology.)

On the other hand let

a(x, r, , q) = a(x, r, , re) e Sg,(cV^ x R"+'). (15)

Then we can form op, (x,,) () e L 1(V^), where op (xr) refers to the Fourier transform
in R x R.

2. Theorem. For every fi E R there exists a non-canonical mapping

m: SI'(cV^ x Rn+') 1 Se(cV ^ x R x Cw)hI (16)

such that for h = ma(a) and a being defined by (15)

op,(,, (ai) op~ p,x (h), (17)

where - means equivalence mod operators with C ® kernels.

Here and in the sequel a mapping between spaces of amplitude functions is called
non-canonical if it is linear and unique mod elements of order - oo. In the present case
it means that (16) induces a linear mapping

S"i(cV
^
x Rn+)/S- (cV

^
x Rn + )

SS(cV
^

x R x C)hol/S-(cV
^

x R x C)ho

Clearly instead of (16) we might also talk about

rh: gltc(cV ^ x R',) -- S(cV^ R X C)hoI (18)

with tri(a) .= ma(a).

Proof of Theorem 2: The dependence of symbols on x, 5 is not the specific point. So for
simplicity we will consider a in the form a(r, e). Then d(r, Q) = a(r, re). Let us start with
p = 1/2. Choose an h(r, w) e SI(R + x Fo). Then the associated Mellin tpDO is of the form

op/ 2 (h) u(r) = r-iQh(r, ie) (r')iQu(r') dr'/r' de (19)
R R+

= I e-iQ(logr-logr') b(r, e) u(r') dr'/r' do,

b(r, e) := h(r, -iq). Now we set y = log r, y' = log r'. Then

op1/2 (h) u(eY) = IS e'(y - y ') b(eY , e) u(ey') dy' d .
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For the diffeomorphism x: R -- R +, x(y) = e, we have (x*v) (y) = v(eY). Thus

opm2 (h) u = (x*)-l op ,y(f) x*u for .f(y, C) = b(eY, /) .

In other words, opl 2 (h) is the push-forward of a tpDO on R with the amplitude function
f(y, ) under x. If in general x: Q2y Q is a diffeomorphism, then the push-forward
x,: L '(Q) -* L "(Q) is given on the level of corresponding complete symbols f(y, /), f!(f, /)
(i.e. in the sense x, opw,y(f) - oPw, (f)) by the asymptotic formula

f(Y, )lI=,(y) -Z - f(')(y, (dx(y)) q) (pa(y, q) (20)
a!

where f()(y, ?) = (f) (y, ),

9Pa(y, j) = Da ei(Y)'ly=z (21)

for 6(y, z) = x(z) - x(y) - dx(y) (z - y). In the present case we have y = r, ~ = Q, and
(P,(y, i) = Pa(re), where P is a polynomial in r of degree a/2, a e N, and Po = 1.
Moreover dx is in this case the multiplication by r. Thus x, opwy(f) - opw,r(f) with

f(r, Q) - Z f(l)(y, rQ) P.(re), y = log r.

Since remainders of order - oo are accepted, we can first form a convergent sum

g(y, r) = f()(y, z) P(r) X(-=O a! C)

with an excision function X and constants c, increasing sufficiently fast as a - cc, and
then define f(r, e) = g(log r, r). It is clear that thenf(r, Q) E ,(R+ x RQ). Moreover,

f(r, Q) - h(r, -ire) E S- 1(R + x R).

In other words, for ho(r, i) = a(r, -e) it follows an f 0 (r, e) = f(r, Q) g•l(R+ x R) such
that

op 1 2 (ho)= opw, (f0)= op,r, (a) - op,r (l)

with d,1(r, Q) = fo(r, ) - a(r, Q) e S -1(F+ x R). By applying the procedure again to d,
we get for h, (r, iQ) ;= a,(r, -Q) E Sl-(R + x Fo) an f1 (r, e) E c- (A + x R) such that

op 2 (h l)= OP,,r ) = op,,, (f,) - op,, ( 2)

with 2 = f, - a, e S 2(R+ x R). This can be continued successively, and we get a

sequence h e SIC-k(A + x ro), k N. If we form h' - _ h in the class SC1(R + x Fo), we
obtain k=O

op /2 (h') op, r (a).

269
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Applying Lemma 10 we may replace h' by h e Sl,(R + x Cw)ho,. It is now obvious that an
analogous construction applies in the case with (x, 5) dependence. Thus Theorem 2 is
completely proved for = 1/2.

For general ,B we apply the following

3. Lemma. Let h(x, r, ,, w) E SOi(cV A X R x Fo) be arbitrary and f E R. Then there exists
an h(x, r, ,, w) E SI'(cV x R, x Fr,2- ) such that

op /2 op,x (h) - opP op,,x (hp).

Proof: For simplicity let us look again at the (x, r)-independent case. By definition we have

op 2 (h) - r112 0
M (fo) (r') 1/2 , op (h) = r oPm (fi) (r')- p

with f, = T- /2h, fi = T -h. Thus it suffices to find fi e SI,(A + x F,/2) in such a way
that

r/2-o oPM (fo) (r')- 1/2 +8 _ OPM (fl) · (22)

The left-hand side is a Mellin pDO with r, r'-dependent amplitude function
f(r, r', w) = r /2 -fo(r, w) (r')- 1/2 +. Applying the standard Mellin operator calculus (cf.
[L1], [S1]) from f(r, r', w) we can pass to an equivalent r'-independent amplitude function
fi(r, w) by

fl(r, w) E ( -r' ) Df (r, r', w)=,

w = 1/2 + ie. Every summand belongs to Sl-k(R + x r1/2) and hence the asymptotic
sum can be carried out in SO(R + x F1 /2). Thus we find fi as desired. 

By this we have also finished the proof of Theorem 2. 

4. Remark. Let V1, V2 c R" be open, and X: V1 - V2 be a diffeomorphism, X(x) = y. Then
there exists a non-canonical mapping

6: ,1l(CV: x R" +') - gl(cV; x Rn+1)

such that for 0d2 = 6(d,)

(X x id), op(x.,,) (l) oP.,(y,,) (2)

vith ( x id), being the push-forward of WpDO's under the diffeomorphism
X x id: V x R+ V2 x R+.

Note that there is another non-canonical mapping

x: SO(cV x Rx C)hol - SI'(cV x R" x C)ho

such that for f = x(h)

( x id), opf op,,. (h) op opvy (f)
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Moreover, if PiA are the mappings (18) with respect to Vi, i = 1, 2, then the procedure
commutes in the sense

- being equivalence mod elements of order - c.
Now let 3 = {Vjij=, ... ,N be an open covering of X by coordinate neighbourhoods.

Then a system {r-pj}I1jjSN with

pj e S(cVj^ x R"+ 1), j = 1 .... N, (23)

is called a complete symbol on X^ (with respect to O1^ = { Vj=1 .... N) if

bkjPjilvjfnv PklVjVIv (24)

for the transition diffeomorphisms Vj n Vk -Vj n Vk and the associated mappings 6kj
from Remark 4, for all j, k = 1, ... , N. The weight factor r- in front of the symbols is
natural for several reasons, as we shall see below. For the moment, of course, it is
unessential. For unifying notations we take it into consideration from the very beginning.

Let {j}j= 1 .... N be a partition of unity belonging to B3 and ipj E C (V) with pjipji = W
for j = 1, ..., N. Choose a complete symbol (23) and set

N

AW= E Wpjr OPw ,(p) qj (25)
j=l

N

AM = p Wj opI op,. (hj) qij, (26)
j=1

where h = hfi(p), j = 1, ... , N. For abbreviation the local coordinates on Vj are all
denoted by x; clearly they depend on j. By Theorem 2 we have

A - r -AM e L - (X ).

5. Definition. Let {r-pj}lj N be a complete symbol belonging to ¶^ . Then the
(non-canonical) mapping {r- pj} j N -- r - AM (for a fixed choice of pj, j and of local
coordinates on V) is called a Mellin operator convention for the cone X ^.

6. Definition. M(X) denotes the space of all h(w) Ec (C, Ll(X)) such that
h(6 + iQ)e Ll(X; RQ), uniformly in every strip c < 6 < c2, cl, c E R. The latter
condition means that the semi-norms of the Fr6chet topology of L A,(X; RQ) are uniformly
bounded in E [c1, c2] (cf. also [S2]).

Now MO(X) is a Frechet space in a natural way, and we can form the functions
h(r, w) e C((A +, M (X)).

The system of hj in (26) gives rise to

N

h(r, w) = j opw,x (h) iPj e C0(R +, Mg(X)), (27)
j=1
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cf. (14). Thus the Mellin operator convention can be viewed as a mapping

{P, ... PN - C (A+, M(X))

such that the associated operator equals opP (h).

Outside the conical singularity we will preserve the standard operator conventions,
based on the Fourier transform. This means that the ipDO's are written as

A = wor-Acl + (1 - ) A,(1 - 2). (28)

Here co(r), ol(r) E CO(R +) are cut-off functions, i.e. - 1 close to r = 0, and we assume

CoC 1 = t, (1- o ) (1 - 2 ) = 1- o. (29)

The latter condition ensures that A A and A - A. (28) represents also an operator
convention. By changing co, woi under the condition (29) we get errors in form of Green
operators (cf. the notations below) if the symbols pj satisfy the exit condition. Otherwise
we get Green operators only after localizing at r = 0.

Let us recall the definition of totally characteristic Sobolev spaces over X . For s, 1 E R
we denote by fS $'(X ) the completion of C (X ) with respect to the norm

|-i +1)2 IlbS(w) (M,,u) (x, )ll2( dw . (30)

r(n + 1)/2 -

Here b ((n + 1)/2 - + i) denotes a parameter-dependent family in LIi(X; R0), such

that b (w): HS(X) H HS-'(X) for all s e R, w e F(n+l)/2- .. Further we define the space

.CsP(X ) by the conditions

co(r) s, (X') = co(r) #s (X^),

(1 - o(r)) F"S(X )̂ = (1 - w(r)) Hs(X^)

for any cut-off function co.
The space HS(X^) is defined by the conditions H'(XA)Iv 6 = Hs(VJ) for every coordinate

neighbourhood V on X and V c V open, aO0 of class C, Vo c V, where
Hs(V) = (,). H(P) for any diffeomorphism 7n: ^ - V^ with a conic subset ^
c R" + ' \ {0}, ;7r(Ax) = (x, 2r) for all )l > 0, rC = Vo, and H(P) = H(R"+ )e a.
Finally Y "4(B) is defined as the subspace of Ho(int B) with o3PVs(B) = cows"(X-)

for a cut-off function co supported by the tubular neighbourhood U, mentioned in the
beginning of this section, where U and X^ are identified via 6.

Under the exit condition for the p in the global complete symbol of (28) we get
continuous operators

A: .SP(X )̂ ~- f-"P-A(X ^) (31)

for all s E R.



Mellin Representations of Pseudo-Differential Operators on Manifolds with Corners

The main topic of this paper is the Mellin convention for the non-smoothing part.
There will occur also smoothing Mellin and Green operators. Let us briefly give the
definition for the cone.

Let Yi" be the system of closed subsets of C introduced in [S1], Section 1.2.2., and fix
a V e Y* which is quasi-discrete, i.e. F,j n V = 0 for all j E Z for a system 6j e R with
bj -_ o asj - ± co. Then M- (X) denotes the space of all h(w) E S (C \ V, L - (X))
such that (h) (6 + i) E S(R, C (X xX)) uniformly in every strip c < 6 < c2,
C1, c2 e R, for every V-excision function X, i.e. X E C'(C), X - 0 close to V, 0 < X 1,
X = 1 outside a neighbourhood of V. The space M7 (X) is Frechet in a natural way.
Every V e F can be written as V = V + V2 for quasi-discrete Vi (cf. [S1], 1.1.5.) and
we then define

MV7®(X) = MV7®(X) + M. (X) (32)

in the Frbchet topology of the sum (cf. [S1], 1.1.2.), which is independent of the choice
of Vi, V2. Set

M (X) = lim M o (X).
Ve'

Thus the gaps of VI can be chosen in a convenient way, according to weights, involved
in the action.

If # E R and h M (X) are given, we define for every fixed j N an analogue of
opl (h) by

opt0J (h) = r{op" (T-hl) + opj2 (T-h 2)} r- p

for an arbitrary fixed decomposition h = h + h2 such that T - h is holomorphic close
to F11/2-, and 2i > 0, j - i > 0, i = 1,2. For j = 0 we have necessarily
op° 0 (h) = opt (h), Fr1/2 n V = 0, whereas for j > 0 there always exist hi, Ai as
required. A result of the Mellin operator calculus is that (ol op°j (h) o2 is independent
of the concrete choice of decomposition data hi, Ai, modulo a Green operator, 6w, wo2
being arbitrary cut-off functions (cf. [S2], 2.1.5., Theorem 13).

Now the mentioned smoothing Mellin operators have the form

k-1

M = or - '" E r op- n/ 2' j (h) Wo2 (33)
j=o

for a fixed weight interval 0 = (-k, 0] (relative to Pf), and arbitrary hjM- M °(X),
j = ,..., k- 1; n = dimX.

Parallel to the spaces of Mellin symbols there are defined the subspaces of vs, (B) with
(continuous) asymptotics. Fix a weight interval 0 = (-k, 0], k e N \ {0}, which corre-
sponds in the complex Mellin plane to the strip

(n + 1)/2 - B - k < Re w < (n + 1)/2 - . (34)

Let Xof '(B) denote the subspace of all u sq" (B) for which r-u c q" (B) for
all x with 0 x < k (as above w(o'*'(B) is identified with cows*"(X)). Remember
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that in [S2] we have used the notation o"'(B)O instead and gave another equivalent
definition.

Now let Ve ', V c (Re w < (n + 1)/2 - /) be quasi-discrete. Then M v' (X )̂

consists of all h(w) e d(C \ V, H®(X)) such that

2X1
F6

for all s e R and every V-excision function X, uniformly in every strip c < 6 < c2,
c, c2 e R. Here bS(w) is of analogous structure as the order reducing family of (30) above,
now in the interpretation that it is shifted for any given 6 to the corresponding weight
line in an obvious manner.

Denote by Yy'°'(X^) the preimage under the inverse weighted Mellin transform (with
respect to the weight line F(,+ 1)/2-,). The space t'v0(X )̂ is Frechet in a natural way.
For arbitrary V e #, V c {Re w < (n + 1)/2 - }, V = V + V2, and Vi quasi-discrete,
we set

."(x-
)

= ).'f*(X') + x0 .P'(X^)

This is independent of the concrete choice of V1, V2 with V as sum.
It is well known that every u e *v/'~(X )̂ for quasi-discrete V represents a sequence

of C (X)-valued analytic functionals Ci on the components V of V, i.e.
Ci e W'(V(i), C ®(X)). They determine the (continuous) asymptotics for u as r 0 (cf. [S2]).
If Mu is meromorphic, we get the special case of the discrete asymptotics. If we are
interested in the asymptotic information only in the strip (34) of the complex Mellin
plane, we form the sum of Fr6chet spaces

def(X ) := v I(X ) + ~O. (X ),

where V:= V n {(n + 1)/2 - 3 - k < Re w < (n + 1)/2 - f}. The asymptotic infor-
mation for a concrete u Xtv'(X^) is represented by the system of data

c = {V = U i,, x a'((,), CX(X)); , 0 .

For V in general the asymptotic information is given by an equivalence class of pairs
of this type. We denote by As (X; g) for g = (, 0) the set of (continuous) asymptotic
data in this sense. In other words every C e As (X; g) can be represented by a pair
(C1 , C2) where Cj is associated with Vj as mentioned, j = 1, 2. We then set

.7x (X') := e0 (X^) + .Ae0(X-) + .(X^).

For arbitrary s e R we define

7B(X ' ) = eoSf(X^) + ly°,.fl(X')
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and set

Yf(B) = {u E 'sfl(B): ou E E('(X^)} 

Yf (x ^ ) = {. e s. (X'): ou e 7. (X)}.

In [S2] we have used the notations Y(X)0 , ."jv(B) 0 and vfl(X^)0 , respectively,
where the definitions are equivalent to the present ones. Intuitively C E As (X; g) can be
associated with the set V = V n {(n + 1/2 - fB - k < Re w < (n + 1)/2 - fi}. The sets
V will be called carriers of asymptotics of asymptotic types in As (X; g). Our notation
indicates X as the base of the cone, since analogous notations apply to corners with B
instead of X. Then the analytic functionals are Ovp'"(B)-valued.

Finally the Green operators G are characterized by the mapping properties

G: s(B) - -(B),

G*: .F' -0+"(B) .0 -(B)

for arbitrary s e R with

PV= V n {(n + 1)/2 -B + - k < Re w},

I= W n {(n + 1)/2 + - k < Re w}

for certain V, W E B, V c {Re w < (n + 1)/2 - B + }, W c Re w < (n + 1)/2 + #},
dependent on G. Here the * refers to a fixed scalar product (.,.)o in A" (B) and the duality

(.,.)O: Os' (B) x - -(B) -}C .

The class C'(B, g) of cone operators over B for the weight data g = (0, 0) is altogether
defined as the set of all

(or- AMco1 + (1 - CO) P(1 - 2) + M + G (35)

for arbitrary A, = op - "/ 2 (h), h(r, w) e C(R +, M'(X)) and P LI,(int B) with cut-off
functions co, o,, and M being a smoothing Mellin operator of the form (33), G a Green
operator of the described sort. ·

Since C(B, g) c LIl(int B), we have for every A e C"(B, g) a homogeneous principal
symbol

a(A) e C¶(T*(int B) \ 0), (36)

which is close to B in the coordinates (x, r, , e), x e V, of the form r- p()(x, r, 5, r)
for a function p(.)(x, r, , Q) e C(Vx R+ x (R+ \ {0})), with p(,)(x,r, , 2Ae)
= 2lp(,)(x, r, 5, e) for all (x, r, , Q) e V x R+ x (Rn+ \ {0}) and > 0.

The Mellin symbol of A of conormal order p is defined as

a'(A) (w) = h(O, w) + h(w)

275

(37)



276 B.-W. Schulze

with the mentioned h(r, w) e C0(R+, Ml(X)) and ho(w) from (33). We do not recall here
anything from the algebra properties and the symbolic rules that are elaborated in detail
in [S2], Chapter 2, cf. also [S5]. Let us only remember that

a(A) = , c (A) = = AE C-(B, g).

1.3. Pseudo-Differential Operators on Manifolds with Edges

As mentioned in the beginning the corner calculus contains operators near the outgoing
edges. This section studies operators away from the corner vertex. We allow the edge
to be of arbitrary dimension q. Below for the corner we then have q = 1.

Similarly as for the cone we study the interior of the stretched wedge

X^ x Q = Xx R+ xQ2B(x,r,y)

with X being a closed compact C ® manifold of dimension n, Q R open.
In the previous section we have defined SI'(cV^ x R"'). Analogously we obtain the

space Si'(cV^ x Q x R" x Rq) for open Q _ R4. Then we define

SI'(cV^x •2 x Q x wR,)

= {a(x, r, y, 6, r, r): a(x, r, y, , Q, ql) e Sl'(cV^ x Q x R" x R+ )}.

The notation wR4 indicates the wedge degenerate behaviour in consisting of the
combination rrl. The tilda indicates re, the totally characteristic behaviour near r = 0. By

Sl'(cV^ x Q x R x 12-p x R) (1)

we denote the space of all h(x, r, y, , w, i), defined for w e F1/2 -, such that

h(x, r, y, , 1/2 - + i, r) e S(cV'^ x•x R'xx ). x(2)

Further SI(cV^ x 2 x R x F1/2 X wR,) is defined as the set of all h(x, r, y, 6, w, rrl) for
which h(x, r, y, 6, w, ?1) belongs to (1). Then

S'c1(cV^ x Q x Rn x C x R)ho, (3)

consists of all h(x, r, y, , w, ?1) E sl(C., C0(V x R + x 2 x R,+4)) such that (2) holds
uniformly in c < < c for all c, c2 e R, and Sl,(cV' x Q x R xCx wR)ho, is the
space of all h(x, r, y, 6, w, rr) with h(x, r, y, 6, w, l1) in (3).

1. Remark. For every h S9 (cV ^ x 2 x R x F1/2-_ x R4) there exists an
h _ e S- (cV^ x 2 x R" x F1l2 _, x Rq) such thath - h __ extends to an element in (3).

This follows by a kernel excision argument, analogously to 1.2., Lemma 1.
With h e (1) we form parameter-dependent operators

op 1 op, x (h) (y, (/)

= r Mw ,F- (T-Ph) (x, r, y, , w, r) Fx,_M,,-(r')- ,
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(y, ) E 2 x Rq being the parameters (T-Ph) (..., w, ...) = h(..., w - , ...). (4) is ana-
logous to 1.2., (13) but here we insert r instead of . This is indicated by M. It is clear
that op~ op, x (h) (y, il) is a (y, 1) dependent operator family in LI'(V^) and

op,,Y{OPl opv, (h)) L(V x 2).

Now let

p(x, r, y, , e, ) = a(x, r, y, , re, rn)) eg(CV^gcV x 2 x x wRq).

Then op, (x,,) (p) (y, i1) is an operator family in L~ (V^), dependent on (y, '1), and we want
to pass to a representation of the form (4).

2. Theorem. For every /B E R there exists a non-canonical mapping

mP: S,(cV^ x Q x " ) +l+4) Sl(CV^ x Q x R x x R,)hol (5)

such that

op,,(x,r) (p) (y, t1) op' opv.x (h) (y, r/)

for h = mf(a) and

p(x, r, y, 6, Q, ) = a(x, r, y, 6, re, rln).

The equivalence holdsfor all (y, ?) in the sense of L l'(V^) but also in the sense of L l,(V^ x Q)
after applying op,,,y on both sides.

Incidentally it is convenient to use instead of (5) the mapping

mh: Slg(cV ^ x Q x R +I x wR q) - Sl(cV^ x Q2 x R" x C x Rq)h

defined as r = mP o ,

z:§ ,(cV ^ xQx R" + xwR4) - S(cV^ X X R"++4),

1: a(x, r, y, 6, r, r) - a(x, r, y, 6, e, l).

The proof of Theorem 2 follows by a straightforward modification of the arguments for
1.2., Theorem 2. In a more special situation it is contained in [S2], Chapter 3.

3. Proposition. Let V1, V2 _ Rn, Q2, £22 R4 be open, and X: V -+ V2, p: Q - 22 be
diffeomorphisms, x(x) = x, (P(y) = 9. Then there exists a non-canonical mapping

6: g(cV x Qi x R" + x wR q) -Sc1(CV x 2 x R"+ 1 x wR q)

such that

(X x id x 59), o p.(x r,y) (Pl) - op,.(., ) (P2)
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for P2 = 6(pl) with (X x id x p), being the push-forward of wDO's under the diffeomorphism
X xid x q: V x R x 1 - V2 x R+ xQ2.

4. Proposition. There is a non-canonical mapping

x: Si'(cV x Q1 x R" x C x Rq)hol -* S"(C 2 X Q2 X Rn X C x R4)hol

such that

(X x id x Tp), op., y op opo,. (h1) - op0,y opP,x (h2 )

for h2 = x(hl) and

with - being equivalence mod elements of order -o.

Propositions 3, 4 are easy consequences of the ipD substitution rule for iWDO's on
complete symbolic level.

Let Y be a closed compact C ® manifold, q = dim Y, which plays the role of an edge
globally.

Let 3 = {Vk}OkSM be as in Section 1.2., and 13 = {2l}oSM be an open covering
of Y by coordinate neighbourhoods, with local coordinates y E Rq - Q2. Then a system
{r -bkl}k,=O, ...,M with bk, E Sl(cVk, x Q2 x Rn+ ' x wR), k, I = 0, ... , M, is called a com-
plete symbol on X^ x Y (with respect to O3, 13), if

k'l',klbjllV, x nVk. x r,. - bk'l'lVk x.,QVk, x Q.

for the transition diffeomorphisms Vk x 02 r Vk, x Q. - Vk x Qt n Vk, x Q. and the asso-
ciated mappings k'l'. k from Proposition 3, for all k, 1, k', 1' = 0, ..., M. For the moment
we only need global symbols over X^ x Q with respect to 0- and a coordinate
neighbourhood Q on Y. These are tuples

{r'-bk}OSk•M (6)

with

bkEl(CV^xQx R"+l xwRq), k = 0, ... , M (7)

satisfying the corresponding equivalences over Vk^ x Q n Vk? x Q. Let bk,(,)(x, r, y, , r, rr/)
denote the homogeneous principal part of bk of order p. Then the system {bk, ()}k= .... M
consists of the local representatives of a global function

b(,) E C°(T*(X x ) \ 0), (8)

where T*(...) \ 0 means the cotangent bundle of the manifold in the brackets minus
the zero section. Similarly {bk,(,,)} gives rise to an element

b(,) C(T*(X x Y)\ 0). (9)
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For given (6) we now form the operator families

M

b,(y, q) = Y r-lpWk op.(x,r) (bk) (y, ') P k, (10)
k=O

M

bM(y, 7) = Z Wk opfP op,.x (hk) (y, 7) P, (11)
k=O

where hk = hP'(bk), k = 0, ..., M (cf. the analogous expressions 1.2. (25), (26)). Then it
follows

b,(y, q) ' r-bM(y, t) in L-i(X^) for all y, ,
op,,y(bv) - r-

P opw y(bM) in Lel(X ^ x Q).

5. Definition. Let {r- bk}o05ksM be a complete symbol over X^ x Q belonging to 3^".
Then the (non-canonical) mapping {r-bk}oS-M - r-b(y, ) is called a Mellin
operator convention for the wedge X ^ x (on edge symbolic level).

6. Definition. Mg(X; Rq) denotes the space of all h(w, ,7) c sl(C, L'(X; Re)) such that
h(6 + i, ) e Lci(X; R x R ), uniformly in every strip c < _< c2, c, c2 E R.

The space Mg(X; R4) has a natural Fr6chet structure. Thus it makes sense to define
C (R+ x a, M(X; R)).

For q = 1, z varying on F1 /2_, we set

MO(X; F1 12 - ) h(w, z) > h(w, 1/2 - y + i) E Mg(X; Rj.

From the system of hj of (11) we can pass to the operator family

M

h(r, y, w, ) = Z qlk op,, (hk) (r, y, w, ) Wk, (12)
k=O

acting globally along X. Then

h(r, y, w, ) E C¶(R+ x 2, Mg(X; R)). (13)

Thus the Mellin operator convention leads to a mapping

{bk}o<kM -* C°(R+ x 2, Mg(X; R)) (14)

and bM(y, rl) = opM (h) (y, ).
Let - [] denote a strictly positive C ® function on R4 with [] = 11 for 11 const.

Choose cut-off functions co(r), coi(r), i = 1, 2, satisfying the conditions 1.2. (29). Then we
form the operator family

b(y, ) = r-o(r[q]) b(y, ) w),(r[1])

+ (1 - (r[])) b(y, ) (1 - 02(r[7])) (15)

which is again equivalent to b(y, 7j) and r-bM(y, iq), both with respect to L(V^) for all
y, and with respect to L(V x 2) after applying op., .
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The operator family (15) will be interpreted in the edge hpD calculus as a (complete)
operator-valued symbol. It has again a symbolic structure that we want to analyze. First
we have the homogeneous principal interior symbol of order p

ua(b) (x, r, y, r, e, q) = r- b(G)(x, r, y, r, r, rn), (16)

cf. (8). Further

Ua(b) (y, w) := ho(y, w) := h(O, y, w, 0) (17)

is the Mellin symbol of (15) of conormal order (cf. (13)). It is an operator-valued
function on 2 x F1 /2_ -. Another operator-valued symbol is the homogeneous principal
edge symbol of (15) of order #, namely

a(b) (y, 1) = co(r 1) r-I op4 (ho) (y, 1) co,(r 1i1)

+ (1 -- c(r 1l)) b,,O(y, 7) (1 - 2(r l71)). (18)

Here
M

b,.o(y, () = r -ek OPw,(x,r) (bko) (Y, ) ¢k
k=O

with bk,O(x, y, y, re, r) = bk(x, 0, y, 5, re, rl), (y, ) e 12 x Rq (cf. analogously (10)).
Note that here, in contrast to the calculus of [S1], Chapter 3, there are not only involved

the homogeneous principal parts of bk. In [S1] we have used a smaller class of interior
symbols, and it was assumed X = S. Nevertheless, the leading edge symbol satisfies
the analogous homogeneity condition, namely

7. Proposition.

a' (b) (y, IAr) = Ixra(b) (y, 7) xA' (19)

for all yE , e Rq \ {0}, Ai R+. Here

(Xu) (x, r) = A)u(x, r) (20)

for arbitrary fixed x e R.

This follows by a straightforward calculation.
The choice of a in the given calculus depends on n = dim X. Here we set O = (n + 1)/2.
We say that a(x, r, y, , Q, ) e SI'(cV^ x Q x R"+ +q) satisfies the exit condition if there

exists a sequence ej(x, y, , Q, 7) e SI(cV^ x •2 x R" +4) such that

x(r) a(x, y, r, , ) - X(r) E r-jej(x, y, , , ?1) (21)
j=o

for any r-excision function X-. More precisely we demand

Dk D,Xr {a- r-ie} < c(l + , , , 1)-Ill (1 + r)-(N+1)-k
DIDx'yD~'°'"~r) t j=o
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for all ke N, e N"+ q, fe N"+l +q, with a constant c = c(k, a, , K) for all xe K C V,
re R+, ye, y (, (e, l)E Rn+l+ .

Sl,(cV x 2 x R"+ +q) will denote the subspace of all

a(x, r, y, , Q, ) E S(CV^ X x R + +q)

satisfying the exit condition, and we set

gSy(cV^ x Qx Rn++4q)e

= {a(x, r, X, r, r): a(x, r, 4, e, r) e SI'(cV^ x Q x R"+ 1 +)e} .

If the symbols (7) that are involved in (15) satisfy the exit condition, then

b(y, ): s, (X^) -- ", -(X^)

is continuous for every y, /, and all s E R. This is true in particular of crA(b). Thus

al(b) C (T*Y, n '(aYs.P(X^), s-.-#(X^)))

In compositions and parametrix constructions for the operator families of the type (15)
there will occur also smoothing Mellin and Green operator families, similarly as for the
cone in the previous section. For describing the smoothing Mellin families it is adequate
to choose a conormal order v with u - v e N. Then we consider

k-1

m(y, '/) = ol (r[q]) rv E r' E /I o p - " /2 i (hi.) (y) o02(r[nl]). (23)
j=O llj

Here k N \ {O} is the length of the given weight interval (cf. 1.2. (22)), and
hij e C0 (2, Msvj (X)) for certain Vj, E . In the definition of (23) a parameter-dependent
analogue of 1.2., (32) is used, namely

C (, M - (X)) = C (, M ,I (X)) + C (Q2, M-7 (X)),

cf [S1].
If we set

k-1

av(m) (y, )= ol(r rl)r - ' v rj E rla opf-"/2ij (h.) (y) w2(r 'll), (24)
j=O Il=j

then we have obviously

a'(m) (y, A) = A.vxaAv(m) (y, 7) x. ' (25)

for all y E , r E R \ {0}, E R+.
Changing of the cut-off functions wi in (23) or of the decomposition data of

the Mellin symbols leads to remainders of Green type. They are defined as follows.
First introduce for every B = W r {(n + 1)/2 - - k < Re w} for WE /',
Wc {Rew < (n + 1)/2 - B}, 0 = (-k, 0], the subspace of all u .t(X )̂ with
cou E .' '(X^) for any cut-off function o(r).

19 Annals Bd. 8, Heft 3 (1990)
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The Schwartz space 949(X^) on X^ with weight fB and asymptotics near r = 0 is

defined by

(oYV(X )= O~B (X ),

(1 - o) .9(X^) = (1 - o) (X x R)lr,

with Y9(X x R) = C (X) ®, S(R) and Y(R) being the standard Schwartz space on R.

Note that there exists a sequence of Hilbert spaces 4(X^)(i), j e N, such that

.9(X") = lim f(X^)O . (26)
jcN

These spaces can be chosen in such a way that they are closed under the action of x

for all i e R+. An analogous statement holds for B ' (X^) for all s, P and B.

Let E be a Banach space and 1{zx}zR+ e C(R+, Y(E)) be a group of isomorphisms

(X;xL = x,,., xi 1 = x,_1 for all i, i' E R+) with ~Ya(...) being the space Y(...) in the
strong topology. Write x(q) = x[,,. For a second Banach space E we fix analogously a

group C(R +, .YL()). For Q _ RP open, e R,

SI'(Q x R4; E, E) (27)

denotes the space of all a(y, 'i) e C®(O2 x R4, Y(E, E)) such that

|| '(q1) (DyDla(y, 1)) x()11 (EE,) <_ c[] - 1#1

for all multi-indices a NP, B e Nq and y K C 2, E R4, with a constant

c = c(, i, K) > 0.
The operator-valued functions in (27) will be used as the amplitude functions of a VpD

calculus with operator-valued symbols, where in particular p = q or p = 2q (and

Q2 = 2 x 2 in the latter case for open sQ R4). In [S1], Chapter 3, the standard elements

of the calculus were proved.
In particular we have the notion of homogeneity and of classical amplitude functions.

S(u)(f2 x R4; E, E) denotes the space of all a(y, t/) e C'(Q2 x R4, Y(E, E)) with

a(y, At) = IRa (y, t) x- 1 (28)

for all y e 2, It[ > const, A > 1. Further SI(O2 x RQ; E, E) is defined as the subclass of

all a(y, I?) e (27) with

a - Z a._j for a sequence a,_j e S("-)( x Rq; E, E).
j=o

For every a(y, ,) e SIl(f2 x R4; E, E) there is a unique a(,)(y, i/) e C°(Q x (Rq \ {0}),

Y(E, E)) satisfying (28) for all y e , t/ * 0, R+, and a(y, ) - X() a(,)(y, t1)

e S- 1(Q2 x Rq; E, ), X(i/) being any excision function (i.e. X e C(Rq), X = 0 close to

/ = 0, X = 1 for 1?11 > const). As in the scalar calculus it is called the homogeneous
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principal part of a(y, *i) of order p. Analogous definitions make sense for E = lim I) for a
jeN

sequence Ej) of Banach spaces. The symbol estimates are then required for all j E N.

8. Definition. Let It, v, f E R, - v e N, Bf' = f - It, 0 = (-k, 0], k N \ {0}.

A g(y, y', i1) E n C(Q2 x Rq, (Fs(XI), O''(X)) is called a Green edge symbol of
seR

the class 91(f22 x Rq, g) for g = (; fP, 0), with the carriers of asymptotics

B1 = W, n {(n + 1)/2 - '-k < Re w},

B2 = W2 n {(n + 1)/2 + - k < Re w}

for Wi , W1 {Re w < (n + 1)/2 - '}, W2 c {Re w < (n + 1)/2 + B} if

g(y, y', 11) S(2 2 X Rq; '.(X^), 3,;(X^)) ,

g*(y, y', l) E Svl(2 X Rq; -s, -p'(X^), 5YB;(X ))

for all s E R.
The operator families

p(y, y', tl) = b(y, t) + m(y, ?) + g(y, y', 'i)

with b being given by (15) for v instead of Iu, it - v E N (and under the exit condition
for the bk), m by (23) and g by the latter definition form a subspace of

n sv(0 2x R'; ~s.(x, -s v '(X))
sR

that we call 9V(Q22 x R4, g). This space has a rich internal structure with respect to algebra
properties that are compatible with the symbolic rules, analogously as in the more special
case of [S2], Chapter 3. 9'(Q2 x Rq, g) is the space of cone operator-valued symbols that
give rise to the class

YV(X^ x Q, g) (29)

of wedge ipDO's by applying op,,y and adding negligible Green operators (of analogous
structure as those of [S2]). For A E YV(X x , g) we have the interior symbol

a,(A) = ra(b), (30)

av(A) = a'(b) + av(m) + (g), (31)

where a(g) is the homogeneous principal part of g(y, y', t) of order v in the sense of
the homogeneity (28).

Moreover, we can define

au(A) (w)= ao(b) (w) + a(m) (w), (32)

where ao(b) was given by (17) with p instead of v, and oa(m) = h,,oo (cf. (23)). The symbolic
level (32) is subordinate to (31) in the sense that it is uniquely determined by (31).

19'
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It is not our aim here to formulate a complete generalization of the wedge operator
calculus from [S2] to the class (29). This will be subject of a separate paper, devoted to
the problem of branching asymptotics. Let us only mention that for A E YV(X x 2, g)

ao(A) = O, a'(A) = O => AE YV-(X^ x12,g). (33)

The role of (29) for the corner is that the localization of the corner class outside the
vertex along the outgoing edge R + coincides with Y(X' x R +, g). Let us finally note
that the highest order p = v refers to the ellipticity whereas v < , i - v N, is generated
by symbol relations like (33). If B is a stretched manifold with conical singularities that
corresponds to X^ close to B, then the class

YV(B x Q2, g) c LIl(int B x Q) (34)

is defined as the subspace of operators A + G with poA 0o E YV(X ^ x 2, g) for every
0Po, 0o E C°(B), po, o 1 close to aB, supported by a small tubular neighbourhood

of aB, and G being a global negligible Green operator (cf. [S2]). On YV(B x 12, g) we
have the symbolic levels a, a', a' analogously as above (, a depend only on the
restriction of the operator to a neighbourhood of aB).

1.4. Polar Coordinates in Pseudo-Differential Operators

A motivation for studying the symbol classes 1.2.(4) may be the behaviour of pDO's in
R" n+ x under introducing polar coordinates (x, r), x = /l1l, r = Ixl. We will give a
formulation in terms of non-canonical symbol mappings. By substituting polar coordi-
nates several times we then obtain the corner symbol classes. They will be in Chapter 2
the starting point for the repeated Mellin conventions.

Let V be a coordinate neighbourhood on the unit sphere S" of R"+
1 with local

coordinates x e R". Set

fV = {X E R"+ 1 \ {0}: x/Ixl E V} .

Denote by

S'(cP ^ x R"+ ) (1)

the subspace of all a(Z, ) e S(f^ x R "+ l) with a = alxR.+ for some
a, e S,'(R+' x R 1). The mapping

%r: ^ -- V; x -- (, r) (2)

gives rise to a push-forward of h0DO's

(7rJ,): LC,(V) - L(V).

1. Proposition. There exists a non-canonical mapping

ae: S(C X R') SI(cVx x R")
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such that for b = ac(a), b = b(x, r, a, 0), and b(x, r, a, e) = b(x, r, 6, re)

(i). op°,. (a) r Pw,.(x.r) (b). (3)

Proof: The proof is a simple consequence of the substitution rule on complete symbolic
level, cf. 1.2. (20). In the present case we have (, 5) = (y, ,/), (x, r, , e) = (Y, i), r = x.
Then 'dnc(x) = r-'R-l(x) (En O rE1) with E, being the nx n-unit matrix and R-'(x)
an (n + 1)x (n+ 1)-matrix with C ® coefficients. The function 1.2. (21) follows in the
form r-IlP,(, rQ) with a polynomial Pa in (, re) of degree < Ial/2. Thus the resulting
symbol has the asymptotic expansion

, a(a) (7c -l(x, r), r-lR -l(x) ( ))r- la'lP(, r). (4)

Let aj})(9, ) E Co(VF^ x (R + \ {0})) be the unique homogeneous component of a()(, c)
of order t - IIl - j. Then

aj'(x, r-' R- ') = r-+l'+'aja)(, R- 1)

for every r > 0, = ( .
re

There exists a sequence of constants c, increasing sufficiently fast as Jal + j - o,
such that (4) is equivalent to

1
r - P .- x(/c) ra(a)(7r- 1(x, r), R- (x) ) Pa(C) (5)

.,j 

in the sense of S'I(V x R"+ 1), X being an excision function in T. In fact, this is certainly
true for 1 r > 2

-
k for every k with constants c(k). But then a diagonal argument

yields appropriate constants for all k E N. For r > const > 0 the sum can be carried
out in the standard way without extra precautions. The sum in (5) can be made convergent
also in S(cV x Rn+1) by enlarging (if necessary) the constants cj, where now plays
the role of a formal covariable. This yields just b(x, r, C) as desired. [

We can also talk about the mapping

a,: Sl(c ^ x R"+ l ) S gl(cV ^ x R + ' ) (6)

such that (3) holds for b = ,c(a).
Note that (6) is not surjective modulo elements of order - o. The cone calculus of

operators 1.2. (35) with interior symbols being in the image under (6) (close to the conical
singularities) corresponds to a subalgebra of the class with symbols in r - g§1 (cV x R" 1)
in general. It is also closed under parametrix construction for elliptic operators.

Now let U be a coordinate neighbourhood on S" + l = { E Rn+2: I1 = 1}, and

[
^ = yE Rn+ 2 \ {0}: Y/I E U} .

Let

285
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denote the diffeomorphism, induced by polar coordinates. On U we fix local coordinates
E Rn + U such that a prescribed point j0 E U corresponds to the origin x = 0. For

the above V we can identify V^ with a subset of U. Let

'2 = {E Rn + 2 \ {o}: 9/ 91E } .

Then

P2C c (8)

(7), (2) induce a diffeomorphism

t: f 2 -o V 2 ^V = Vx R+ xR+,

defined as the composition

p 2 - x R+ _ V2 , Y - (x, t) - (x, r, t),

where t = Y, r = Il. Again we can look at the push-forward of pDO's
7T,: LI'(V 2 )̂ Lu(V2^). Denote by

Si(CV
2 ^

X R
n + 2 )

the subspace of all a(y, l) E Sl(P2^ x R+ 2) with a = all 2 XR+ 2 for some
a, E S(R+2 x R,, 2). Moreover, define

Si'(c 2 ^'x Rn + 2 )

as the subspace of all b(x, r, t, , , ) Sp (V2^ x R" +2 ) with b = bllv2- XR"+ 2 for some
b, E S'(V X R2 x R"+2), R2 = R, x Rt. Analogously to 1.2. (4) we introduce

gSY(cV 2^ x R" +2 ) = {b(x, r, t, ,, rg, rtT):

b(x, r, t, ,, , ) Si(V2 ^ X Rn+2)} . (9)

2. Proposition. There exists a non-canonical mapping

a: S(cV2 ^ x Rn +2 ) -* S(cV2^ x Rn + 2) (10)

such that for b = a(a), b = b(x, r, t, ,, Q, T) and b(x, r, t, , Q, z) = b(x, r, t, , r, rtz)

n, op,, (a) t-r - ' o pw,(x.rt) (b) . (11)

Proof: The assertion follows by iterated application of Proposition 1. The substitu-
tion y - (, t) gives rise to a mapping a(jy, qi) - t-c(, t, 5, t) with
c(x, t, 5, T) S" (cV^ x R. 2). For = (x, r) we have to apply a parameter-dependent
variant of Proposition 1, where the given symbol contains extra variables t and
covariables T that are untouched by the diffeomorphism. This leads in the corresponding
terms of (4) to a dependence on the covariables in the combination C = (, rQ, rtT). The
other elements of the proof are analogous as above. O
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We can also define a mapping

a: Si'(c 2 ^ x Rn +2) Sl(V2 x Rn +2 ) (12)

such that (11) holds for b = a(a). Similarly as above the image under (12) defines an
interesting subclass of the final algebra of corner tpDO's.

It is now clear how to introduce the interior symbols for higher corners which are
locally close to the highest vertex of the form VP ^ := V x (R +)P for some p E N, V Rn
open. Let t = (tl, ... , tp) e (R +)P and t = (, ..., Tp) be the associated covariable. Then
the adequate structure is

tl-t]- · ... · tp"b(x, t, , tT l , tt2T2, ... t ·... tpzp)

for b(x, t, , T) e S~"(cV P ^ x R+P) with obvious notations. In the present paper we content
ourselves with p = 2. The complex symbolic effects make it necessary to study separately
the singularities of small orders. For arbitrary p > 2 it seems to be advisable to establish
a more axiomatic approach.

2. Corner Mellin Operators

2.1. Mellin Conventions Near Corners

1. Definition. Let fi, y e R, and denote by

SI(cV 2 ^ x Rn x F1/2-_ X '1/2_y)

the space of all h(x, r, t, 5, w, z), defined for w F1,2 , z e rF1 2 y, such that

h(x, r, t, , 1/2 - + i, 1/2 - y + i) E Sp (cV2 ^ x R+T). (1)

Moreover,

Sc(cV/2 x R x C x C)hol (2)

denotes the space of all h(x, r, t, 5, w, z) d(C , C(V R+ x x R)) such that (1)
holds uniformly in c _ _< c2, d _< y < d2 for all c, di e R, i = 1, 2. By

S'(CV2^ x R x C x C)ho,

we denote the set of all h(x, r, t, 5, w, rz) such that h(x, r, t, 5, w, z) belongs to (2).

2. Lemma. For every h Sl(cV 2^ x R x F11/2_ x Frl1/2) there exists an
h_, e S-m(cV 2 - x Rn x F1 1/2_ x rl/ 2 _y) such that h - h_, extends to an element in
S(cV2 ^ x R x C x C)ho,.

The proof is completely analogous to 1.2., Lemma 1, and will be dropped. For

h(x, r, t, , w, z) = h(x, r, t, 5, w, rz),
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with h E S (CV 2 ^
X Rn x C X C)hol, and (T.-OT=-Y) h(x, r, t, 5, w, z) = h(x, r, t, , w - B,

z -y), we define

(opmt oM, opw,,x (h) u) (x, r, t)

= tM=-traMw- .rF x(TwT; - Yh) (x, r, t, 5, w, z)

x Fx._ M,-wM,,.(r') - (t')- Y u(x', r', t'),

u C (V2 ).

3. Theorem. For every /3, y E R there exists a non-canonical mapping

mOY: S (cVX x R 2T) S(cV2 x R X C C )ho, (3)

such that

op, (x r ) (a OPM,t OP1,r OPW,x (h)

for h = ma(a) and a defined by d(x, r, t, , e, T) = a(x, r, t, , re, rtT).

Proof: Let us assume first = = 1/2. The method of proving 1.2., Theorem 2, can be
applied separately with respect to r and t. For simplicity we shall neglect again the
dependence on x, 5. If h(r, t, w, z) is given with h(r, t, i, i) E Si'((R+)2 x Fo), then the
associated Mellin pDO has the form

A = op./ 2.o.t/2 (h) u(r, t)

= eiQ(logr-lo
g r')+i ( l

o
g t - l

ogt') b(r, t, O, rT) u(r', t') dr'/r' de dt'/t' dr

with b(r, t, O, r) = h(r, t, -io, -ir). For the diffeomorphism x: R2 -* (R+)2, x(y, p)
= (ey, ei) = (r, t) it follows

Au = (x*)- lOPw,(y f) ( *u

for f(y, 9, q/, ,/) = b(eY, e9, q, eY r/). Similarly as in 1.2. we obtain an f0 (r, t, re, rtz) with
x* op,,(y,) (f) P,(r,t) (fo), where now

fo(r, t, re, rtT) Y - f(X)(y, , re, rtz) Q,(r, re, rtT)

for y = log r, j = log t. Here a = (, a2) e N2 , Q,(r, C) is a polynomial in C = (, C2)
of order < laI/2, with coefficients in C®(R+),

Q(r, re, rtT) = P,,(re) r2P,2(tr)

with polynomials P, (re), P,2 (tr) of analogous sort as in 1.2. With C = (re, rtT), interpreted
as a covariable, we can form the convergent sum

g(y, i, C) = Z ! f()(y, 9, C) Q(r, C) X ,

r = eY. Now we define f,(r, t, C) = g(log r, log t, C). Then fo(r, t, C) E S((A+)2 x R2).
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Moreover

fo(r, t, Q, r) - h(r, t, - i, -it) E S- ((R +)2 x R2).

Setf 0(r, t, U, *) = fo(r, t, r, rtT). Inserting ho(r, t, i, irT) = a(r, t, -e, -rt) for the above
h it follows

op2. opI2, (ho) op,.,,t) (fo) = Opw,(r., (a) - OPw(,rt) (al)

with al(r, t, e, T) = fo(r, t, O, T) - a(r, t, q, ) Sl-l'((R+) 2 X R2). This procedure can be
continued analogously as in 1.2. It yields a sequence hk, k N, ord hk = - k, such

that for h' Z- h,
k=O

op, Op1/2 )A op, (h') p,() (d).

Now Lemma 2 allows to replace h' by h E S,((R +)2 X C2)ho,. For finishing the proof we
show the following.

4. Lemma. Let h(x, r, t, , w, z) E Sl(cV^ X R x F 2) be arbitrary, and , y c R. Then there
exists an h(x, r, t, , w, z) E Sci(cV^ X R x r1/2 X rFl/ 2 y) such that

op,,/2 o./2 op. (h) op , op. (h)

Proof: For simplicity we consider the (x, 5)'independent case. By definition we have

opM2 OP/ 2 (h) = r1/2 t 1/2 OPM OP (fo) (r')-1/2 (t')- 1/2

opy opM (hay) = rPt OPM opM (fi) (r')- (t) - ,

with fo = T- 1/2 T- 1/2h, f = Tw-T- YhPry Thus it suffices to find an f Sx((R+)2 x r2/2)

such that

rl/2-t 1/2-
OM OpM (fo) (r1) - /2 + (t) - 1 / 2+

y _ OpM OPM (f)

The left-hand side is a Mellin DO with the r, r', t, t'-dependent amplitude function

f(r, r', t, t', w, rz) = rl/2-t/22-Yfo(r, t, w, rz) (r')-
1/2 + (t') -

1/2+y .

Applying the Mellin operator calculus (cf. [S1]; 2.2. Theorem 5), we can pass to an
equivalent r', t'-independent amplitude function. The corresponding formula is

Y,~(-r'- (-t'} D;'Drf(r, r', t, t', w, rz)l,=,,.=,.0 ar' at,a/

The dependence on z in the combination rz makes no extra problem. The summands
are of the form g(r, t, w, rz) with g(r, t, w, z) Sl-I'I((R +)2 x r2/2 ) After carrying out
the asymptotic sum g - g in S((R+)2 x F2/ 2 )wecansetf(r, t, w, z) = g(r, t, w, z). 

Applying once again Lemma 2 to f, we can complete the proof of Theorem 3. 
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Instead of (3) we can also talk about

milA: S§y(CV21 x R' __2+) S(C 2 ̂ x R x C x C)hol (4)

with hfl(d) := mlY(a).
As an analogue of 1.2., Remark 4, we obtain for every diffeomorphism X: V --* V2,

X(x) = y, a non-canonical mapping

6': g (CV2 x R n+, ) &l(CV2
2 x R ) (5)

such that for 2 = '(al)

(X x id), op.(x.,.t) () opW,(Y,,,, ) (d2),

X x id: V1 x R + x R+ - V2 x R+ x R+. Moreover there is a non-canonical mapping

x': S'l(cV x R x C x C.)ho --* Sl(cV2 r ^ x R x C x Cz)hOl

such that forf = x'(h)

(X x id), op ,t op~, op ,. (h) op, op, op vy (f).
Then

X'Y - mff2Yb

in the sense of equivalence modulo elements of order - oo, rfi being the mappings (3)
belonging to V, i = 1, 2.

Let U c V x R + be open, and (x, r) e C = r > 0. Then we have a natural restriction
mapping

Sl(CV
2 ^

X R
n + 2) Sl(cU X Rn+2) .

By introducing local coordinates x in U we can pass (non-canonically) to the transformed
symbol spaces, according to 1.2., Remark 4. If V2 ^ is interpreted as a piece of a corner
and U' as a piece of a cone (where in general we only assume U^ n V2 ^ $ 0 but not
necessarily U^ c V2 ^), then we can talk about a diffeomorphism V^ n U -+ V^n U from
the (x, r)-coordinates of V^ to the -coordinates of U. This corresponds to an equivalence

r-AqIV2-,U - Plv2nU' (6)

of given q S'l(V 2^ x Rn+2), p C S't(cU^ x R"+2). The weight factor r - O is motivated
by polar coordinates - (x, r), though r > 0 over the intersection.

We will have to employ a variant of 1.2., Theorem 2, for symbols in S (cV.2;, x R,+2T)

with respect to t, where r remains untouched. Let

Sl(Vx R+ x x R+ x )

be the space of all a(x, r, t, , Q, T) E SI(Vx R+ x R+ x Rn + 2 ) with a = allvxR+ xR+ x+2

for an a1 (x, r, t, , , ) Si(V x R + x R x R +2). If

SA,(Vx R+ x + x R2+T) = {a(x, r, t, , e, tr):

a(x, r, t, T, e, ) S( V X R+ x + x R"+2))
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then we get a natural embedding

x R) -+2 l(V x R+ x A+ x (7)

Define

S(Vx R+ x A+ xR"' xFl/2-y)

by the usual scheme as the space of all h(x, r, t. . o, z) such that

h(x, r, t, 6, , 1/2 - y + i) S(V x R + x R x R",e). (8)

Moreover,

Si'(Vx R+ x + x RnQ x Cz)ho,

is the space of all h(x, r, t, , , z) e d.(C, C'(Vx R+ x + x R"rl )) such that (8) holds
uniformly in d1 y < d2 for all d1, d2 E R.

5. Theorem. For every y E R there exists a non-canonical mapping

t: S(Vx R+ x + x R+2) Sc,(Vx R+ x R+ x R"'x x Cz)ho,

such thatfor h = th7(a)

OP. (x.r,i) (a) OPt op.,r ) (h), (9)

a = a(x, r, t, 6, r, rtr) for

a(x, r, t, , , t) E Sl(Vx R+ x A+ x R+2).

Proof: The assertion is a simple modification of 1.2., Theorem 2. It is to be applied here
with respect to the t variable, and the role of V of 1.2., Theorem 2, now plays
VxR+ (x,r). 

According to (7) we get by restriction also

tr: Scl(CV
2 ^

x R
n + 2 )

-- S(V x R+ x R+ x R
+ l

x C)hol (10)

such that (9) holds for h = rhy(a).
Now let us look at the stretched corner globally close to the vertex. B will denote

(as in 1.2.) the stretched manifold with conical singularities which is the base of the
stretched corner B = B x R +. The components of aB correspond to the conical points.
Every point of OB has a tubular neighbourhood X x [0, 1) with X being the base of
a corresponding cone. Let us assume for simplicity that a B only consists of one connection
component. The generalization to several connection components is completely trivial
and will be dropped.

Choose a finite covering Ul = { UO..., UN} of int B by open sets where Uo0 X x R+,
j r) aB = 0 for allj > 0. Then the sets Ujf = Uj x R + form an open covering U of

int B x R + (the interior of the stretched corner), where Uo x R + is the local model along
the outgoing edge.
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Moreover, let B = {VO, ... , VM be an open covering of X. Then the sets Vk x R + form
an open covering V3^ of UO, and k

2 ^ = Vk2 ^}o<kM is an open covering of UO. The
pair {32 , U^ } will always be understood in this meaning.

For simplifying notations the local coordinates in Vk(Uj) will be denoted by x E Rn

(xe Rn"+). Clearly they are different for different k(j).

6. Definition. A system {{t -r-qk)ok < M, {t -Pj})lj_<N with

qk(x, r, t, , re, rtz) e 9Sl(cVk2 x R. ), 0 k M(11)

pj(, t, , t) E gl(cUj x R+2), 1 <j N (12)

is called a global complete symbol over int B^ with respect to {32^, U^ } if

qklVknV2i - qlIv2,-,vl for 0 < k, < M, (13)

Pilunu; Pjlutrul for 1 < i,j < N, (14)

r-qklv,'lu; - Pjlv2-U; for O < k < M, 1 <j < N. (15)

(13) refers to the transition diffeomorphisms Vk n V - Vk r V and the associated
mappings (5), further (14) is to be interpreted analogously to 1.2. (12), and (15) according
to (6).

Let {(Pjo_<j<N denote a partition of unity belonging to the covering F1 of B, formed
by UO and Uj, j = 1, ... , N. In other words, (Po E C(O), (p e Cg (U), C (U , j O' j = 1.
Further let {0j}o_<j<N be a system of functions, 0 E C (), Oj E C(Uj) forj * 0, and
pjoj = pj for allj. For notational convenience we shall interprete (pj, Oj also as functions

on U, Uj, and denote by the same letters the pull-backs under various coordinate
diffeomorphisms.

Further {l)}O<k_<M denotes a partition of unity on X, belonging to 3, and {k})S0k<M

a system of functions ¢ik Co'(Vk) with PktPk = PWk for all k. For convenience we shall
interprete Ink, Pk also as functions on V, Vk2^ as well as on diffeomorphic images of
these sets.

With the symbols of Definition 6 we can form the operators

Bk = t" r OPt,(xrt) (qk) e Lcl(Vk2^), (16)

Aj = t- ' op,,(x,t) (p) LI'(U), (17)

O < k < M, 1 <j < N, and set

A = qoO YpkBkt, ( o + TjAjbj LI'(int B^).
k=O j= 

It is then clear that

AIvg- - Bk, A Aj for all k,j.
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Now we apply the mappings

fily: kSl(cVk
2 x Rx. ) ,e S(cVk2 ' R x C x C)hol

m7Y: S(cU' x R + 2 ) - S(cUj x R 1 x Cz)hol ,

cf. (4) and 1.2. (18), and

thy: S(cV2^ X RE)2 - SI(Vx R+ x A+ x R 1 x C)hol ,

cf. (10). Moreover, we choose cut-offfunctions w(r), oi(r), i = 1, 2, satisfying 1.2. (29). Set

hl,k = iiy(qk), h2 k = fi(qk), fj = hY(p)).

Then we can form the (t, z) dependent operator family

h(t, z) = tPo { Z Ikr-[o(r[T]) op opx (hl,k) (t, z) col(r[T])
k=O

+ ( - o(r[T)) op, (xr,,) (h2,k) (t, z) (1 - o 2 (r[T]))] )k} 0o

N

+ (j op(, fJ) (t, z) j, (18)
j=1

z = Im z. An immediate consequence of 1.2., Theorem 2, and Theorems 3, 5 is that

A - t - opy (h) (19)

in the sense of L8,(int B^ ).
Similarly to 1.3. (13) we can form the operator-valued Mellin symbols

h,(r, t, w, z) e C(R+,r x R+,t Ml'(X; F1/2-y)) (20)

by

hl(r, t, w, z) = Z Wk OP,.x (hilk) (r, t, w, z) qPk
k=O

and

h2 (r, t, e, z) C°(R+ x R ,,, Lu (X; R. x 1/2-y)) (21)

by

h2 (r, t, e, z) = 1wk opt,X (h2,k) (r, t, Q, z) Pk.
k=O

Note that h, h2 are holomorphic in z and that (20), (21) hold for all y, uniformly in
every strip parallel to the imaginary z axis. Set

e(t, z) = r-co(r[Z]) op4 (hl) (t, z) col(r[r])

+ r-(l - o(r[t])) op, . (h2) (t, z) (1 - 0o2(r[t])). (22)
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Then (18) takes the form
N

h(t, z) = (poe(t, z) o + , pj op, ( J) (t, z) j. (23)
j=1

Note that (18) as well as O0e(t, z) o are families of operators in C"(B, g), g = (0, 0),
/ = /3 + n/2, 0 = (-k, 0], for every k (cf. the notations at the end of 1.2.), and the
leading Mellin symbol 1.2. (37)

at(h) (t, w) = at(poeoo) (t, w) (24)

is independent of z.

7. Proposition. The operator family (22) satisfies

op (oeo) E Y"(X x R , g)

g = (y; #/ + n/2, 0). The leading Mellin symbol in the sense of 1.3. (32) coincides with (24).
Moreover, op (oeo,) has a complete symbol {r-'b}O<k<M in the sense of 1.3. (6), with
bk = t-"qk and qk being again of the sort (11).

Proof: This result follows by analogous arguments as for 1.2., Theorem 2, now applied
to operator-valued symbols, acting as operators along X'. A relation of leading symbols
modulo lower order terms, expressed by the replacement -z -* itr, follows also in the
operator-valued set-up. Then the leading Mellin symbols remain untouched. 

It would be a nice analogue of 1.2. (27), here for the corner, to have holomorphy of
(23) in z.

This is, of course, not the case, since the o(r[r]), oi(r[r]) factors are not holomorphic.
On the other hand, in [S3] we shall see that holomorphy can be achieved modulo a
CG(B, g)-valued error g(t, z). Thus the choice of (18) for the operator (19) (or equivalently
for the given complete symbol of Definition 6) is a first important step of an operator-
valued Mellin operator convention for the corner theory which plays a completely
analogous role as 1.2. (27), with B being the base of the cone.

In the present paper we do not construct anyway the complete algebra of corner
h0DO's containing the full asymptotic information. This will be done in [S4]. So for the
moment we may disregard the non-holomorphy of h(t, z) and complete the operator
convention by something along the outgoing edge far from the vertex as a counterpart
of the second item on the right of 1.2. (28). To this end we apply the definitions of 1.3.
for s = R ,, choose a system {t-1r-"qk)o_ k6m with q of analogous sort as (11), and
set b = t-q, k = ... , M.

Then bk E S 1(cV^ x R+ x R" + x wR), and {r-'bk}O<k<M is global complete symbol
over X^ x R + in the edge sense, cf. 1.3. (7). The variables (t, r) play here the role of (y, ,/)
from Section 1.3. According to 1.3. (15) we obtain the operator family b(t, r). In view of
Proposition 7 the symbols q can be chosen in such a way that

t- "opy (poeko) op,t (b) in LI(X^ x R+).

In an analogous manner we can proceed with the interior parts {t-Pj}x1 jN of the
complete symbols and switch the Mellin action along t to an op.,,-action, cf. 1.2.,
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Theorem 2. It follows altogether that a sum like

co(t) {operator in opM,t-convention} ol(t)

+ (1 - (o(t)) {operator in op,,,,-convention} (1 - o2(t))

is independent of co, coi modulo smoothing operators, provided 1.2. (29) holds. The more
precise analysis of [S3], [S4] will show that the errors are even in the class of Green
corner operators. If

{ {t r-qk}o<kM, {tPj}1ljSN}

is a complete symbol as in Definition 6 we form A - A by

A = o(t) t opI (h) co 1 (t)
N

+ (1 - o(t)) {(po op,, (b) 0 + E jAjj} (1 - 02(t)). (25)
j=l

Here h is given by (18), Aj by (17). The cut-off functions co, coi are assumed to satisfy
1.2. (29). As emphasized above the final operator convention for the corner will contain
a (smoothing) correction of h in order to achieve holomorphy in z. In addition we will
allow extra smoothing Mellin operators and Green operators, similarly as for the cone
with smooth base (cf. 1.2. and [S3], [S4]).

Note that h depends on ,8, 7 and b on fl. In the final calculus we will replace y by
7 - (n + 1)/2, and P by - n/2 for n = dim X.

2.2. Symbolic Levels of Corner Operators

This section will have a look at the symbolic structure of the operators of the form 2.1. (25).
First we have the homogeneous principal interior symbol of order u

Ca(A) e C(T*(int B^) \ 0) (1)

which is defined by

CAO(A)lIT*V \O = t-r -qk,()(X, r, t, ,, e, r), 0 k < M,

¢(A)lT*vU\o = t pj,(M) (x, t, ~, *), 1 < j < N,

with qk,(,) (pj,()) being the homogeneous principal part of q, (ps) of order P.
Furthermore, there is the corner Mellin symbol of highest conormal order p

a (A) (z).= h(O, z), (2)

h(t, z) being defined by 2.1. (18) and z varying on F1/2_ . (2) is an operator family

ap(A) (z): tF,'+"/2(B) , s-f'+nl/2(B) (3)

for all s E R and belongs to the parameter-dependent class (with the parameter z e F1/2 -)

of cone operators C(B, g; w 1/2_ y), that will be studied in detail in [S3], g = (, 0),
0 = (-k, 0]. As a family of cone operators it has a leading Mellin symbol with respect
to the base X of the cone which is independent of z. Let us talk about the subordinate
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Mellin symbol

a (A) (w): Hs(X) -- Hs-"(X), (4)

s E R, with w varying on F/12 _. For a(z) e C"(B, g; wR), R F1/2 , we have canonically
a parameter-dependent homogeneous principal symbol ca,(a) E Co((T* int B) x R, \ 0)
(O corresponds to (, z) = 0 with 5 being the fibre variable in T* int B) and then

taC (A)lt=o = aa (A), (5)

where a on the right is used in the latter meaning and on the left as in (1).
The operator family b(t, T) of the preceding section and the definition of 1.3. (18) give

rise to the homogeneous principal edge symbol of order u

C (A) (t, ) = (b) (t, ) . (6)

It satisfies

a"(A) (t, Ar) = A2xAa A(A) (t, T) X1

for all t E R +, E R \ {0}, A c R , where (xu) (x, r) = A(n+ 1)/2u(x, Ar), u E SS'(X ^ ) (cf.
1.3. Proposition 7).

The edge symbol (6) is an operator family

CA(A) (t, ): /s' P+n/2(X^ ) _Xs-IB +n/2-p(X^ )

for all s R, parametrized by T*R+ \ {0} (t, r). Remember that by 1.3. (17) we have
a subordinate Mellin symbol of (6)

o'ACA(A) (t, w) = ho(t, w) (7)

which is the image of {t-qk}o0 k•M under the mapping 1.3. (14), restricted to r = 0. It
is a family of operators

a"a(A) (t, w): Hs(X) H'-"(X),

s E R, smoothly depending on t E R +, w E F1/2 -, which can be interpreted as an element
in C°(R+, LI,(X; F112-P)). Clearly taaa(A) (t, w) is Co up to t = 0. Then

t"aroA(A) (t, w),l=o = aa'(A) (w), (8)

cf. (4).
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